forked from PulseFocusPlatform/PulseFocusPlatform
204 lines
7.2 KiB
Python
204 lines
7.2 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import paddle
|
||
|
import numpy as np
|
||
|
import math
|
||
|
from ppdet.core.workspace import register, create
|
||
|
from .meta_arch import BaseArch
|
||
|
from ..keypoint_utils import transform_preds
|
||
|
from .. import layers as L
|
||
|
|
||
|
__all__ = ['TopDownHRNet']
|
||
|
|
||
|
|
||
|
@register
|
||
|
class TopDownHRNet(BaseArch):
|
||
|
__category__ = 'architecture'
|
||
|
__inject__ = ['loss']
|
||
|
|
||
|
def __init__(self,
|
||
|
width,
|
||
|
num_joints,
|
||
|
backbone='HRNet',
|
||
|
loss='KeyPointMSELoss',
|
||
|
post_process='HRNetPostProcess',
|
||
|
flip_perm=None,
|
||
|
flip=True,
|
||
|
shift_heatmap=True):
|
||
|
"""
|
||
|
HRNnet network, see https://arxiv.org/abs/1902.09212
|
||
|
|
||
|
Args:
|
||
|
backbone (nn.Layer): backbone instance
|
||
|
post_process (object): `HRNetPostProcess` instance
|
||
|
flip_perm (list): The left-right joints exchange order list
|
||
|
"""
|
||
|
super(TopDownHRNet, self).__init__()
|
||
|
self.backbone = backbone
|
||
|
self.post_process = HRNetPostProcess()
|
||
|
self.loss = loss
|
||
|
self.flip_perm = flip_perm
|
||
|
self.flip = flip
|
||
|
self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True)
|
||
|
self.shift_heatmap = shift_heatmap
|
||
|
self.deploy = False
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, *args, **kwargs):
|
||
|
# backbone
|
||
|
backbone = create(cfg['backbone'])
|
||
|
|
||
|
return {'backbone': backbone, }
|
||
|
|
||
|
def _forward(self):
|
||
|
feats = self.backbone(self.inputs)
|
||
|
hrnet_outputs = self.final_conv(feats[0])
|
||
|
|
||
|
if self.training:
|
||
|
return self.loss(hrnet_outputs, self.inputs)
|
||
|
elif self.deploy:
|
||
|
return hrnet_outputs
|
||
|
else:
|
||
|
if self.flip:
|
||
|
self.inputs['image'] = self.inputs['image'].flip([3])
|
||
|
feats = self.backbone(self.inputs)
|
||
|
output_flipped = self.final_conv(feats[0])
|
||
|
output_flipped = self.flip_back(output_flipped.numpy(),
|
||
|
self.flip_perm)
|
||
|
output_flipped = paddle.to_tensor(output_flipped.copy())
|
||
|
if self.shift_heatmap:
|
||
|
output_flipped[:, :, :, 1:] = output_flipped.clone(
|
||
|
)[:, :, :, 0:-1]
|
||
|
hrnet_outputs = (hrnet_outputs + output_flipped) * 0.5
|
||
|
imshape = (self.inputs['im_shape'].numpy()
|
||
|
)[:, ::-1] if 'im_shape' in self.inputs else None
|
||
|
center = self.inputs['center'].numpy(
|
||
|
) if 'center' in self.inputs else np.round(imshape / 2.)
|
||
|
scale = self.inputs['scale'].numpy(
|
||
|
) if 'scale' in self.inputs else imshape / 200.
