forked from PulseFocusPlatform/PulseFocusPlatform
116 lines
3.6 KiB
Markdown
116 lines
3.6 KiB
Markdown
|
# 服务端预测部署
|
|||
|
|
|||
|
`PaddleDetection`训练出来的模型可以使用[Serving](https://github.com/PaddlePaddle/Serving) 部署在服务端。
|
|||
|
本教程以在COCO数据集上用`configs/yolov3/yolov3_darknet53_270e_coco.yml`算法训练的模型进行部署。
|
|||
|
预训练模型权重文件为[yolov3_darknet53_270e_coco.pdparams](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) 。
|
|||
|
|
|||
|
## 1. 首先验证模型
|
|||
|
```
|
|||
|
python tools/infer.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --infer_img=demo/000000014439.jpg -o use_gpu=True weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --infer_img=demo/000000014439.jpg
|
|||
|
```
|
|||
|
|
|||
|
## 2. 安装 paddle serving
|
|||
|
请参考[PaddleServing](https://github.com/PaddlePaddle/Serving/tree/v0.5.0) 中安装教程安装
|
|||
|
|
|||
|
## 3. 导出模型
|
|||
|
PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md)
|
|||
|
|
|||
|
```
|
|||
|
python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=weights/yolov3_darknet53_270e_coco.pdparams --export_serving_model=True
|
|||
|
```
|
|||
|
|
|||
|
以上命令会在`output_inference/`文件夹下生成一个`yolov3_darknet53_270e_coco`文件夹:
|
|||
|
```
|
|||
|
output_inference
|
|||
|
│ ├── yolov3_darknet53_270e_coco
|
|||
|
│ │ ├── infer_cfg.yml
|
|||
|
│ │ ├── model.pdiparams
|
|||
|
│ │ ├── model.pdiparams.info
|
|||
|
│ │ ├── model.pdmodel
|
|||
|
│ │ ├── serving_client
|
|||
|
│ │ │ ├── serving_client_conf.prototxt
|
|||
|
│ │ │ ├── serving_client_conf.stream.prototxt
|
|||
|
│ │ ├── serving_server
|
|||
|
│ │ │ ├── __model__
|
|||
|
│ │ │ ├── __params__
|
|||
|
│ │ │ ├── serving_server_conf.prototxt
|
|||
|
│ │ │ ├── serving_server_conf.stream.prototxt
|
|||
|
│ │ │ ├── ...
|
|||
|
```
|
|||
|
|
|||
|
`serving_client`文件夹下`serving_client_conf.prototxt`详细说明了模型输入输出信息
|
|||
|
`serving_client_conf.prototxt`文件内容为:
|
|||
|
```
|
|||
|
lient_conf.prototxt
|
|||
|
feed_var {
|
|||
|
name: "im_shape"
|
|||
|
alias_name: "im_shape"
|
|||
|
is_lod_tensor: false
|
|||
|
feed_type: 1
|
|||
|
shape: 2
|
|||
|
}
|
|||
|
feed_var {
|
|||
|
name: "image"
|
|||
|
alias_name: "image"
|
|||
|
is_lod_tensor: false
|
|||
|
feed_type: 1
|
|||
|
shape: 3
|
|||
|
shape: 608
|
|||
|
shape: 608
|
|||
|
}
|
|||
|
feed_var {
|
|||
|
name: "scale_factor"
|
|||
|
alias_name: "scale_factor"
|
|||
|
is_lod_tensor: false
|
|||
|
feed_type: 1
|
|||
|
shape: 2
|
|||
|
}
|
|||
|
fetch_var {
|
|||
|
name: "save_infer_model/scale_0.tmp_1"
|
|||
|
alias_name: "save_infer_model/scale_0.tmp_1"
|
|||
|
is_lod_tensor: true
|
|||
|
fetch_type: 1
|
|||
|
shape: -1
|
|||
|
}
|
|||
|
fetch_var {
|
|||
|
name: "save_infer_model/scale_1.tmp_1"
|
|||
|
alias_name: "save_infer_model/scale_1.tmp_1"
|
|||
|
is_lod_tensor: true
|
|||
|
fetch_type: 2
|
|||
|
shape: -1
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 4. 启动PaddleServing服务
|
|||
|
|
|||
|
```
|
|||
|
cd output_inference/yolov3_darknet53_270e_coco/
|
|||
|
|
|||
|
# GPU
|
|||
|
python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_ids 0
|
|||
|
|
|||
|
# CPU
|
|||
|
python -m paddle_serving_server.serve --model serving_server --port 9393
|
|||
|
```
|
|||
|
|
|||
|
## 5. 测试部署的服务
|
|||
|
准备`label_list.txt`文件
|
|||
|
```
|
|||
|
# 进入到导出模型文件夹
|
|||
|
cd output_inference/yolov3_darknet53_270e_coco/
|
|||
|
|
|||
|
# 将数据集对应的label_list.txt文件放到当前文件夹下
|
|||
|
```
|
|||
|
|
|||
|
设置`prototxt`文件路径为`serving_client/serving_client_conf.prototxt` 。
|
|||
|
设置`fetch`为`fetch=["save_infer_model/scale_0.tmp_1"])`
|
|||
|
|
|||
|
测试
|
|||
|
```
|
|||
|
# 进入目录
|
|||
|
cd output_inference/yolov3_darknet53_270e_coco/
|
|||
|
|
|||
|
# 测试代码 test_client.py 会自动创建output文件夹,并在output下生成`bbox.json`和`000000014439.jpg`两个文件
|
|||
|
python ../../deploy/serving/test_client.py ../../demo/000000014439.jpg
|
|||
|
```
|