forked from PulseFocusPlatform/PulseFocusPlatform
1033 lines
34 KiB
Python
1033 lines
34 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from ppdet.core.workspace import register, serializable
|
||
|
from ..backbones.darknet import ConvBNLayer
|
||
|
from ..shape_spec import ShapeSpec
|
||
|
|
||
|
__all__ = ['YOLOv3FPN', 'PPYOLOFPN', 'PPYOLOTinyFPN', 'PPYOLOPAN']
|
||
|
|
||
|
|
||
|
def add_coord(x, data_format):
|
||
|
b = x.shape[0]
|
||
|
if data_format == 'NCHW':
|
||
|
h = x.shape[2]
|
||
|
w = x.shape[3]
|
||
|
else:
|
||
|
h = x.shape[1]
|
||
|
w = x.shape[2]
|
||
|
|
||
|
gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1.
|
||
|
if data_format == 'NCHW':
|
||
|
gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
|
||
|
else:
|
||
|
gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
|
||
|
gx.stop_gradient = True
|
||
|
|
||
|
gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1.
|
||
|
if data_format == 'NCHW':
|
||
|
gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
|
||
|
else:
|
||
|
gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
|
||
|
gy.stop_gradient = True
|
||
|
|
||
|
return gx, gy
|
||
|
|
||
|
|
||
|
class YoloDetBlock(nn.Layer):
|
||
|
def __init__(self,
|
||
|
ch_in,
|
||
|
channel,
|
||
|
norm_type,
|
||
|
freeze_norm=False,
|
||
|
name='',
|
||
|
data_format='NCHW'):
|
||
|
"""
|
||
|
YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767
|
||
|
|
||
|
Args:
|
||
|
ch_in (int): input channel
|
||
|
channel (int): base channel
|
||
|
norm_type (str): batch norm type
|
||
|
freeze_norm (bool): whether to freeze norm, default False
|
||
|
name (str): layer name
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
"""
|
||
|
super(YoloDetBlock, self).__init__()
|
||
|
self.ch_in = ch_in
|
||
|
self.channel = channel
|
||
|
assert channel % 2 == 0, \
|
||
|
"channel {} cannot be divided by 2".format(channel)
|
||
|
conv_def = [
|
||
|
['conv0', ch_in, channel, 1, '.0.0'],
|
||
|
['conv1', channel, channel * 2, 3, '.0.1'],
|
||
|
['conv2', channel * 2, channel, 1, '.1.0'],
|
||
|
['conv3', channel, channel * 2, 3, '.1.1'],
|
||
|
['route', channel * 2, channel, 1, '.2'],
|
||
|
]
|
||
|
|
||
|
self.conv_module = nn.Sequential()
|
||
|
for idx, (conv_name, ch_in, ch_out, filter_size,
|
||
|
post_name) in enumerate(conv_def):
|
||
|
self.conv_module.add_sublayer(
|
||
|
conv_name,
|
||
|
ConvBNLayer(
|
||
|
ch_in=ch_in,
|
||
|
ch_out=ch_out,
|
||
|
filter_size=filter_size,
|
||
|
padding=(filter_size - 1) // 2,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm,
|
||
|
data_format=data_format,
|
||
|
name=name + post_name))
|
||
|
|
||
|
self.tip = ConvBNLayer(
|
||
|
ch_in=channel,
|
||
|
ch_out=channel * 2,
|
||
|
filter_size=3,
|
||
|
padding=1,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm,
|
||
|
data_format=data_format,
|
||
|
name=name + '.tip')
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
route = self.conv_module(inputs)
|
||
|
tip = self.tip(route)
|
||
|
return route, tip
|
||
|
|
||
|
|
||
|
class SPP(nn.Layer):
|
||
|
def __init__(self,
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
k,
|
||
|
pool_size,
|
||
|
norm_type,
|
||
|
freeze_norm=False,
|
||
|
name='',
|
||
|
act='leaky',
|
||
|
data_format='NCHW'):
|
||
|
"""
|
||
|
SPP layer, which consist of four pooling layer follwed by conv layer
|
||
|
|
||
|
Args:
|
||
|
ch_in (int): input channel of conv layer
|
||
|
ch_out (int): output channel of conv layer
|
||
|
k (int): kernel size of conv layer
|
||
|
norm_type (str): batch norm type
|
||
|
freeze_norm (bool): whether to freeze norm, default False
|
||
|
name (str): layer name
|
||
|
act (str): activation function
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
