forked from PulseFocusPlatform/PulseFocusPlatform
376 lines
13 KiB
Python
376 lines
13 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
# add python path of PadleDetection to sys.path
|
||
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
||
|
if parent_path not in sys.path:
|
||
|
sys.path.append(parent_path)
|
||
|
|
||
|
import logging
|
||
|
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
|
||
|
logging.basicConfig(level=logging.INFO, format=FORMAT)
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
from scipy.cluster.vq import kmeans
|
||
|
import numpy as np
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
try:
|
||
|
from ppdet.utils.cli import ArgsParser
|
||
|
from ppdet.utils.check import check_gpu, check_version, check_config
|
||
|
from ppdet.core.workspace import load_config, merge_config, create
|
||
|
except ImportError as e:
|
||
|
if sys.argv[0].find('static') >= 0:
|
||
|
logger.error("Importing ppdet failed when running static model "
|
||
|
"with error: {}\n"
|
||
|
"please try:\n"
|
||
|
"\t1. run static model under PaddleDetection/static "
|
||
|
"directory\n"
|
||
|
"\t2. run 'pip uninstall ppdet' to uninstall ppdet "
|
||
|
"dynamic version firstly.".format(e))
|
||
|
sys.exit(-1)
|
||
|
else:
|
||
|
raise e
|
||
|
|
||
|
|
||
|
class BaseAnchorCluster(object):
|
||
|
def __init__(self, n, cache_path, cache, verbose=True):
|
||
|
"""
|
||
|
Base Anchor Cluster
|
||
|
|
||
|
Args:
|
||
|
n (int): number of clusters
|
||
|
cache_path (str): cache directory path
|
||
|
cache (bool): whether using cache
|
||
|
verbose (bool): whether print results
|
||
|
"""
|
||
|
super(BaseAnchorCluster, self).__init__()
|
||
|
self.n = n
|
||
|
self.cache_path = cache_path
|
||
|
self.cache = cache
|
||
|
self.verbose = verbose
|
||
|
|
||
|
def print_result(self, centers):
|
||
|
raise NotImplementedError('%s.print_result is not available' %
|
||
|
self.__class__.__name__)
|
||
|
|
||
|
def get_whs(self):
|
||
|
whs_cache_path = os.path.join(self.cache_path, 'whs.npy')
|
||
|
shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy')
|
||
|
if self.cache and os.path.exists(whs_cache_path) and os.path.exists(
|
||
|
shapes_cache_path):
|
||
|
self.whs = np.load(whs_cache_path)
|
||
|
self.shapes = np.load(shapes_cache_path)
|
||
|
return self.whs, self.shapes
|
||
|
whs = np.zeros((0, 2))
|
||
|
shapes = np.zeros((0, 2))
|
||
|
roidbs = self.dataset.get_roidb()
|
||
|
for rec in tqdm(roidbs):
|
||
|
h, w = rec['h'], rec['w']
|
||
|
bbox = rec['gt_bbox']
|
||
|
wh = bbox[:, 2:4] - bbox[:, 0:2] + 1
|
||
|
wh = wh / np.array([[w, h]])
|
||
|
shape = np.ones_like(wh) * np.array([[w, h]])
|
||
|
whs = np.vstack((whs, wh))
|
||
|
shapes = np.vstack((shapes, shape))
|
||
|
|
||
|
if self.cache:
|
||
|
os.makedirs(self.cache_path, exist_ok=True)
|
||
|
np.save(whs_cache_path, whs)
|
||
|
np.save(shapes_cache_path, shapes)
|
||
|
|
||
|
self.whs = whs
|
||
|
self.shapes = shapes
|
||
|
return self.whs, self.shapes
|
||
|
|
||
|
def calc_anchors(self):
|
||
|
raise NotImplementedError('%s.calc_anchors is not available' %
|
||
|
self.__class__.__name__)
|
||
|
|
||
|
def __call__(self):
|
||
|
self.get_whs()
|
||
|
centers = self.calc_anchors()
|
||
|
if self.verbose:
|
||
|
self.print_result(centers)
|
||
|
return centers
|
||
|
|
||
|
|
||
|
class YOLOv2AnchorCluster(BaseAnchorCluster):
|
||
|
def __init__(self,
|
||
|
n,
|
||
|
dataset,
|
||
|
size,
|
||
|
cache_path,
|
||
|
cache,
|
||
|
iters=1000,
|
||
|
verbose=True):
|
||
|
super(YOLOv2AnchorCluster, self).__init__(
|
||
|
n, cache_path, cache, verbose=verbose)
|
||
|
"""
|
||
|
YOLOv2 Anchor Cluster
|
||
|
|
||
|
Reference:
|
||
|
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
|
||
|
|
||
|
Args:
|
||
|
n (int): number of clusters
|
||
|
dataset (DataSet): DataSet instance, VOC or COCO
|
||
|
size (list): [w, h]
|
||
|
cache_path (str): cache directory path
|
||
|
cache (bool): whether using cache
|
||
|
