forked from PulseFocusPlatform/PulseFocusPlatform
204 lines
6.6 KiB
Python
204 lines
6.6 KiB
Python
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
# add python path of PadleDetection to sys.path
|
||
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
|
||
|
if parent_path not in sys.path:
|
||
|
sys.path.append(parent_path)
|
||
|
|
||
|
from paddle import fluid
|
||
|
from ppdet.core.workspace import load_config, merge_config, create
|
||
|
|
||
|
from ppdet.data.reader import create_reader
|
||
|
|
||
|
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
|
||
|
from ppdet.utils.cli import ArgsParser
|
||
|
from ppdet.utils.check import check_version, check_config, enable_static_mode
|
||
|
import ppdet.utils.checkpoint as checkpoint
|
||
|
from paddleslim.prune import sensitivity
|
||
|
import logging
|
||
|
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
|
||
|
logging.basicConfig(level=logging.INFO, format=FORMAT)
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
env = os.environ
|
||
|
|
||
|
print("FLAGS.config: {}".format(FLAGS.config))
|
||
|
cfg = load_config(FLAGS.config)
|
||
|
merge_config(FLAGS.opt)
|
||
|
check_config(cfg)
|
||
|
check_version()
|
||
|
|
||
|
main_arch = cfg.architecture
|
||
|
|
||
|
place = fluid.CUDAPlace(0)
|
||
|
exe = fluid.Executor(place)
|
||
|
|
||
|
# build program
|
||
|
startup_prog = fluid.Program()
|
||
|
eval_prog = fluid.Program()
|
||
|
with fluid.program_guard(eval_prog, startup_prog):
|
||
|
with fluid.unique_name.guard():
|
||
|
model = create(main_arch)
|
||
|
inputs_def = cfg['EvalReader']['inputs_def']
|
||
|
feed_vars, eval_loader = model.build_inputs(**inputs_def)
|
||
|
fetches = model.eval(feed_vars)
|
||
|
eval_prog = eval_prog.clone(True)
|
||
|
if FLAGS.print_params:
|
||
|
print(
|
||
|
"-------------------------All parameters in current graph----------------------"
|
||
|
)
|
||
|
for block in eval_prog.blocks:
|
||
|
for param in block.all_parameters():
|
||
|
print("parameter name: {}\tshape: {}".format(param.name,
|
||
|
param.shape))
|
||
|
print(
|
||
|
"------------------------------------------------------------------------------"
|
||
|
)
|
||
|
return
|
||
|
|
||
|
eval_reader = create_reader(cfg.EvalReader)
|
||
|
# When iterable mode, set set_sample_list_generator(eval_reader, place)
|
||
|
eval_loader.set_sample_list_generator(eval_reader)
|
||
|
|
||
|
# parse eval fetches
|
||
|
extra_keys = []
|
||
|
if cfg.metric == 'COCO':
|
||
|
extra_keys = ['im_info', 'im_id', 'im_shape']
|
||
|
if cfg.metric == 'VOC':
|
||
|
extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
|
||
|
if cfg.metric == 'WIDERFACE':
|
||
|
extra_keys = ['im_id', 'im_shape', 'gt_box']
|
||
|
eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
|
||
|
extra_keys)
|
||
|
|
||
|
exe.run(startup_prog)
|
||
|
|
||
|
fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
|
||
|
|
||
|
ignore_params = cfg.finetune_exclude_pretrained_params \
|
||
|
if 'finetune_exclude_pretrained_params' in cfg else []
|
||
|
|
||
|
start_iter = 0
|
||
|
|
||
|
if cfg.weights:
|
||
|
checkpoint.load_params(exe, eval_prog, cfg.weights)
|
||
|
else:
|
||
|
logger.warning("Please set cfg.weights to load trained model.")
|
||
|
|
||
|
# whether output bbox is normalized in model output layer
|
||
|
is_bbox_normalized = False
|
||
|
if hasattr(model, 'is_bbox_normalized') and \
|
||
|
callable(model.is_bbox_normalized):
|
||
|
is_bbox_normalized = model.is_bbox_normalized()
|
||
|
|
||
|
# if map_type not set, use default 11point, only use in VOC eval
|
||
|
map_type = cfg.map_type if 'map_type' in cfg else '11point'
|
||
|
|
||
|
def test(program):
|
||
|
|
||
|
compiled_eval_prog = fluid.CompiledProgram(program)
|
||
|
|
||
|
results = eval_run(
|
||
|
exe,
|
||
|
compiled_eval_prog,
|
||
|
eval_loader,
|
||
|
eval_keys,
|
||
|
eval_values,
|
||
|
eval_cls,
|
||
|
cfg=cfg)
|
||
|
resolution = None
|
||
|
if 'mask' in results[0]:
|
||
|
resolution = model.mask_head.resolution
|
||
|
dataset = cfg['EvalReader']['dataset']
|
||
|
box_ap_stats = eval_results(
|
||
|
results,
|
||
|
cfg.metric,
|
||
|
cfg.num_classes,
|
||
|
resolution,
|
||
|
is_bbox_normalized,
|
||
|
FLAGS.output_eval,
|
||
|
map_type,
|
||
|
dataset=dataset)
|
||
|
return box_ap_stats[0]
|
||
|
|
||
|
pruned_params = FLAGS.pruned_params
|
||
|
|
||
|
assert (
|
||
|
FLAGS.pruned_params is not None
|
||
|
), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
|
||
|
pruned_params = FLAGS.pruned_params.strip().split(",")
|
||
|
logger.info("pruned params: {}".format(pruned_params))
|
||
|
pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(" ")]
|
||
|
logger.info("pruned ratios: {}".format(pruned_ratios))
|
||
|
sensitivity(
|
||
|
eval_prog,
|
||
|
place,
|
||
|
pruned_params,
|
||
|
test,
|
||
|
sensitivities_file=FLAGS.sensitivities_file,
|
||
|
pruned_ratios=pruned_ratios)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
enable_static_mode()
|
||
|
parser = ArgsParser()
|
||
|
parser.add_argument(
|
||
|
"--output_eval",
|
||
|
default=None,
|
||
|
type=str,
|
||
|
help="Evaluation directory, default is current directory.")
|
||
|
parser.add_argument(
|
||
|
"-d",
|
||
|
"--dataset_dir",
|
||
|
default=None,
|
||
|
type=str,
|
||
|
help="Dataset path, same as DataFeed.dataset.dataset_dir")
|
||
|
parser.add_argument(
|
||
|
"-s",
|
||
|
"--sensitivities_file",
|
||
|
default="sensitivities.data",
|
||
|
type=str,
|
||
|
help="The file used to save sensitivities.")
|
||
|
parser.add_argument(
|
||
|
"-p",
|
||
|
"--pruned_params",
|
||
|
default=None,
|
||
|
type=str,
|
||
|
help="The parameters to be pruned when calculating sensitivities.")
|
||
|
parser.add_argument(
|
||
|
"-r",
|
||
|
"--pruned_ratios",
|
||
|
default="0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9",
|
||
|
type=str,
|
||
|
help="The ratios pruned iteratively for each parameter when calculating sensitivities."
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"-P",
|
||
|
"--print_params",
|
||
|
default=False,
|
||
|
action='store_true',
|
||
|
help="Whether to only print the parameters' names and shapes.")
|
||
|
FLAGS = parser.parse_args()
|
||
|
main()
|