"""
|
||
|
super(SPP, self).__init__()
|
||
|
self.pool = []
|
||
|
self.data_format = data_format
|
||
|
for size in pool_size:
|
||
|
pool = self.add_sublayer(
|
||
|
'{}.pool1'.format(name),
|
||
|
nn.MaxPool2D(
|
||
|
kernel_size=size,
|
||
|
stride=1,
|
||
|
padding=size // 2,
|
||
|
data_format=data_format,
|
||
|
ceil_mode=False))
|
||
|
self.pool.append(pool)
|
||
|
self.conv = ConvBNLayer(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
k,
|
||
|
padding=k // 2,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm,
|
||
|
name=name,
|
||
|
act=act,
|
||
|
data_format=data_format)
|
||
|
|
||
|
def forward(self, x):
|
||
|
outs = [x]
|
||
|
for pool in self.pool:
|
||
|
outs.append(pool(x))
|
||
|
if self.data_format == "NCHW":
|
||
|
y = paddle.concat(outs, axis=1)
|
||
|
else:
|
||
|
y = paddle.concat(outs, axis=-1)
|
||
|
|
||
|
y = self.conv(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class DropBlock(nn.Layer):
|
||
|
def __init__(self, block_size, keep_prob, name, data_format='NCHW'):
|
||
|
"""
|
||
|
DropBlock layer, see https://arxiv.org/abs/1810.12890
|
||
|
|
||
|
Args:
|
||
|
block_size (int): block size
|
||
|
keep_prob (int): keep probability
|
||
|
name (str): layer name
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
"""
|
||
|
super(DropBlock, self).__init__()
|
||
|
self.block_size = block_size
|
||
|
self.keep_prob = keep_prob
|
||
|
self.name = name
|
||
|
self.data_format = data_format
|
||
|
|
||
|
def forward(self, x):
|
||
|
if not self.training or self.keep_prob == 1:
|
||
|
return x
|
||
|
else:
|
||
|
gamma = (1. - self.keep_prob) / (self.block_size**2)
|
||
|
if self.data_format == 'NCHW':
|
||
|
shape = x.shape[2:]
|
||
|
else:
|
||
|
shape = x.shape[1:3]
|
||
|
for s in shape:
|
||
|
gamma *= s / (s - self.block_size + 1)
|
||
|
|
||
|
matrix = paddle.cast(paddle.rand(x.shape, x.dtype) < gamma, x.dtype)
|
||
|
mask_inv = F.max_pool2d(
|
||
|
matrix,
|
||
|
self.block_size,
|
||
|
stride=1,
|
||
|
padding=self.block_size // 2,
|
||
|
data_format=self.data_format)
|
||
|
mask = 1. - mask_inv
|
||
|
y = x * mask * (mask.numel() / mask.sum())
|
||
|
return y
|
||
|
|
||
|
|
||
|
class CoordConv(nn.Layer):
|
||
|
def __init__(self,
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
filter_size,
|
||
|
padding,
|
||
|
norm_type,
|
||
|
freeze_norm=False,
|
||
|
name='',
|
||
|
data_format='NCHW'):
|
||
|
"""
|
||
|
CoordConv layer
|
||
|
|
||
|
Args:
|
||
|
ch_in (int): input channel
|
||
|
ch_out (int): output channel
|
||
|
filter_size (int): filter size, default 3
|
||
|
padding (int): padding size, default 0
|
||
|
norm_type (str): batch norm type, default bn
|
||
|
name (str): layer name
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
|
||
|
"""
|
||
|
super(CoordConv, self).__init__()
|
||
|
self.conv = ConvBNLayer(
|
||
|
ch_in + 2,
|
||
|
ch_out,
|
||
|
filter_size=filter_size,
|
||
|
padding=padding,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm,
|
||
|
data_format=data_format,
|
||
|
name=name)
|
||
|
self.data_format = data_format
|
||
|
|
||
|
def forward(self, x):
|
||
|
gx, gy = add_coord(x, self.data_format)
|
||
|
if self.data_format == 'NCHW':
|
||
|
y = paddle.concat([x, gx, gy], axis=1)
|
||
|
else:
|
||
|
y = paddle.concat([x, gx, gy], axis=-1)
|
||
|
y = self.conv(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class PPYOLODetBlock(nn.Layer):
|
||
|
def __init__(self, cfg, name, data_format='NCHW'):
|
||
|
"""
|
||
|
PPYOLODetBlock layer
|
||
|
|
||
|
Args:
|
||
|
cfg (list): layer configs for this block
|
||
|
name (str): block name
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
"""
|
||
|
super(PPYOLODetBlock, self).__init__()
|