iters (int): kmeans algorithm iters
|
||
|
verbose (bool): whether print results
|
||
|
"""
|
||
|
self.dataset = dataset
|
||
|
self.size = size
|
||
|
self.iters = iters
|
||
|
|
||
|
def print_result(self, centers):
|
||
|
logger.info('%d anchor cluster result: [w, h]' % self.n)
|
||
|
for w, h in centers:
|
||
|
logger.info('[%d, %d]' % (round(w), round(h)))
|
||
|
|
||
|
def metric(self, whs, centers):
|
||
|
wh1 = whs[:, None]
|
||
|
wh2 = centers[None]
|
||
|
inter = np.minimum(wh1, wh2).prod(2)
|
||
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter)
|
||
|
|
||
|
def kmeans_expectation(self, whs, centers, assignments):
|
||
|
dist = self.metric(whs, centers)
|
||
|
new_assignments = dist.argmax(1)
|
||
|
converged = (new_assignments == assignments).all()
|
||
|
return converged, new_assignments
|
||
|
|
||
|
def kmeans_maximizations(self, whs, centers, assignments):
|
||
|
new_centers = np.zeros_like(centers)
|
||
|
for i in range(centers.shape[0]):
|
||
|
mask = (assignments == i)
|
||
|
if mask.sum():
|
||
|
new_centers[i, :] = whs[mask].mean(0)
|
||
|
return new_centers
|
||
|
|
||
|
def calc_anchors(self):
|
||
|
self.whs = self.whs * np.array([self.size])
|
||
|
# random select k centers
|
||
|
whs, n, iters = self.whs, self.n, self.iters
|
||
|
logger.info('Running kmeans for %d anchors on %d points...' %
|
||
|
(n, len(whs)))
|
||
|
idx = np.random.choice(whs.shape[0], size=n, replace=False)
|
||
|
centers = whs[idx]
|
||
|
assignments = np.zeros(whs.shape[0:1]) * -1
|
||
|
# kmeans
|
||
|
if n == 1:
|
||
|
return self.kmeans_maximizations(whs, centers, assignments)
|
||
|
|
||
|
pbar = tqdm(range(iters), desc='Cluster anchors with k-means algorithm')
|
||
|
for _ in pbar:
|
||
|
# E step
|
||
|
converged, assignments = self.kmeans_expectation(whs, centers,
|
||
|
assignments)
|
||
|
if converged:
|
||
|
break
|
||
|
# M step
|
||
|
centers = self.kmeans_maximizations(whs, centers, assignments)
|
||
|
ious = self.metric(whs, centers)
|
||
|
pbar.desc = 'avg_iou: %.4f' % (ious.max(1).mean())
|
||
|
|
||
|
centers = sorted(centers, key=lambda x: x[0] * x[1])
|
||
|
return centers
|
||
|
|
||
|
|
||
|
class YOLOv5AnchorCluster(BaseAnchorCluster):
|
||
|
def __init__(self,
|
||
|
n,
|
||
|
dataset,
|
||
|
size,
|
||
|
cache_path,
|
||
|
cache,
|
||
|
iters=300,
|
||
|
gen_iters=1000,
|
||
|
thresh=0.25,
|
||
|
verbose=True):
|
||
|
super(YOLOv5AnchorCluster, self).__init__(
|
||
|
n, cache_path, cache, verbose=verbose)
|
||
|
"""
|
||
|
YOLOv5 Anchor Cluster
|
||
|
|
||
|
Reference:
|
||
|
https://github.com/ultralytics/yolov5/blob/master/utils/general.py
|
||
|
|
||
|
Args:
|
||
|
n (int): number of clusters
|
||
|
dataset (DataSet): DataSet instance, VOC or COCO
|
||
|
size (list): [w, h]
|
||
|
cache_path (str): cache directory path
|
||
|
cache (bool): whether using cache
|
||
|
iters (int): iters of kmeans algorithm
|
||
|
gen_iters (int): iters of genetic algorithm
|
||
|
threshold (float): anchor scale threshold
|
||
|
verbose (bool): whether print results
|
||
|
"""
|
||
|
self.dataset = dataset
|
||
|
self.size = size
|
||
|
self.iters = iters
|
||
|
self.gen_iters = gen_iters
|
||
|
self.thresh = thresh
|
||
|
|
||
|
def print_result(self, centers):
|
||
|
whs = self.whs
|
||
|
centers = centers[np.argsort(centers.prod(1))]
|
||
|
x, best = self.metric(whs, centers)
|
||
|
bpr, aat = (
|
||
|
best > self.thresh).mean(), (x > self.thresh).mean() * self.n
|
||
|
logger.info(
|
||
|
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' %
|
||
|
(self.thresh, bpr, aat))
|
||
|
logger.info(
|
||
|
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
|
||
|
% (self.n, self.size, x.mean(), best.mean(),
|
||
|
x[x > self.thresh].mean()))
|
||
|
logger.info('%d anchor cluster result: [w, h]' % self.n)
|
||
|
for w, h in centers:
|
||
|
logger.info('[%d, %d]' % (round(w), round(h)))
|
||
|
|
||
|
def metric(self, whs, centers):
|
||
|
r = whs[:, None] / centers[None]
|
||
|
x = np.minimum(r, 1. / r).min(2)
