forked from PulseFocusPlatform/PulseFocusPlatform
334 lines
12 KiB
Python
334 lines
12 KiB
Python
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import ParamAttr
|
||
|
from paddle.nn.initializer import KaimingNormal
|
||
|
from ppdet.core.workspace import register, serializable
|
||
|
from ..shape_spec import ShapeSpec
|
||
|
|
||
|
__all__ = ['BlazeNet']
|
||
|
|
||
|
|
||
|
def hard_swish(x):
|
||
|
return x * F.relu6(x + 3) / 6.
|
||
|
|
||
|
|
||
|
class ConvBNLayer(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
num_groups=1,
|
||
|
act='relu',
|
||
|
conv_lr=0.1,
|
||
|
conv_decay=0.,
|
||
|
norm_decay=0.,
|
||
|
norm_type='bn',
|
||
|
name=None):
|
||
|
super(ConvBNLayer, self).__init__()
|
||
|
self.act = act
|
||
|
self._conv = nn.Conv2D(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
groups=num_groups,
|
||
|
weight_attr=ParamAttr(
|
||
|
learning_rate=conv_lr,
|
||
|
initializer=KaimingNormal(),
|
||
|
name=name + "_weights"),
|
||
|
bias_attr=False)
|
||
|
|
||
|
param_attr = ParamAttr(name=name + "_bn_scale")
|
||
|
bias_attr = ParamAttr(name=name + "_bn_offset")
|
||
|
if norm_type == 'sync_bn':
|
||
|
self._batch_norm = nn.SyncBatchNorm(
|
||
|
out_channels, weight_attr=param_attr, bias_attr=bias_attr)
|
||
|
else:
|
||
|
self._batch_norm = nn.BatchNorm(
|
||
|
out_channels,
|
||
|
act=None,
|
||
|
param_attr=param_attr,
|
||
|
bias_attr=bias_attr,
|
||
|
use_global_stats=False,
|
||
|
moving_mean_name=name + '_bn_mean',
|
||
|
moving_variance_name=name + '_bn_variance')
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self._conv(x)
|
||
|
x = self._batch_norm(x)
|
||
|
if self.act == "relu":
|
||
|
x = F.relu(x)
|
||
|
elif self.act == "relu6":
|
||
|
x = F.relu6(x)
|
||
|
elif self.act == 'leaky':
|
||
|
x = F.leaky_relu(x)
|
||
|
elif self.act == 'hard_swish':
|
||
|
x = hard_swish(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class BlazeBlock(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels1,
|
||
|
out_channels2,
|
||
|
double_channels=None,
|
||
|
stride=1,
|
||
|
use_5x5kernel=True,
|
||
|
act='relu',
|
||
|
name=None):
|
||
|
super(BlazeBlock, self).__init__()
|
||
|
assert stride in [1, 2]
|
||
|
self.use_pool = not stride == 1
|
||
|
self.use_double_block = double_channels is not None
|
||
|
self.conv_dw = []
|
||
|
if use_5x5kernel:
|
||
|
self.conv_dw.append(
|
||
|
self.add_sublayer(
|
||
|
name + "1_dw",
|
||
|
ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels1,
|
||
|
kernel_size=5,
|
||
|
stride=stride,
|
||
|
padding=2,
|
||
|
num_groups=out_channels1,
|
||
|
name=name + "1_dw")))
|
||
|
else:
|
||
|
self.conv_dw.append(
|
||
|
self.add_sublayer(
|
||
|
name + "1_dw_1",
|
||
|
ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels1,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
num_groups=out_channels1,
|
||
|
name=name + "1_dw_1")))
|
||
|
self.conv_dw.append(
|
||
|
self.add_sublayer(
|
||
|
name + "1_dw_2",
|
||
|
ConvBNLayer(
|
||
|
in_channels=out_channels1,
|
||
|
out_channels=out_channels1,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
padding=1,
|
||
|
num_groups=out_channels1,
|
||
|
name=name + "1_dw_2")))
|
||
|
self.act = act if self.use_double_block else None
|
||
|
self.conv_pw = ConvBNLayer(
|
||
|
in_channels=out_channels1,
|
||
|
out_channels=out_channels2,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act=self.act,
|
||
|
name=name + "1_sep")
|
||
|
if self.use_double_block:
|
||
|
self.conv_dw2 = []
|
||
|
if use_5x5kernel:
|
||
|
self.conv_dw2.append(
|
||
|
self.add_sublayer(
|
||
|
name + "2_dw",
|
||
|
ConvBNLayer(
|
||
|
in_channels=out_channels2,
|
||
|
out_channels=out_channels2,
|
||
|
kernel_size=5,
|
||
|
stride=1,
|
||
|
padding=2,
|
||
|
num_groups=out_channels2,
|
||
|
name=name + "2_dw")))
|
||
|
else:
|
||
|
self.conv_dw2.append(
|
||
|
self.add_sublayer(
|
||
|
name + "2_dw_1",
|
||
|
ConvBNLayer(
|
||
|
in_channels=out_channels2,
|
||
|
out_channels=out_channels2,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
num_groups=out_channels2,
|
||
|
name=name + "1_dw_1")))
|
||
|
self.conv_dw2.append(
|
||
|
self.add_sublayer(
|
||
|
name + "2_dw_2",
|
||
|
ConvBNLayer(
|
||
|
in_channels=out_channels2,
|
||
|
