forked from PulseFocusPlatform/PulseFocusPlatform
259 lines
9.6 KiB
Python
259 lines
9.6 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
import datetime
|
||
|
import six
|
||
|
|
||
|
import paddle.distributed as dist
|
||
|
|
||
|
from ppdet.utils.checkpoint import save_model
|
||
|
|
||
|
from ppdet.utils.logger import setup_logger
|
||
|
logger = setup_logger('ppdet.engine')
|
||
|
|
||
|
__all__ = ['Callback', 'ComposeCallback', 'LogPrinter', 'Checkpointer']
|
||
|
|
||
|
|
||
|
class Callback(object):
|
||
|
def __init__(self, model):
|
||
|
self.model = model
|
||
|
|
||
|
def on_step_begin(self, status):
|
||
|
pass
|
||
|
|
||
|
def on_step_end(self, status):
|
||
|
pass
|
||
|
|
||
|
def on_epoch_begin(self, status):
|
||
|
pass
|
||
|
|
||
|
def on_epoch_end(self, status):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class ComposeCallback(object):
|
||
|
def __init__(self, callbacks):
|
||
|
callbacks = [c for c in list(callbacks) if c is not None]
|
||
|
for c in callbacks:
|
||
|
assert isinstance(
|
||
|
c, Callback), "callback should be subclass of Callback"
|
||
|
self._callbacks = callbacks
|
||
|
|
||
|
def on_step_begin(self, status):
|
||
|
for c in self._callbacks:
|
||
|
c.on_step_begin(status)
|
||
|
|
||
|
def on_step_end(self, status):
|
||
|
for c in self._callbacks:
|
||
|
c.on_step_end(status)
|
||
|
|
||
|
def on_epoch_begin(self, status):
|
||
|
for c in self._callbacks:
|
||
|
c.on_epoch_begin(status)
|
||
|
|
||
|
def on_epoch_end(self, status):
|
||
|
for c in self._callbacks:
|
||
|
c.on_epoch_end(status)
|
||
|
|
||
|
|
||
|
class LogPrinter(Callback):
|
||
|
def __init__(self, model):
|
||
|
super(LogPrinter, self).__init__(model)
|
||
|
|
||
|
def on_step_end(self, status):
|
||
|
if dist.get_world_size() < 2 or dist.get_rank() == 0:
|
||
|
mode = status['mode']
|
||
|
if mode == 'train':
|
||
|
epoch_id = status['epoch_id']
|
||
|
step_id = status['step_id']
|
||
|
steps_per_epoch = status['steps_per_epoch']
|
||
|
training_staus = status['training_staus']
|
||
|
batch_time = status['batch_time']
|
||
|
data_time = status['data_time']
|
||
|
|
||
|
epoches = self.model.cfg.epoch
|
||
|
batch_size = self.model.cfg['{}Reader'.format(mode.capitalize(
|
||
|
))]['batch_size']
|
||
|
|
||
|
logs = training_staus.log()
|
||
|
space_fmt = ':' + str(len(str(steps_per_epoch))) + 'd'
|
||
|
if step_id % self.model.cfg.log_iter == 0:
|
||
|
eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id
|
||
|
eta_sec = eta_steps * batch_time.global_avg
|
||
|
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
|
||
|
ips = float(batch_size) / batch_time.avg
|
||
|
fmt = ' '.join([
|
||
|
'Epoch: [{}]',
|
||
|
'[{' + space_fmt + '}/{}]',
|
||
|
'learning_rate: {lr:.6f}',
|
||
|
'{meters}',
|
||
|
'eta: {eta}',
|
||
|
'batch_cost: {btime}',
|
||
|
'data_cost: {dtime}',
|
||
|
'ips: {ips:.4f} images/s',
|
||
|
])
|
||
|
fmt = fmt.format(
|
||
|
epoch_id,
|
||
|
step_id,
|
||
|
steps_per_epoch,
|
||
|
lr=status['learning_rate'],
|
||
|
meters=logs,
|
||
|
eta=eta_str,
|
||
|
btime=str(batch_time),
|
||
|
dtime=str(data_time),
|
||
|
ips=ips)
|
||
|
logger.info(fmt)
|
||
|
if mode == 'eval':
|
||
|
step_id = status['step_id']
|
||
|
if step_id % 100 == 0:
|
||
|
logger.info("Eval iter: {}".format(step_id))
|
||
|
|
||
|
def on_epoch_end(self, status):
|
||
|
if dist.get_world_size() < 2 or dist.get_rank() == 0:
|
||
|
mode = status['mode']
|
||
|
if mode == 'eval':
|
||
|
sample_num = status['sample_num']
|
||
|
cost_time = status['cost_time']
|
||
|
logger.info('Total sample number: {}, averge FPS: {}'.format(
|
||
|
sample_num, sample_num / cost_time))
|
||
|
|
||
|
|
||
|
class Checkpointer(Callback):
|
||
|
def __init__(self, model):
|
||
|
super(Checkpointer, self).__init__(model)
|
||
|
cfg = self.model.cfg
|
||
|
self.best_ap = 0.