||
|
self.conv_module = nn.Sequential()
|
||
|
for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
|
||
|
kwargs.update(
|
||
|
name='{}.{}'.format(name, conv_name), data_format=data_format)
|
||
|
self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))
|
||
|
|
||
|
conv_name, layer, args, kwargs = cfg[-1]
|
||
|
kwargs.update(
|
||
|
name='{}.{}'.format(name, conv_name), data_format=data_format)
|
||
|
self.tip = layer(*args, **kwargs)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
route = self.conv_module(inputs)
|
||
|
tip = self.tip(route)
|
||
|
return route, tip
|
||
|
|
||
|
|
||
|
class PPYOLOTinyDetBlock(nn.Layer):
|
||
|
def __init__(self,
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
name,
|
||
|
drop_block=False,
|
||
|
block_size=3,
|
||
|
keep_prob=0.9,
|
||
|
data_format='NCHW'):
|
||
|
"""
|
||
|
PPYOLO Tiny DetBlock layer
|
||
|
Args:
|
||
|
ch_in (list): input channel number
|
||
|
ch_out (list): output channel number
|
||
|
name (str): block name
|
||
|
drop_block: whether user DropBlock
|
||
|
block_size: drop block size
|
||
|
keep_prob: probability to keep block in DropBlock
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
"""
|
||
|
super(PPYOLOTinyDetBlock, self).__init__()
|
||
|
self.drop_block_ = drop_block
|
||
|
self.conv_module = nn.Sequential()
|
||
|
|
||
|
cfgs = [
|
||
|
# name, in channels, out channels, filter_size,
|
||
|
# stride, padding, groups
|
||
|
['.0', ch_in, ch_out, 1, 1, 0, 1],
|
||
|
['.1', ch_out, ch_out, 5, 1, 2, ch_out],
|
||
|
['.2', ch_out, ch_out, 1, 1, 0, 1],
|
||
|
['.route', ch_out, ch_out, 5, 1, 2, ch_out],
|
||
|
]
|
||
|
for cfg in cfgs:
|
||
|
conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, \
|
||
|
groups = cfg
|
||
|
self.conv_module.add_sublayer(
|
||
|
name + conv_name,
|
||
|
ConvBNLayer(
|
||
|
ch_in=conv_ch_in,
|
||
|
ch_out=conv_ch_out,
|
||
|
filter_size=filter_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
groups=groups,
|
||
|
name=name + conv_name))
|
||
|
|
||
|
self.tip = ConvBNLayer(
|
||
|
ch_in=ch_out,
|
||
|
ch_out=ch_out,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
groups=1,
|
||
|
name=name + conv_name)
|
||
|
|
||
|
if self.drop_block_:
|
||
|
self.drop_block = DropBlock(
|
||
|
block_size=block_size,
|
||
|
keep_prob=keep_prob,
|
||
|
data_format=data_format,
|
||
|
name=name + '.dropblock')
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
if self.drop_block_:
|
||
|
inputs = self.drop_block(inputs)
|
||
|
route = self.conv_module(inputs)
|
||
|
tip = self.tip(route)
|
||
|
return route, tip
|
||
|
|
||
|
|
||
|
class PPYOLODetBlockCSP(nn.Layer):
|
||
|
def __init__(self,
|
||
|
cfg,
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
act,
|
||
|
norm_type,
|
||
|
name,
|
||
|
data_format='NCHW'):
|
||
|
"""
|
||
|
PPYOLODetBlockCSP layer
|
||
|
|
||
|
Args:
|
||
|
cfg (list): layer configs for this block
|
||
|
ch_in (int): input channel
|
||
|
ch_out (int): output channel
|
||
|
act (str): default mish
|
||
|
name (str): block name
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
"""
|
||
|
super(PPYOLODetBlockCSP, self).__init__()
|
||
|
self.data_format = data_format
|
||
|
self.conv1 = ConvBNLayer(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
1,
|
||
|
padding=0,
|
||
|
act=act,
|
||
|
norm_type=norm_type,
|
||
|
name=name + '.left',
|
||
|
data_format=data_format)
|
||
|
self.conv2 = ConvBNLayer(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
1,
|
||
|
padding=0,
|
||
|
act=act,
|
||
|
norm_type=norm_type,
|
||
|
name=name + '.right',
|
||
|
data_format=data_format)
|
||
|
self.conv3 = ConvBNLayer(
|
||
|
ch_out * 2,
|
||
|
ch_out * 2,
|
||
|
1,
|
||
|
padding=0,
|
||
|
act=act,
|