|
||
|
return x, x.max(1)
|
||
|
|
||
|
def fitness(self, whs, centers):
|
||
|
_, best = self.metric(whs, centers)
|
||
|
return (best * (best > self.thresh)).mean()
|
||
|
|
||
|
def calc_anchors(self):
|
||
|
self.whs = self.whs * self.shapes / self.shapes.max(
|
||
|
1, keepdims=True) * np.array([self.size])
|
||
|
wh0 = self.whs
|
||
|
i = (wh0 < 3.0).any(1).sum()
|
||
|
if i:
|
||
|
logger.warning('Extremely small objects found. %d of %d'
|
||
|
'labels are < 3 pixels in width or height' %
|
||
|
(i, len(wh0)))
|
||
|
|
||
|
wh = wh0[(wh0 >= 2.0).any(1)]
|
||
|
logger.info('Running kmeans for %g anchors on %g points...' %
|
||
|
(self.n, len(wh)))
|
||
|
s = wh.std(0)
|
||
|
centers, dist = kmeans(wh / s, self.n, iter=self.iters)
|
||
|
centers *= s
|
||
|
|
||
|
f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1
|
||
|
pbar = tqdm(
|
||
|
range(self.gen_iters),
|
||
|
desc='Evolving anchors with Genetic Algorithm')
|
||
|
for _ in pbar:
|
||
|
v = np.ones(sh)
|
||
|
while (v == 1).all():
|
||
|
v = ((np.random.random(sh) < mp) * np.random.random() *
|
||
|
np.random.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||
|
new_centers = (centers.copy() * v).clip(min=2.0)
|
||
|
new_f = self.fitness(wh, new_centers)
|
||
|
if new_f > f:
|
||
|
f, centers = new_f, new_centers.copy()
|
||
|
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
|
||
|
|
||
|
return centers
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = ArgsParser()
|
||
|
parser.add_argument(
|
||
|
'--n', '-n', default=9, type=int, help='num of clusters')
|
||
|
parser.add_argument(
|
||
|
'--iters',
|
||
|
'-i',
|
||
|
default=1000,
|
||
|
type=int,
|
||
|
help='num of iterations for kmeans')
|
||
|
parser.add_argument(
|
||
|
'--gen_iters',
|
||
|
'-gi',
|
||
|
default=1000,
|
||
|
type=int,
|
||
|
help='num of iterations for genetic algorithm')
|
||
|
parser.add_argument(
|
||
|
'--thresh',
|
||
|
'-t',
|
||
|
default=0.25,
|
||
|
type=float,
|
||
|
help='anchor scale threshold')
|
||
|
parser.add_argument(
|
||
|
'--verbose', '-v', default=True, type=bool, help='whether print result')
|
||
|
parser.add_argument(
|
||
|
'--size',
|
||
|
'-s',
|
||
|
default=None,
|
||
|
type=str,
|
||
|
help='image size: w,h, using comma as delimiter')
|
||
|
parser.add_argument(
|
||
|
'--method',
|
||
|
'-m',
|
||
|
default='v2',
|
||
|
type=str,
|
||
|
help='cluster method, [v2, v5] are supported now')
|
||
|
parser.add_argument(
|
||
|
'--cache_path', default='cache', type=str, help='cache path')
|
||
|
parser.add_argument(
|
||
|
'--cache', action='store_true', help='whether use cache')
|
||
|
FLAGS = parser.parse_args()
|
||
|
|
||
|
cfg = load_config(FLAGS.config)
|
||
|
merge_config(FLAGS.opt)
|
||
|
check_config(cfg)
|
||
|
# check if set use_gpu=True in paddlepaddle cpu version
|
||
|
check_gpu(cfg.use_gpu)
|
||
|
# check if paddlepaddle version is satisfied
|
||
|
check_version()
|
||
|
|
||
|
# get dataset
|
||
|
dataset = cfg['TrainReader']['dataset']
|
||
|
if FLAGS.size:
|
||
|
if ',' in FLAGS.size:
|
||
|
size = list(map(int, FLAGS.size.split(',')))
|
||
|
assert len(size) == 2, "the format of size is incorrect"
|
||
|
else:
|
||
|
size = int(FLAGS.size)
|
||
|
size = [size, size]
|
||
|
|
||
|
elif 'image_shape' in cfg['TrainReader']['inputs_def']:
|
||
|
size = cfg['TrainReader']['inputs_def']['image_shape'][1:]
|
||
|
else:
|
||
|
raise ValueError('size is not specified')
|
||
|
|
||
|
if FLAGS.method == 'v2':
|
||
|
cluster = YOLOv2AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
|
||
|
FLAGS.cache, FLAGS.iters, FLAGS.verbose)
|
||
|
elif FLAGS.method == 'v5':
|
||
|
cluster = YOLOv5AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
|
||
|
FLAGS.cache, FLAGS.iters, FLAGS.gen_iters,
|
||
|
FLAGS.thresh, FLAGS.verbose)
|
||
|
else:
|
||
|
raise ValueError('cluster method: %s is not supported' % FLAGS.method)
|
||
|
|
||
|
anchors = cluster()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|