PulseFocusPlatform/ppdet/data/source/mot.py

361 lines
13 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import numpy as np
from collections import OrderedDict
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
from .dataset import DetDataset, _make_dataset, _is_valid_file
from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@register
@serializable
class MOTDataSet(DetDataset):
"""
Load dataset with MOT format.
Args:
dataset_dir (str): root directory for dataset.
image_lists (str|list): mot data image lists, muiti-source mot dataset.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
Notes:
MOT datasets root directory following this:
dataset/mot
|image_lists
| |caltech.train
| |caltech.val
| |mot16.train
| |mot17.train
| ......
|Caltech
|MOT17
|......
All the MOT datasets have the following structure:
Caltech
|images
| 00001.jpg
| | ...
| 0000N.jpg
labels_with_ids
00001.txt
| ...
0000N.txt
or
MOT17
|images
| train
| test
labels_with_ids
train
"""
def __init__(self,
dataset_dir=None,
image_lists=[],
data_fields=['image'],
sample_num=-1):
super(MOTDataSet, self).__init__(
dataset_dir=dataset_dir,
data_fields=data_fields,
sample_num=sample_num)
self.dataset_dir = dataset_dir
self.image_lists = image_lists
if isinstance(self.image_lists, str):
self.image_lists = [self.image_lists]
self.roidbs = None
self.cname2cid = None
def get_anno(self):
if self.image_lists == []:
return
# only used to get categories and metric
return os.path.join(self.dataset_dir, 'image_lists',
self.image_lists[0])
def parse_dataset(self):
self.img_files = OrderedDict()
self.img_start_index = OrderedDict()
self.label_files = OrderedDict()
self.tid_num = OrderedDict()
self.tid_start_index = OrderedDict()
img_index = 0
for data_name in self.image_lists:
# check every data image list
image_lists_dir = os.path.join(self.dataset_dir, 'image_lists')
assert os.path.isdir(image_lists_dir), \
"The {} is not a directory.".format(image_lists_dir)
list_path = os.path.join(image_lists_dir, data_name)
assert os.path.exists(list_path), \
"The list path {} does not exist.".format(list_path)
# record img_files, filter out empty ones
with open(list_path, 'r') as file:
self.img_files[data_name] = file.readlines()
self.img_files[data_name] = [
os.path.join(self.dataset_dir, x.strip())
for x in self.img_files[data_name]
]
self.img_files[data_name] = list(
filter(lambda x: len(x) > 0, self.img_files[data_name]))
self.img_start_index[data_name] = img_index
img_index += len(self.img_files[data_name])
# record label_files
self.label_files[data_name] = [
x.replace('images', 'labels_with_ids').replace(
'.png', '.txt').replace('.jpg', '.txt')
for x in self.img_files[data_name]
]
for data_name, label_paths in self.label_files.items():
max_index = -1
for lp in label_paths:
lb = np.loadtxt(lp)
if len(lb) < 1:
continue
if len(lb.shape) < 2:
img_max = lb[1]
else:
img_max = np.max(lb[:, 1])
if img_max > max_index:
max_index = img_max
self.tid_num[data_name] = int(max_index + 1)
last_index = 0
for i, (k, v) in enumerate(self.tid_num.items()):
self.tid_start_index[k] = last_index
last_index += v
self.total_identities = int(last_index + 1)
self.num_imgs_each_data = [len(x) for x in self.img_files.values()]
self.total_imgs = sum(self.num_imgs_each_data)
logger.info('=' * 80)
logger.info('MOT dataset summary: ')
logger.info(self.tid_num)
logger.info('total images: {}'.format(self.total_imgs))
logger.info('image start index: {}'.format(self.img_start_index))
logger.info('total identities: {}'.format(self.total_identities))
logger.info('identity start index: {}'.format(self.tid_start_index))
logger.info('=' * 80)
records = []
cname2cid = mot_label()
for img_index in range(self.total_imgs):
for i, (k, v) in enumerate(self.img_start_index.items()):
if img_index >= v:
data_name = list(self.label_files.keys())[i]
start_index = v
img_file = self.img_files[data_name][img_index - start_index]
lbl_file = self.label_files[data_name][img_index - start_index]
if not os.path.exists(img_file):
logger.warning('Illegal image file: {}, and it will be ignored'.
format(img_file))
continue
if not os.path.isfile(lbl_file):
logger.warning('Illegal label file: {}, and it will be ignored'.