||
|
norm_type=norm_type,
|
||
|
name=name,
|
||
|
data_format=data_format)
|
||
|
self.conv_module = nn.Sequential()
|
||
|
for idx, (layer_name, layer, args, kwargs) in enumerate(cfg):
|
||
|
kwargs.update(name=name + layer_name, data_format=data_format)
|
||
|
self.conv_module.add_sublayer(layer_name, layer(*args, **kwargs))
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
conv_left = self.conv1(inputs)
|
||
|
conv_right = self.conv2(inputs)
|
||
|
conv_left = self.conv_module(conv_left)
|
||
|
if self.data_format == 'NCHW':
|
||
|
conv = paddle.concat([conv_left, conv_right], axis=1)
|
||
|
else:
|
||
|
conv = paddle.concat([conv_left, conv_right], axis=-1)
|
||
|
|
||
|
conv = self.conv3(conv)
|
||
|
return conv, conv
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class YOLOv3FPN(nn.Layer):
|
||
|
__shared__ = ['norm_type', 'data_format']
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels=[256, 512, 1024],
|
||
|
norm_type='bn',
|
||
|
freeze_norm=False,
|
||
|
data_format='NCHW'):
|
||
|
"""
|
||
|
YOLOv3FPN layer
|
||
|
|
||
|
Args:
|
||
|
in_channels (list): input channels for fpn
|
||
|
norm_type (str): batch norm type, default bn
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
|
||
|
"""
|
||
|
super(YOLOv3FPN, self).__init__()
|
||
|
assert len(in_channels) > 0, "in_channels length should > 0"
|
||
|
self.in_channels = in_channels
|
||
|
self.num_blocks = len(in_channels)
|
||
|
|
||
|
self._out_channels = []
|
||
|
self.yolo_blocks = []
|
||
|
self.routes = []
|
||
|
self.data_format = data_format
|
||
|
for i in range(self.num_blocks):
|
||
|
name = 'yolo_block.{}'.format(i)
|
||
|
in_channel = in_channels[-i - 1]
|
||
|
if i > 0:
|
||
|
in_channel += 512 // (2**i)
|
||
|
yolo_block = self.add_sublayer(
|
||
|
name,
|
||
|
YoloDetBlock(
|
||
|
in_channel,
|
||
|
channel=512 // (2**i),
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm,
|
||
|
data_format=data_format,
|
||
|
name=name))
|
||
|
self.yolo_blocks.append(yolo_block)
|
||
|
# tip layer output channel doubled
|
||
|
self._out_channels.append(1024 // (2**i))
|
||
|
|
||
|
if i < self.num_blocks - 1:
|
||
|
name = 'yolo_transition.{}'.format(i)
|
||
|
route = self.add_sublayer(
|
||
|
name,
|
||
|
ConvBNLayer(
|
||
|
ch_in=512 // (2**i),
|
||
|
ch_out=256 // (2**i),
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm,
|
||
|
data_format=data_format,
|
||
|
name=name))
|
||
|
self.routes.append(route)
|
||
|
|
||
|
def forward(self, blocks, for_mot=False):
|
||
|
assert len(blocks) == self.num_blocks
|
||
|
blocks = blocks[::-1]
|
||
|
yolo_feats = []
|
||
|
|
||
|
# add embedding features output for multi-object tracking model
|
||
|
if for_mot:
|
||
|
emb_feats = []
|
||
|
|
||
|
for i, block in enumerate(blocks):
|
||
|
if i > 0:
|
||
|
if self.data_format == 'NCHW':
|
||
|
block = paddle.concat([route, block], axis=1)
|
||
|
else:
|
||
|
block = paddle.concat([route, block], axis=-1)
|
||
|
route, tip = self.yolo_blocks[i](block)
|
||
|
yolo_feats.append(tip)
|
||
|
|
||
|
if for_mot:
|
||
|
# add embedding features output
|
||
|
emb_feats.append(route)
|
||
|
|
||
|
if i < self.num_blocks - 1:
|
||
|
route = self.routes[i](route)
|
||
|
route = F.interpolate(
|
||
|
route, scale_factor=2., data_format=self.data_format)
|
||
|
|
||
|
if for_mot:
|
||
|
return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
|
||
|
else:
|
||
|
return yolo_feats
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, input_shape):
|
||
|
return {'in_channels': [i.channels for i in input_shape], }
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class PPYOLOFPN(nn.Layer):
|
||
|
__shared__ = ['norm_type', 'data_format']
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels=[512, 1024, 2048],
