PulseFocusPlatform/static/docs/featured_model/FACE_DETECTION_en.md

325 lines
17 KiB
Markdown
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
English | [简体中文](FACE_DETECTION.md)
# FaceDetection
## Table of Contents
- [Introduction](#Introduction)
- [Benchmark and Model Zoo](#Benchmark-and-Model-Zoo)
- [Quick Start](#Quick-Start)
- [Data Pipline](#Data-Pipline)
- [Training and Inference](#Training-and-Inference)
- [Evaluation](#Evaluation)
- [Face key-point detection](#Face-key-point-detection)
- [Algorithm Description](#Algorithm-Description)
- [Contributing](#Contributing)
## Introduction
The goal of FaceDetection is to provide efficient and high-speed face detection solutions,
including cutting-edge and classic models.
![](../images/12_Group_Group_12_Group_Group_12_935.jpg)
## Benchmark and Model Zoo
PaddleDetection Supported architectures is shown in the below table, please refer to
[Algorithm Description](#Algorithm-Description) for details of the algorithm.
| | Original | Lite <sup>[1](#lite)</sup> | NAS <sup>[2](#nas)</sup> |
|:------------------------:|:--------:|:--------------------------:|:------------------------:|
| [BlazeFace](#BlazeFace) | ✓ | ✓ | ✓ |
| [FaceBoxes](#FaceBoxes) | ✓ | ✓ | x |
<a name="lite">[1]</a> `Lite` edition means reduces the number of network layers and channels.
<a name="nas">[2]</a> `NAS` edition means use `Neural Architecture Search` algorithm to
optimized network structure.
### Model Zoo
#### mAP in WIDER FACE
| Architecture | Type | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set | Download | Configs |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|:--------:|
| BlazeFace | Original | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/face_detection/blazeface.yml) |
| BlazeFace | Lite | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/face_detection/blazeface.yml) |
| BlazeFace | NAS | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/face_detection/blazeface_nas.yml) |
| BlazeFace | NAS_V2 | 640 | 8 | 32W | 0.870 | 0.837 | 0.685 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/face_detection/blazeface_nas_v2.yml) |
| FaceBoxes | Original | 640 | 8 | 32w | 0.878 | 0.851 | 0.576 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/face_detection/faceboxes.yml) |
| FaceBoxes | Lite | 640 | 8 | 32w | 0.901 | 0.875 | 0.760 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/face_detection/faceboxes_lite.yml) |
**NOTES:**
- Get mAP in `Easy/Medium/Hard Set` by multi-scale evaluation in `tools/face_eval.py`.
For details can refer to [Evaluation](#Evaluate-on-the-WIDER-FACE).
- BlazeFace-Lite Training and Testing ues [blazeface.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/static/configs/face_detection/blazeface.yml)
configs file and set `lite_edition: true`.
#### mAP in FDDB
| Architecture | Type | Size | DistROC | ContROC |
|:------------:|:--------:|:----:|:-------:|:-------:|
| BlazeFace | Original | 640 | **0.992** | **0.762** |
| BlazeFace | Lite | 640 | 0.990 | 0.756 |
| BlazeFace | NAS | 640 | 0.981 | 0.741 |
| FaceBoxes | Original | 640 | 0.987 | 0.736 |
| FaceBoxes | Lite | 640 | 0.988 | 0.751 |
**NOTES:**
- Get mAP by multi-scale evaluation on the FDDB dataset.
For details can refer to [Evaluation](#Evaluate-on-the-FDDB).
