PulseFocusPlatform/ppdet/modeling/architectures/keypoint_hrnet.py

204 lines
7.2 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import numpy as np
import math
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from ..keypoint_utils import transform_preds
from .. import layers as L
__all__ = ['TopDownHRNet']
@register
class TopDownHRNet(BaseArch):
__category__ = 'architecture'
__inject__ = ['loss']
def __init__(self,
width,
num_joints,
backbone='HRNet',
loss='KeyPointMSELoss',
post_process='HRNetPostProcess',
flip_perm=None,
flip=True,
shift_heatmap=True):
"""
HRNnet network, see https://arxiv.org/abs/1902.09212
Args:
backbone (nn.Layer): backbone instance
post_process (object): `HRNetPostProcess` instance
flip_perm (list): The left-right joints exchange order list
"""
super(TopDownHRNet, self).__init__()
self.backbone = backbone
self.post_process = HRNetPostProcess()
self.loss = loss
self.flip_perm = flip_perm
self.flip = flip
self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True)
self.shift_heatmap = shift_heatmap
self.deploy = False
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
return {'backbone': backbone, }
def _forward(self):
feats = self.backbone(self.inputs)
hrnet_outputs = self.final_conv(feats[0])
if self.training:
return self.loss(hrnet_outputs, self.inputs)
elif self.deploy:
return hrnet_outputs
else:
if self.flip:
self.inputs['image'] = self.inputs['image'].flip([3])
feats = self.backbone(self.inputs)
output_flipped = self.final_conv(feats[0])
output_flipped = self.flip_back(output_flipped.numpy(),
self.flip_perm)
output_flipped = paddle.to_tensor(output_flipped.copy())
if self.shift_heatmap:
output_flipped[:, :, :, 1:] = output_flipped.clone(
)[:, :, :, 0:-1]
hrnet_outputs = (hrnet_outputs + output_flipped) * 0.5
imshape = (self.inputs['im_shape'].numpy()
)[:, ::-1] if 'im_shape' in self.inputs else None
center = self.inputs['center'].numpy(
) if 'center' in self.inputs else np.round(imshape / 2.)
scale = self.inputs['scale'].numpy(
) if 'scale' in self.inputs else imshape / 200.
outputs = self.post_process(hrnet_outputs, center, scale)
return outputs
def get_loss(self):
return self._forward()
def get_pred(self):
res_lst = self._forward()
outputs = {'keypoint': res_lst}
return outputs
def flip_back(self, output_flipped, matched_parts):
assert output_flipped.ndim == 4,\
'output_flipped should be [batch_size, num_joints, height, width]'
output_flipped = output_flipped[:, :, :, ::-1]
for pair in matched_parts:
tmp = output_flipped[:, pair[0], :, :].copy()
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
output_flipped[:, pair[1], :, :] = tmp
return output_flipped
class HRNetPostProcess(object):
def get_max_preds(self, heatmaps):
'''get predictions from score maps
Args:
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
'''
assert isinstance(heatmaps,
np.ndarray), 'heatmaps should be numpy.ndarray'
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = heatmaps.shape[0]
num_joints = heatmaps.shape[1]
width = heatmaps.shape[3]
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def get_final_preds(self, heatmaps, center, scale):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
Args:
heatmaps (numpy.ndarray): The predicted heatmaps
center (numpy.ndarray): The boxes center
scale (numpy.ndarray): The scale factor
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
"""
coords, maxvals = self.get_max_preds(heatmaps)
heatmap_height = heatmaps.shape[2]
heatmap_width = heatmaps.shape[3]
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
hm = heatmaps[n][p]
px = int(math.floor(coords[n][p][0] + 0.5))
py = int(math.floor(coords[n][p][1] + 0.5))
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
diff = np.array([
hm[py][px + 1] - hm[py][px - 1],
hm[py + 1][px] - hm[py - 1][px]
])
coords[n][p] += np.sign(diff) * .25
preds = coords.copy()
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(coords[i], center[i], scale[i],
[heatmap_width, heatmap_height])
return preds, maxvals
def __call__(self, output, center, scale):
preds, maxvals = self.get_final_preds(output.numpy(), center, scale)
outputs = [[
np.concatenate(
(preds, maxvals), axis=-1), np.mean(
maxvals, axis=1)
]]
return outputs