|
||
|
norm_type='bn',
|
||
|
freeze_norm=False,
|
||
|
data_format='NCHW',
|
||
|
coord_conv=False,
|
||
|
conv_block_num=2,
|
||
|
drop_block=False,
|
||
|
block_size=3,
|
||
|
keep_prob=0.9,
|
||
|
spp=False):
|
||
|
"""
|
||
|
PPYOLOFPN layer
|
||
|
|
||
|
Args:
|
||
|
in_channels (list): input channels for fpn
|
||
|
norm_type (str): batch norm type, default bn
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
coord_conv (bool): whether use CoordConv or not
|
||
|
conv_block_num (int): conv block num of each pan block
|
||
|
drop_block (bool): whether use DropBlock or not
|
||
|
block_size (int): block size of DropBlock
|
||
|
keep_prob (float): keep probability of DropBlock
|
||
|
spp (bool): whether use spp or not
|
||
|
|
||
|
"""
|
||
|
super(PPYOLOFPN, self).__init__()
|
||
|
assert len(in_channels) > 0, "in_channels length should > 0"
|
||
|
self.in_channels = in_channels
|
||
|
self.num_blocks = len(in_channels)
|
||
|
# parse kwargs
|
||
|
self.coord_conv = coord_conv
|
||
|
self.drop_block = drop_block
|
||
|
self.block_size = block_size
|
||
|
self.keep_prob = keep_prob
|
||
|
self.spp = spp
|
||
|
self.conv_block_num = conv_block_num
|
||
|
self.data_format = data_format
|
||
|
if self.coord_conv:
|
||
|
ConvLayer = CoordConv
|
||
|
else:
|
||
|
ConvLayer = ConvBNLayer
|
||
|
|
||
|
if self.drop_block:
|
||
|
dropblock_cfg = [[
|
||
|
'dropblock', DropBlock, [self.block_size, self.keep_prob],
|
||
|
dict()
|
||
|
]]
|
||
|
else:
|
||
|
dropblock_cfg = []
|
||
|
|
||
|
self._out_channels = []
|
||
|
self.yolo_blocks = []
|
||
|
self.routes = []
|
||
|
for i, ch_in in enumerate(self.in_channels[::-1]):
|
||
|
if i > 0:
|
||
|
ch_in += 512 // (2**i)
|
||
|
channel = 64 * (2**self.num_blocks) // (2**i)
|
||
|
base_cfg = []
|
||
|
c_in, c_out = ch_in, channel
|
||
|
for j in range(self.conv_block_num):
|
||
|
base_cfg += [
|
||
|
[
|
||
|
'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
|
||
|
dict(
|
||
|
padding=0,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm)
|
||
|
],
|
||
|
[
|
||
|
'conv{}'.format(2 * j + 1), ConvBNLayer,
|
||
|
[c_out, c_out * 2, 3], dict(
|
||
|
padding=1,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm)
|
||
|
],
|
||
|
]
|
||
|
c_in, c_out = c_out * 2, c_out
|
||
|
|
||
|
base_cfg += [[
|
||
|
'route', ConvLayer, [c_in, c_out, 1], dict(
|
||
|
padding=0, norm_type=norm_type, freeze_norm=freeze_norm)
|
||
|
], [
|
||
|
'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
|
||
|
padding=1, norm_type=norm_type, freeze_norm=freeze_norm)
|
||
|
]]
|
||
|
|
||
|
if self.conv_block_num == 2:
|
||
|
if i == 0:
|
||
|
if self.spp:
|
||
|
spp_cfg = [[
|
||
|
'spp', SPP, [channel * 4, channel, 1], dict(
|
||
|
pool_size=[5, 9, 13],
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm)
|
||
|
]]
|
||
|
else:
|
||
|
spp_cfg = []
|
||
|
cfg = base_cfg[0:3] + spp_cfg + base_cfg[
|
||
|
3:4] + dropblock_cfg + base_cfg[4:6]
|
||
|
else:
|
||
|
cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
|
||
|
elif self.conv_block_num == 0:
|
||
|
if self.spp and i == 0:
|
||
|
spp_cfg = [[
|
||
|
'spp', SPP, [c_in * 4, c_in, 1], dict(
|
||
|
pool_size=[5, 9, 13],
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm)
|
||
|
]]
|
||
|
else:
|
||
|
spp_cfg = []
|
||
|
cfg = spp_cfg + dropblock_cfg + base_cfg
|
||
|
name = 'yolo_block.{}'.format(i)
|
||
|
yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
|
||
|
self.yolo_blocks.append(yolo_block)
|
||
|
self._out_channels.append(channel * 2)
|
||
|
if i < self.num_blocks - 1:
|
||
|
name = 'yolo_transition.{}'.format(i)
|
||
|
route = self.add_sublayer(
|
||
|
name,
|
||
|
ConvBNLayer(
|
||
|
ch_in=channel,
|
||
|