#### Infer Time and Model Size comparison
| Architecture | Type | Size | P4(trt32) (ms) | CPU (ms) | CPU (ms)(enable_mkldmm) | Qualcomm SnapDragon 855(armv8) (ms) | Model size (MB) |
|:------------:|:--------:|:----:|:--------------:|:--------:|:--------:|:-------------------------------------:|:---------------:|
| BlazeFace | 原始版本 | 128 | 1.387 | 23.461 | 4.92 | 6.036 | 0.777 |
| BlazeFace | Lite版本 | 128 | 1.323 | 12.802 | 7.16 | 6.193 | 0.68 |
| BlazeFace | NAS版本 | 128 | 1.03 | 6.714 | 3.641 | 2.7152 | 0.234 |
| BlazeFace | NAS_V2版本 | 128 | 0.909 | 9.58 | 7.903 | 3.499 | 0.383 |
| FaceBoxes | 原始版本 | 128 | 3.144 | 14.972 | 9,852 | 19.2196 | 3.6 |
| FaceBoxes | Lite版本 | 128 | 2.295 | 11.276 | 6.969 | 8.5278 | 2 |
| BlazeFace | 原始版本 | 320 | 3.01 | 132.408 | 20.762 | 70.6916 | 0.777 |
| BlazeFace | Lite版本 | 320 | 2.535 | 69.964 | 35.612 | 69.9438 | 0.68 |
| BlazeFace | NAS版本 | 320 | 2.392 | 36.962 | 14.443 | 39.8086 | 0.234 |
| BlazeFace | NAS_V2版本 | 320 | 1.487 | 52.038 | 38.693 | 56.137 | 0.383 |
| FaceBoxes | 原始版本 | 320 | 7.556 | 84.531 | 48.465 | 52.1022 | 3.6 |
| FaceBoxes | Lite版本 | 320 | 18.605 | 78.862 | 46.488 | 59.8996 | 2 |
| BlazeFace | 原始版本 | 640 | 8.885 | 519.364 | 78.825 | 149.896 | 0.777 |
| BlazeFace | Lite版本 | 640 | 6.988 | 284.13 | 131.385 | 149.902 | 0.68 |
| BlazeFace | NAS版本 | 640 | 7.448 | 142.91 | 56.725 | 69.8266 | 0.234 |
| BlazeFace | NAS_V2版本 | 640 | 4.201 | 197.695 | 153.626 | 88.278 | 0.383 |
| FaceBoxes | 原始版本 | 640 | 78.201 | 394.043 | 239.201 | 169.877 | 3.6 |
| FaceBoxes | Lite版本 | 640 | 59.47 | 313.683 | 168.73 | 139.918 | 2 |
**NOTES:**
- CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.
- P4(trt32) and CPU tests based on PaddlePaddle, PaddlePaddle version is 1.8.0.
- ARM test environment:
- Qualcomm SnapDragon 855(armv8);
- Single thread;
- Paddle-Lite version develop.
## Quick Start
### Data Pipline
We use the [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/) to carry out the training
and testing of the model, the official website gives detailed data introduction.
- WIDER Face data source:
Loads `wider_face` type dataset with directory structures like this:
```
dataset/wider_face/
├── wider_face_split
│ ├── wider_face_train_bbx_gt.txt
│ ├── wider_face_val_bbx_gt.txt
├── WIDER_train
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_100.jpg
│ │ │ ├── 0_Parade_marchingband_1_381.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
├── WIDER_val
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_1004.jpg
│ │ │ ├── 0_Parade_marchingband_1_1045.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
```
- Download dataset manually:
To download the WIDER FACE dataset, run the following commands:
```
cd dataset/wider_face && ./download.sh
```
- Download dataset automatically:
If a training session is started but the dataset is not setup properly
(e.g, not found in dataset/wider_face), PaddleDetection can automatically
download them from [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/),
the decompressed datasets will be cached in ~/.cache/paddle/dataset/ and can be discovered
automatically subsequently.
#### Data Augmentation
- **Data-anchor-sampling:** Randomly transform the scale of the image to a certain range of scales,
greatly enhancing the scale change of the face. The specific operation is to obtain $v=\sqrt{width * height}$
according to the randomly selected face height and width, and judge the value of `v` in which interval of
`[16,32,64,128]`. Assuming `v=45` && `32<v<64`, and any value of `[16,32,64]` is selected with a probability
of uniform distribution. If `64` is selected, the face's interval is selected in `[64 / 2, min(v * 2, 64 * 2)]`.
- **Other methods:** Including `RandomDistort`,`ExpandImage`,`RandomInterpImage`,`RandomFlipImage` etc.
Please refer to [READER.md](../advanced_tutorials/READER.md) for details.
### Training and Inference
`Training` and `Inference` please refer to [GETTING_STARTED.md](../tutorials/GETTING_STARTED.md)
**NOTES:**
- `BlazeFace` and `FaceBoxes` is trained in 4 GPU with `batch_size=8` per gpu (total batch size as 32)
and trained 320000 iters.(If your GPU count is not 4, please refer to the rule of training parameters
in the table of [calculation rules](../FAQ.md)).