out_channels=out_channels2,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
num_groups=out_channels2,
|
||
|
name=name + "2_dw_2")))
|
||
|
self.conv_pw2 = ConvBNLayer(
|
||
|
in_channels=out_channels2,
|
||
|
out_channels=double_channels,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
name=name + "2_sep")
|
||
|
# shortcut
|
||
|
if self.use_pool:
|
||
|
shortcut_channel = double_channels or out_channels2
|
||
|
self._shortcut = []
|
||
|
self._shortcut.append(
|
||
|
self.add_sublayer(
|
||
|
name + '_shortcut_pool',
|
||
|
nn.MaxPool2D(
|
||
|
kernel_size=stride, stride=stride, ceil_mode=True)))
|
||
|
self._shortcut.append(
|
||
|
self.add_sublayer(
|
||
|
name + '_shortcut_conv',
|
||
|
ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=shortcut_channel,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
name="shortcut" + name)))
|
||
|
|
||
|
def forward(self, x):
|
||
|
y = x
|
||
|
for conv_dw_block in self.conv_dw:
|
||
|
y = conv_dw_block(y)
|
||
|
y = self.conv_pw(y)
|
||
|
if self.use_double_block:
|
||
|
for conv_dw2_block in self.conv_dw2:
|
||
|
y = conv_dw2_block(y)
|
||
|
y = self.conv_pw2(y)
|
||
|
if self.use_pool:
|
||
|
for shortcut in self._shortcut:
|
||
|
x = shortcut(x)
|
||
|
return F.relu(paddle.add(x, y))
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class BlazeNet(nn.Layer):
|
||
|
"""
|
||
|
BlazeFace, see https://arxiv.org/abs/1907.05047
|
||
|
|
||
|
Args:
|
||
|
blaze_filters (list): number of filter for each blaze block.
|
||
|
double_blaze_filters (list): number of filter for each double_blaze block.
|
||
|
use_5x5kernel (bool): whether or not filter size is 5x5 in depth-wise conv.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
blaze_filters=[[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]],
|
||
|
double_blaze_filters=[[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
|
||
|
[96, 24, 96, 2], [96, 24, 96], [96, 24, 96]],
|
||
|
use_5x5kernel=True,
|
||
|
act=None):
|
||
|
super(BlazeNet, self).__init__()
|
||
|
conv1_num_filters = blaze_filters[0][0]
|
||
|
self.conv1 = ConvBNLayer(
|
||
|
in_channels=3,
|
||
|
out_channels=conv1_num_filters,
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
name="conv1")
|
||
|
in_channels = conv1_num_filters
|
||
|
self.blaze_block = []
|
||
|
self._out_channels = []
|
||
|
for k, v in enumerate(blaze_filters):
|
||
|
assert len(v) in [2, 3], \
|
||
|
"blaze_filters {} not in [2, 3]"
|
||
|
if len(v) == 2:
|
||
|
self.blaze_block.append(
|
||
|
self.add_sublayer(
|
||
|
'blaze_{}'.format(k),
|
||
|
BlazeBlock(
|
||
|
in_channels,
|
||
|
v[0],
|
||
|
v[1],
|
||
|
use_5x5kernel=use_5x5kernel,
|
||
|
act=act,
|
||
|
name='blaze_{}'.format(k))))
|
||
|
elif len(v) == 3:
|
||
|
self.blaze_block.append(
|
||
|
self.add_sublayer(
|
||
|
'blaze_{}'.format(k),
|
||
|
BlazeBlock(
|
||
|
in_channels,
|
||
|
v[0],
|
||
|
v[1],
|
||
|
stride=v[2],
|
||
|
use_5x5kernel=use_5x5kernel,
|
||
|
act=act,
|
||
|
name='blaze_{}'.format(k))))
|
||
|
in_channels = v[1]
|
||
|
|
||
|
for k, v in enumerate(double_blaze_filters):
|
||
|
assert len(v) in [3, 4], \
|
||
|
"blaze_filters {} not in [3, 4]"
|
||
|
if len(v) == 3:
|
||
|
self.blaze_block.append(
|
||
|
self.add_sublayer(
|
||
|
'double_blaze_{}'.format(k),
|
||
|
BlazeBlock(
|
||
|
in_channels,
|
||
|
v[0],
|
||
|
v[1],
|
||
|
double_channels=v[2],
|
||
|
use_5x5kernel=use_5x5kernel,
|
||
|
act=act,
|
||
|
name='double_blaze_{}'.format(k))))
|
||
|
elif len(v) == 4:
|
||
|
self.blaze_block.append(
|
||
|
self.add_sublayer(
|
||
|
'double_blaze_{}'.format(k),
|
||
|
BlazeBlock(
|
||
|
in_channels,
|
||
|
v[0],
|
||
|
v[1],
|
||
|
double_channels=v[2],
|
||
|
stride=v[3],
|
||
|
use_5x5kernel=use_5x5kernel,
|
||
|
act=act,
|
||
|
name='double_blaze_{}'.format(k))))
|
||
|
in_channels = v[2]
|
||
|
self._out_channels.append(in_channels)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
outs = []
|
||
|
y = self.conv1(inputs['image'])
|
||
|
for block in self.blaze_block:
|
||
|
y = block(y)
|
||
|
outs.append(y)
|
||
|
return [outs[-4], outs[-1]]
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [
|
||
|
ShapeSpec(channels=c)
|
||
|
for c in [self._out_channels[-4], self._out_channels[-1]]
|
||
|
]
|