ch_out=256 // (2**i),
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
norm_type=norm_type,
|
||
|
freeze_norm=freeze_norm,
|
||
|
data_format=data_format,
|
||
|
name=name))
|
||
|
self.routes.append(route)
|
||
|
|
||
|
def forward(self, blocks, for_mot=False):
|
||
|
assert len(blocks) == self.num_blocks
|
||
|
blocks = blocks[::-1]
|
||
|
yolo_feats = []
|
||
|
|
||
|
# add embedding features output for multi-object tracking model
|
||
|
if for_mot:
|
||
|
emb_feats = []
|
||
|
|
||
|
for i, block in enumerate(blocks):
|
||
|
if i > 0:
|
||
|
if self.data_format == 'NCHW':
|
||
|
block = paddle.concat([route, block], axis=1)
|
||
|
else:
|
||
|
block = paddle.concat([route, block], axis=-1)
|
||
|
route, tip = self.yolo_blocks[i](block)
|
||
|
yolo_feats.append(tip)
|
||
|
|
||
|
if for_mot:
|
||
|
# add embedding features output
|
||
|
emb_feats.append(route)
|
||
|
|
||
|
if i < self.num_blocks - 1:
|
||
|
route = self.routes[i](route)
|
||
|
route = F.interpolate(
|
||
|
route, scale_factor=2., data_format=self.data_format)
|
||
|
|
||
|
if for_mot:
|
||
|
return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
|
||
|
else:
|
||
|
return yolo_feats
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, input_shape):
|
||
|
return {'in_channels': [i.channels for i in input_shape], }
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class PPYOLOTinyFPN(nn.Layer):
|
||
|
__shared__ = ['norm_type', 'data_format']
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels=[80, 56, 34],
|
||
|
detection_block_channels=[160, 128, 96],
|
||
|
norm_type='bn',
|
||
|
data_format='NCHW',
|
||
|
**kwargs):
|
||
|
"""
|
||
|
PPYOLO Tiny FPN layer
|
||
|
Args:
|
||
|
in_channels (list): input channels for fpn
|
||
|
detection_block_channels (list): channels in fpn
|
||
|
norm_type (str): batch norm type, default bn
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
kwargs: extra key-value pairs, such as parameter of DropBlock and spp
|
||
|
"""
|
||
|
super(PPYOLOTinyFPN, self).__init__()
|
||
|
assert len(in_channels) > 0, "in_channels length should > 0"
|
||
|
self.in_channels = in_channels[::-1]
|
||
|
assert len(detection_block_channels
|
||
|
) > 0, "detection_block_channelslength should > 0"
|
||
|
self.detection_block_channels = detection_block_channels
|
||
|
self.data_format = data_format
|
||
|
self.num_blocks = len(in_channels)
|
||
|
# parse kwargs
|
||
|
self.drop_block = kwargs.get('drop_block', False)
|
||
|
self.block_size = kwargs.get('block_size', 3)
|
||
|
self.keep_prob = kwargs.get('keep_prob', 0.9)
|
||
|
|
||
|
self.spp_ = kwargs.get('spp', False)
|
||
|
if self.spp_:
|
||
|
self.spp = SPP(self.in_channels[0] * 4,
|
||
|
self.in_channels[0],
|
||
|
k=1,
|
||
|
pool_size=[5, 9, 13],
|
||
|
norm_type=norm_type,
|
||
|
name='spp')
|
||
|
|
||
|
self._out_channels = []
|
||
|
self.yolo_blocks = []
|
||
|
self.routes = []
|
||
|
for i, (
|
||
|
ch_in, ch_out
|
||
|
) in enumerate(zip(self.in_channels, self.detection_block_channels)):
|
||
|
name = 'yolo_block.{}'.format(i)
|
||
|
if i > 0:
|
||
|
ch_in += self.detection_block_channels[i - 1]
|
||
|
yolo_block = self.add_sublayer(
|
||
|
name,
|
||
|
PPYOLOTinyDetBlock(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
name,
|
||
|
drop_block=self.drop_block,
|
||
|
block_size=self.block_size,
|
||
|
keep_prob=self.keep_prob))
|
||
|
self.yolo_blocks.append(yolo_block)
|
||
|
self._out_channels.append(ch_out)
|
||
|
|
||
|
if i < self.num_blocks - 1:
|
||
|
name = 'yolo_transition.{}'.format(i)
|
||
|
route = self.add_sublayer(
|
||
|
name,
|
||
|
ConvBNLayer(
|
||
|
ch_in=ch_out,
|
||
|
ch_out=ch_out,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
norm_type=norm_type,
