PulseFocusPlatform/deploy/serving/README.md

116 lines
3.6 KiB
Markdown
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# 服务端预测部署
`PaddleDetection`训练出来的模型可以使用[Serving](https://github.com/PaddlePaddle/Serving) 部署在服务端。
本教程以在COCO数据集上用`configs/yolov3/yolov3_darknet53_270e_coco.yml`算法训练的模型进行部署。
预训练模型权重文件为[yolov3_darknet53_270e_coco.pdparams](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) 。
## 1. 首先验证模型
```
python tools/infer.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --infer_img=demo/000000014439.jpg -o use_gpu=True weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --infer_img=demo/000000014439.jpg
```
## 2. 安装 paddle serving
请参考[PaddleServing](https://github.com/PaddlePaddle/Serving/tree/v0.5.0) 中安装教程安装
## 3. 导出模型
PaddleDetection在训练过程包括网络的前向和优化器相关参数而在部署过程中我们只需要前向参数具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md)
```
python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=weights/yolov3_darknet53_270e_coco.pdparams --export_serving_model=True
```
以上命令会在`output_inference/`文件夹下生成一个`yolov3_darknet53_270e_coco`文件夹:
```
output_inference
│ ├── yolov3_darknet53_270e_coco
│ │ ├── infer_cfg.yml
│ │ ├── model.pdiparams
│ │ ├── model.pdiparams.info
│ │ ├── model.pdmodel
│ │ ├── serving_client
│ │ │ ├── serving_client_conf.prototxt
│ │ │ ├── serving_client_conf.stream.prototxt
│ │ ├── serving_server
│ │ │ ├── __model__
│ │ │ ├── __params__
│ │ │ ├── serving_server_conf.prototxt
│ │ │ ├── serving_server_conf.stream.prototxt
│ │ │ ├── ...
```
`serving_client`文件夹下`serving_client_conf.prototxt`详细说明了模型输入输出信息
`serving_client_conf.prototxt`文件内容为:
```
lient_conf.prototxt
feed_var {
name: "im_shape"
alias_name: "im_shape"
is_lod_tensor: false
feed_type: 1
shape: 2
}
feed_var {
name: "image"
alias_name: "image"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 608
shape: 608
}
feed_var {
name: "scale_factor"
alias_name: "scale_factor"
is_lod_tensor: false
feed_type: 1
shape: 2
}
fetch_var {
name: "save_infer_model/scale_0.tmp_1"
alias_name: "save_infer_model/scale_0.tmp_1"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
fetch_var {
name: "save_infer_model/scale_1.tmp_1"
alias_name: "save_infer_model/scale_1.tmp_1"
is_lod_tensor: true
fetch_type: 2
shape: -1
}
```
## 4. 启动PaddleServing服务
```
cd output_inference/yolov3_darknet53_270e_coco/
# GPU
python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_ids 0
# CPU
python -m paddle_serving_server.serve --model serving_server --port 9393
```
## 5. 测试部署的服务
准备`label_list.txt`文件
```
# 进入到导出模型文件夹
cd output_inference/yolov3_darknet53_270e_coco/
# 将数据集对应的label_list.txt文件放到当前文件夹下
```
设置`prototxt`文件路径为`serving_client/serving_client_conf.prototxt` 。
设置`fetch`为`fetch=["save_infer_model/scale_0.tmp_1"])`
测试
```
# 进入目录
cd output_inference/yolov3_darknet53_270e_coco/
# 测试代码 test_client.py 会自动创建output文件夹并在output下生成`bbox.json`和`000000014439.jpg`两个文件
python ../../deploy/serving/test_client.py ../../demo/000000014439.jpg
```