|
||
|
self.save_dir = os.path.join(self.model.cfg.save_dir,
|
||
|
self.model.cfg.filename)
|
||
|
if hasattr(self.model.model, 'student_model'):
|
||
|
self.weight = self.model.model.student_model
|
||
|
else:
|
||
|
self.weight = self.model.model
|
||
|
|
||
|
def on_epoch_end(self, status):
|
||
|
# Checkpointer only performed during training
|
||
|
mode = status['mode']
|
||
|
epoch_id = status['epoch_id']
|
||
|
weight = None
|
||
|
save_name = None
|
||
|
if dist.get_world_size() < 2 or dist.get_rank() == 0:
|
||
|
if mode == 'train':
|
||
|
end_epoch = self.model.cfg.epoch
|
||
|
if (
|
||
|
epoch_id + 1
|
||
|
) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1:
|
||
|
save_name = str(
|
||
|
epoch_id) if epoch_id != end_epoch - 1 else "model_final"
|
||
|
weight = self.weight
|
||
|
elif mode == 'eval':
|
||
|
if 'save_best_model' in status and status['save_best_model']:
|
||
|
for metric in self.model._metrics:
|
||
|
map_res = metric.get_results()
|
||
|
if 'bbox' in map_res:
|
||
|
key = 'bbox'
|
||
|
elif 'keypoint' in map_res:
|
||
|
key = 'keypoint'
|
||
|
else:
|
||
|
key = 'mask'
|
||
|
if key not in map_res:
|
||
|
logger.warning("Evaluation results empty, this may be due to " \
|
||
|
"training iterations being too few or not " \
|
||
|
"loading the correct weights.")
|
||
|
return
|
||
|
if map_res[key][0] > self.best_ap:
|
||
|
self.best_ap = map_res[key][0]
|
||
|
save_name = 'best_model'
|
||
|
weight = self.weight
|
||
|
logger.info("Best test {} ap is {:0.3f}.".format(
|
||
|
key, self.best_ap))
|
||
|
if weight:
|
||
|
save_model(weight, self.model.optimizer, self.save_dir,
|
||
|
save_name, epoch_id + 1)
|
||
|
|
||
|
|
||
|
class WiferFaceEval(Callback):
|
||
|
def __init__(self, model):
|
||
|
super(WiferFaceEval, self).__init__(model)
|
||
|
|
||
|
def on_epoch_begin(self, status):
|
||
|
assert self.model.mode == 'eval', \
|
||
|
"WiferFaceEval can only be set during evaluation"
|
||
|
for metric in self.model._metrics:
|
||
|
metric.update(self.model.model)
|
||
|
sys.exit()
|
||
|
|
||
|
|
||
|
class VisualDLWriter(Callback):
|
||
|
"""
|
||
|
Use VisualDL to log data or image
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model):
|
||
|
super(VisualDLWriter, self).__init__(model)
|
||
|
|
||
|
assert six.PY3, "VisualDL requires Python >= 3.5"
|
||
|
try:
|
||
|
from visualdl import LogWriter
|
||
|
except Exception as e:
|
||
|
logger.error('visualdl not found, plaese install visualdl. '
|
||
|
'for example: `pip install visualdl`.')
|
||
|
raise e
|
||
|
self.vdl_writer = LogWriter(
|
||
|
model.cfg.get('vdl_log_dir', 'vdl_log_dir/scalar'))
|
||
|
self.vdl_loss_step = 0
|
||
|
self.vdl_mAP_step = 0
|
||
|
self.vdl_image_step = 0
|
||
|
self.vdl_image_frame = 0
|
||
|
|
||
|
def on_step_end(self, status):
|
||
|
mode = status['mode']
|
||
|
if dist.get_world_size() < 2 or dist.get_rank() == 0:
|
||
|
if mode == 'train':
|
||
|
training_staus = status['training_staus']
|
||
|
for loss_name, loss_value in training_staus.get().items():
|
||
|
self.vdl_writer.add_scalar(loss_name, loss_value,
|
||
|
self.vdl_loss_step)
|
||
|
self.vdl_loss_step += 1
|
||
|
elif mode == 'test':
|
||
|
ori_image = status['original_image']
|
||
|
result_image = status['result_image']
|
||
|
self.vdl_writer.add_image(
|
||
|
"original/frame_{}".format(self.vdl_image_frame), ori_image,
|
||
|
self.vdl_image_step)
|
||
|
self.vdl_writer.add_image(
|
||
|
"result/frame_{}".format(self.vdl_image_frame),
|
||
|
result_image, self.vdl_image_step)
|
||
|
self.vdl_image_step += 1
|
||
|
# each frame can display ten pictures at most.
|
||
|
if self.vdl_image_step % 10 == 0:
|
||
|
self.vdl_image_step = 0
|
||
|
self.vdl_image_frame += 1
|
||
|
|
||
|
def on_epoch_end(self, status):
|
||
|
mode = status['mode']
|
||
|
if dist.get_world_size() < 2 or dist.get_rank() == 0:
|
||
|
if mode == 'eval':
|
||
|
for metric in self.model._metrics:
|
||
|
for key, map_value in metric.get_results().items():
|
||
|
self.vdl_writer.add_scalar("{}-mAP".format(key),
|
||
|
map_value[0],
|
||
|
self.vdl_mAP_step)
|
||
|
self.vdl_mAP_step += 1
|