|
||
|
data_format=data_format,
|
||
|
name=name))
|
||
|
self.routes.append(route)
|
||
|
|
||
|
def forward(self, blocks, for_mot=False):
|
||
|
assert len(blocks) == self.num_blocks
|
||
|
blocks = blocks[::-1]
|
||
|
yolo_feats = []
|
||
|
|
||
|
# add embedding features output for multi-object tracking model
|
||
|
if for_mot:
|
||
|
emb_feats = []
|
||
|
|
||
|
for i, block in enumerate(blocks):
|
||
|
if i == 0 and self.spp_:
|
||
|
block = self.spp(block)
|
||
|
|
||
|
if i > 0:
|
||
|
if self.data_format == 'NCHW':
|
||
|
block = paddle.concat([route, block], axis=1)
|
||
|
else:
|
||
|
block = paddle.concat([route, block], axis=-1)
|
||
|
route, tip = self.yolo_blocks[i](block)
|
||
|
yolo_feats.append(tip)
|
||
|
|
||
|
if for_mot:
|
||
|
# add embedding features output
|
||
|
emb_feats.append(route)
|
||
|
|
||
|
if i < self.num_blocks - 1:
|
||
|
route = self.routes[i](route)
|
||
|
route = F.interpolate(
|
||
|
route, scale_factor=2., data_format=self.data_format)
|
||
|
|
||
|
if for_mot:
|
||
|
return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
|
||
|
else:
|
||
|
return yolo_feats
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, input_shape):
|
||
|
return {'in_channels': [i.channels for i in input_shape], }
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class PPYOLOPAN(nn.Layer):
|
||
|
__shared__ = ['norm_type', 'data_format']
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels=[512, 1024, 2048],
|
||
|
norm_type='bn',
|
||
|
data_format='NCHW',
|
||
|
act='mish',
|
||
|
conv_block_num=3,
|
||
|
drop_block=False,
|
||
|
block_size=3,
|
||
|
keep_prob=0.9,
|
||
|
spp=False):
|
||
|
"""
|
||
|
PPYOLOPAN layer with SPP, DropBlock and CSP connection.
|
||
|
|
||
|
Args:
|
||
|
in_channels (list): input channels for fpn
|
||
|
norm_type (str): batch norm type, default bn
|
||
|
data_format (str): data format, NCHW or NHWC
|
||
|
act (str): activation function, default mish
|
||
|
conv_block_num (int): conv block num of each pan block
|
||
|
drop_block (bool): whether use DropBlock or not
|
||
|
block_size (int): block size of DropBlock
|
||
|
keep_prob (float): keep probability of DropBlock
|
||
|
spp (bool): whether use spp or not
|
||
|
|
||
|
"""
|
||
|
super(PPYOLOPAN, self).__init__()
|
||
|
assert len(in_channels) > 0, "in_channels length should > 0"
|
||
|
self.in_channels = in_channels
|
||
|
self.num_blocks = len(in_channels)
|
||
|
# parse kwargs
|
||
|
self.drop_block = drop_block
|
||
|
self.block_size = block_size
|
||
|
self.keep_prob = keep_prob
|
||
|
self.spp = spp
|
||
|
self.conv_block_num = conv_block_num
|
||
|
self.data_format = data_format
|
||
|
if self.drop_block:
|
||
|
dropblock_cfg = [[
|
||
|
'dropblock', DropBlock, [self.block_size, self.keep_prob],
|
||
|
dict()
|
||
|
]]
|
||
|
else:
|
||
|
dropblock_cfg = []
|
||
|
|
||
|
# fpn
|
||
|
self.fpn_blocks = []
|
||
|
self.fpn_routes = []
|
||
|
fpn_channels = []
|
||
|
for i, ch_in in enumerate(self.in_channels[::-1]):
|
||
|
if i > 0:
|
||
|
ch_in += 512 // (2**(i - 1))
|
||
|
channel = 512 // (2**i)
|
||
|
base_cfg = []
|
||
|
for j in range(self.conv_block_num):
|
||
|
base_cfg += [
|
||
|
# name, layer, args
|
||
|
[
|
||
|
'{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
|
||
|
dict(
|
||
|
padding=0, act=act, norm_type=norm_type)
|
||
|
],
|
||
|
[
|
||
|
'{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
|
||
|
dict(
|
||
|
padding=1, act=act, norm_type=norm_type)
|
||
|
]
|
||
|
]
|
||
|
|
||
|
if i == 0 and self.spp:
|
||
|
base_cfg[3] = [
|
||
|
'spp', SPP, [channel * 4, channel, 1], dict(
|
||
|
pool_size=[5, 9, 13], act=act, norm_type=norm_type)
|
||
|
]
|
||
|
|
||
|
cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