format(lbl_file))
continue
labels = np.loadtxt(lbl_file, dtype=np.float32).reshape(-1, 6)
# each row in labels (N, 6) is [gt_class, gt_identity, cx, cy, w, h]
cx, cy = labels[:, 2], labels[:, 3]
w, h = labels[:, 4], labels[:, 5]
gt_bbox = np.stack((cx, cy, w, h)).T.astype('float32')
gt_class = labels[:, 0:1].astype('int32')
gt_score = np.ones((len(labels), 1)).astype('float32')
gt_ide = labels[:, 1:2].astype('int32')
for i, _ in enumerate(gt_ide):
if gt_ide[i] > -1:
gt_ide[i] += self.tid_start_index[data_name]
mot_rec = {
'im_file': img_file,
'im_id': img_index,
} if 'image' in self.data_fields else {}
gt_rec = {
'gt_class': gt_class,
'gt_score': gt_score,
'gt_bbox': gt_bbox,
'gt_ide': gt_ide,
}
for k, v in gt_rec.items():
if k in self.data_fields:
mot_rec[k] = v
records.append(mot_rec)
if self.sample_num > 0 and img_index >= self.sample_num:
break
assert len(records) > 0, 'not found any mot record in %s' % (
self.image_lists)
self.roidbs, self.cname2cid = records, cname2cid
def mot_label():
labels_map = {'person': 0}
return labels_map
@register
@serializable
class MOTImageFolder(DetDataset):
def __init__(self,
task,
dataset_dir=None,
data_root=None,
image_dir=None,
sample_num=-1,
keep_ori_im=False,
**kwargs):
super(MOTImageFolder, self).__init__(
dataset_dir, image_dir, sample_num=sample_num)
self.task = task
self.data_root = data_root
self.keep_ori_im = keep_ori_im
self._imid2path = {}
self.roidbs = None
def check_or_download_dataset(self):
return
def parse_dataset(self, ):
if not self.roidbs:
self.roidbs = self._load_images()
def _parse(self):
image_dir = self.image_dir
if not isinstance(image_dir, Sequence):
image_dir = [image_dir]
images = []
for im_dir in image_dir:
if os.path.isdir(im_dir):
im_dir = os.path.join(self.dataset_dir, im_dir)
images.extend(_make_dataset(im_dir))
elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
images.append(im_dir)
return images
def _load_images(self):
images = self._parse()
ct = 0
records = []
for image in images:
assert image != '' and os.path.isfile(image), \
"Image {} not found".format(image)
if self.sample_num > 0 and ct >= self.sample_num:
break
rec = {'im_id': np.array([ct]), 'im_file': image}
if self.keep_ori_im:
rec.update({'keep_ori_im': 1})
self._imid2path[ct] = image
ct += 1
records.append(rec)
assert len(records) > 0, "No image file found"
return records
def get_imid2path(self):
return self._imid2path
def set_images(self, images):
self.image_dir = images
self.roidbs = self._load_images()
def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', 'flv')):
return f.lower().endswith(extensions)
@register
@serializable
class MOTVideoDataset(DetDataset):
"""
Load MOT dataset with MOT format from video for inference.
Args:
video_file (str): path of the video file
dataset_dir (str): root directory for dataset.
keep_ori_im (bool): whether to keep original image, default False.
Set True when used during MOT model inference while saving
images or video, or used in DeepSORT.
"""
def __init__(self,
video_file='',
dataset_dir=None,
keep_ori_im=False,
**kwargs):
super(MOTVideoDataset, self).__init__(dataset_dir=dataset_dir)
self.video_file = video_file
self.dataset_dir = dataset_dir
self.keep_ori_im = keep_ori_im
self.roidbs = None
def parse_dataset(self, ):
if not self.roidbs:
self.roidbs = self._load_video_images()
def _load_video_images(self):
self.cap = cv2.VideoCapture(self.video_file)
self.vn = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
self.frame_rate = int(round(self.cap.get(cv2.CAP_PROP_FPS)))
logger.info('Length of the video: {:d} frames'.format(self.vn))
res = True
ct = 0
records = []
while res:
res, img = self.cap.read()
image = np.ascontiguousarray(img, dtype=np.float32)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
im_shape = image.shape
rec = {
'im_id': np.array([ct]),
'image': image,
'h': im_shape[0],
'w': im_shape[1],
'im_shape': np.array(
im_shape[:2], dtype=np.float32),
'scale_factor': np.array(
[1., 1.], dtype=np.float32),
}
if self.keep_ori_im:
rec.update({'ori_image': image})
ct += 1
records.append(rec)
records = records[:-1]
assert len(records) > 0, "No image file found"
return records
def set_video(self, video_file):
self.video_file = video_file
assert os.path.isfile(self.video_file) and _is_valid_video(self.video_file), \
"wrong or unsupported file format: {}".format(self.video_file)
self.roidbs = self._load_video_images()