|
||
|
outputs = self.post_process(hrnet_outputs, center, scale)
|
||
|
return outputs
|
||
|
|
||
|
def get_loss(self):
|
||
|
return self._forward()
|
||
|
|
||
|
def get_pred(self):
|
||
|
res_lst = self._forward()
|
||
|
outputs = {'keypoint': res_lst}
|
||
|
return outputs
|
||
|
|
||
|
def flip_back(self, output_flipped, matched_parts):
|
||
|
assert output_flipped.ndim == 4,\
|
||
|
'output_flipped should be [batch_size, num_joints, height, width]'
|
||
|
|
||
|
output_flipped = output_flipped[:, :, :, ::-1]
|
||
|
|
||
|
for pair in matched_parts:
|
||
|
tmp = output_flipped[:, pair[0], :, :].copy()
|
||
|
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
|
||
|
output_flipped[:, pair[1], :, :] = tmp
|
||
|
|
||
|
return output_flipped
|
||
|
|
||
|
|
||
|
class HRNetPostProcess(object):
|
||
|
def get_max_preds(self, heatmaps):
|
||
|
'''get predictions from score maps
|
||
|
|
||
|
Args:
|
||
|
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
|
||
|
|
||
|
Returns:
|
||
|
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
|
||
|
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
|
||
|
'''
|
||
|
assert isinstance(heatmaps,
|
||
|
np.ndarray), 'heatmaps should be numpy.ndarray'
|
||
|
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
|
||
|
|
||
|
batch_size = heatmaps.shape[0]
|
||
|
num_joints = heatmaps.shape[1]
|
||
|
width = heatmaps.shape[3]
|
||
|
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
|
||
|
idx = np.argmax(heatmaps_reshaped, 2)
|
||
|
maxvals = np.amax(heatmaps_reshaped, 2)
|
||
|
|
||
|
maxvals = maxvals.reshape((batch_size, num_joints, 1))
|
||
|
idx = idx.reshape((batch_size, num_joints, 1))
|
||
|
|
||
|
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
|
||
|
|
||
|
preds[:, :, 0] = (preds[:, :, 0]) % width
|
||
|
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
|
||
|
|
||
|
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
|
||
|
pred_mask = pred_mask.astype(np.float32)
|
||
|
|
||
|
preds *= pred_mask
|
||
|
|
||
|
return preds, maxvals
|
||
|
|
||
|
def get_final_preds(self, heatmaps, center, scale):
|
||
|
"""the highest heatvalue location with a quarter offset in the
|
||
|
direction from the highest response to the second highest response.
|
||
|
|
||
|
Args:
|
||
|
heatmaps (numpy.ndarray): The predicted heatmaps
|
||
|
center (numpy.ndarray): The boxes center
|
||
|
scale (numpy.ndarray): The scale factor
|
||
|
|
||
|
Returns:
|
||
|
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
|
||
|
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
|
||
|
"""
|
||
|
|
||
|
coords, maxvals = self.get_max_preds(heatmaps)
|
||
|
|
||
|
heatmap_height = heatmaps.shape[2]
|
||
|
heatmap_width = heatmaps.shape[3]
|
||
|
|
||
|
for n in range(coords.shape[0]):
|
||
|
for p in range(coords.shape[1]):
|
||
|
hm = heatmaps[n][p]
|
||
|
px = int(math.floor(coords[n][p][0] + 0.5))
|
||
|
py = int(math.floor(coords[n][p][1] + 0.5))
|
||
|
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
|
||
|
diff = np.array([
|
||
|
hm[py][px + 1] - hm[py][px - 1],
|
||
|
hm[py + 1][px] - hm[py - 1][px]
|
||
|
])
|
||
|
coords[n][p] += np.sign(diff) * .25
|
||
|
preds = coords.copy()
|
||
|
|
||
|
# Transform back
|
||
|
for i in range(coords.shape[0]):
|
||
|
preds[i] = transform_preds(coords[i], center[i], scale[i],
|
||
|
[heatmap_width, heatmap_height])
|
||
|
|
||
|
return preds, maxvals
|
||
|
|
||
|
def __call__(self, output, center, scale):
|
||
|
preds, maxvals = self.get_final_preds(output.numpy(), center, scale)
|
||
|
outputs = [[
|
||
|
np.concatenate(
|
||
|
(preds, maxvals), axis=-1), np.mean(
|
||
|
maxvals, axis=1)
|
||
|
]]
|
||
|
return outputs
|