|
||
|
name = 'fpn.{}'.format(i)
|
||
|
fpn_block = self.add_sublayer(
|
||
|
name,
|
||
|
PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
|
||
|
data_format))
|
||
|
self.fpn_blocks.append(fpn_block)
|
||
|
fpn_channels.append(channel * 2)
|
||
|
if i < self.num_blocks - 1:
|
||
|
name = 'fpn_transition.{}'.format(i)
|
||
|
route = self.add_sublayer(
|
||
|
name,
|
||
|
ConvBNLayer(
|
||
|
ch_in=channel * 2,
|
||
|
ch_out=channel,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act=act,
|
||
|
norm_type=norm_type,
|
||
|
data_format=data_format,
|
||
|
name=name))
|
||
|
self.fpn_routes.append(route)
|
||
|
# pan
|
||
|
self.pan_blocks = []
|
||
|
self.pan_routes = []
|
||
|
self._out_channels = [512 // (2**(self.num_blocks - 2)), ]
|
||
|
for i in reversed(range(self.num_blocks - 1)):
|
||
|
name = 'pan_transition.{}'.format(i)
|
||
|
route = self.add_sublayer(
|
||
|
name,
|
||
|
ConvBNLayer(
|
||
|
ch_in=fpn_channels[i + 1],
|
||
|
ch_out=fpn_channels[i + 1],
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act=act,
|
||
|
norm_type=norm_type,
|
||
|
data_format=data_format,
|
||
|
name=name))
|
||
|
self.pan_routes = [route, ] + self.pan_routes
|
||
|
base_cfg = []
|
||
|
ch_in = fpn_channels[i] + fpn_channels[i + 1]
|
||
|
channel = 512 // (2**i)
|
||
|
for j in range(self.conv_block_num):
|
||
|
base_cfg += [
|
||
|
# name, layer, args
|
||
|
[
|
||
|
'{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
|
||
|
dict(
|
||
|
padding=0, act=act, norm_type=norm_type)
|
||
|
],
|
||
|
[
|
||
|
'{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
|
||
|
dict(
|
||
|
padding=1, act=act, norm_type=norm_type)
|
||
|
]
|
||
|
]
|
||
|
|
||
|
cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
|
||
|
name = 'pan.{}'.format(i)
|
||
|
pan_block = self.add_sublayer(
|
||
|
name,
|
||
|
PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
|
||
|
data_format))
|
||
|
|
||
|
self.pan_blocks = [pan_block, ] + self.pan_blocks
|
||
|
self._out_channels.append(channel * 2)
|
||
|
|
||
|
self._out_channels = self._out_channels[::-1]
|
||
|
|
||
|
def forward(self, blocks, for_mot=False):
|
||
|
assert len(blocks) == self.num_blocks
|
||
|
blocks = blocks[::-1]
|
||
|
fpn_feats = []
|
||
|
|
||
|
# add embedding features output for multi-object tracking model
|
||
|
if for_mot:
|
||
|
emb_feats = []
|
||
|
|
||
|
for i, block in enumerate(blocks):
|
||
|
if i > 0:
|
||
|
if self.data_format == 'NCHW':
|
||
|
block = paddle.concat([route, block], axis=1)
|
||
|
else:
|
||
|
block = paddle.concat([route, block], axis=-1)
|
||
|
route, tip = self.fpn_blocks[i](block)
|
||
|
fpn_feats.append(tip)
|
||
|
|
||
|
if for_mot:
|
||
|
# add embedding features output
|
||
|
emb_feats.append(route)
|
||
|
|
||
|
if i < self.num_blocks - 1:
|
||
|
route = self.fpn_routes[i](route)
|
||
|
route = F.interpolate(
|
||
|
route, scale_factor=2., data_format=self.data_format)
|
||
|
|
||
|
pan_feats = [fpn_feats[-1], ]
|
||
|
route = fpn_feats[self.num_blocks - 1]
|
||
|
for i in reversed(range(self.num_blocks - 1)):
|
||
|
block = fpn_feats[i]
|
||
|
route = self.pan_routes[i](route)
|
||
|
if self.data_format == 'NCHW':
|
||
|
block = paddle.concat([route, block], axis=1)
|
||
|
else:
|
||
|
block = paddle.concat([route, block], axis=-1)
|
||
|
|
||
|
route, tip = self.pan_blocks[i](block)
|
||
|
pan_feats.append(tip)
|
||
|
|
||
|
if for_mot:
|
||
|
return {'yolo_feats': pan_feats[::-1], 'emb_feats': emb_feats}
|
||
|
else:
|
||
|
return pan_feats[::-1]
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, input_shape):
|
||
|
return {'in_channels': [i.channels for i in input_shape], }
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|