- Currently we do not support evaluation in training.
### Evaluation
Currently we support evaluation on the `WIDER FACE` dataset and the` FDDB` dataset. First run `tools / face_eval.py`
to generate the evaluation result file, and then use matlab(WIDER FACE)
or OpenCV(FDDB) calculates specific evaluation indicators.
Among them, the optional arguments list for running `tools / face_eval.py` is as follows:
- `-f` or `--output_eval`: Evaluation file directory, default is `output/pred`.
- `-e` or `--eval_mode`: Evaluation mode, include `widerface` and `fddb`, default is `widerface`.
- `--multi_scale`: If you add this action button in the command, it will select `multi_scale` evaluation.
Default is `False`, it will select `single-scale` evaluation.
#### Evaluate on the WIDER FACE
- Evaluate and generate results files:
```
export CUDA_VISIBLE_DEVICES=0
python -u tools/face_eval.py -c configs/face_detection/blazeface.yml \
-o weights=output/blazeface/model_final \
--eval_mode=widerface
```
After the evaluation is completed, the test result in txt format will be generated in `output/pred`.
- Download the official evaluation script to evaluate the AP metrics:
```
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
```
- Modify the result path and the name of the curve to be drawn in `eval_tools/wider_eval.m`:
```
# Modify the folder name where the result is stored.
pred_dir = './pred';
# Modify the name of the curve to be drawn
legend_name = 'Fluid-BlazeFace';
```
- `wider_eval.m` is the main execution program of the evaluation module. The run command is as follows:
```
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
```
#### Evaluate on the FDDB
We provide a FDDB data set evaluation process (currently only supports Linux systems),
please refer to [FDDB official website](http://vis-www.cs.umass.edu/fddb/) for other specific details.
- 1)Download and install OpenCV
Download OpenCV: go to [OpenCV library](https://opencv.org/releases/) to Manual download
Install OpenCVPlease refer to [Official OpenCV Installation Tutorial](https://docs.opencv.org/master/d7/d9f/tutorial_linux_install.html)
to install through source code.
- 2)Download datasets, evaluation code, and formatted data:
```
./dataset/fddb/download.sh
```
- 3)Compile FDDB evaluation code:
Go to the `dataset/fddb/evaluation` directory and modify the contents of the MakeFile file as follows:
```
evaluate: $(OBJS)
$(CC) $(OBJS) -o $@ $(LIBS)
```
Modify the content in `common.hpp` to the following form:
```
#define __IMAGE_FORMAT__ ".jpg"
//#define __IMAGE_FORMAT__ ".ppm"
#define __CVLOADIMAGE_WORKING__
```
According to the `grep -r "CV_RGB"` command, find the code segment containing `CV_RGB`, change `CV_RGB` to `Scalar`,
and add `using namespace cv;` in cpp, then compile:
```
make clean && make
```
- 4)Start evaluation:
Modify the contents of the `dataset_dir` and` annotation` fields in the config file:
```
EvalReader:
...
dataset:
dataset_dir: dataset/fddb
anno_path: FDDB-folds/fddb_annotFile.txt
...
```
Evaluate and generate results files:
```
python -u tools/face_eval.py -c configs/face_detection/blazeface.yml \
-o weights=output/blazeface/model_final \
--eval_mode=fddb
```
After the evaluation is completed, the test result in txt format will be generated in `output/pred/pred_fddb_res.txt`.
Generate ContROC and DiscROC data:
```
cd dataset/fddb/evaluation
./evaluate -a ./FDDB-folds/fddb_annotFile.txt \
-f 0 -i ./ -l ./FDDB-folds/filePath.txt -z .jpg \
-d {RESULT_FILE} \
-r {OUTPUT_DIR}
```
**NOTES:**
(1)`RESULT_FILE` is the FDDB prediction result file output by `tools/face_eval.py`;
(2)`OUTPUT_DIR` is the prefix of the FDDB evaluation output file,
which will generate two files `{OUTPUT_DIR}ContROC.txt`、`{OUTPUT_DIR}DiscROC.txt`;
(3)The interpretation of the argument can be performed by `./evaluate --help`.
## Face key-point detection
(1)Download face key-point annotation file in WIDER FACE dataset([Link](https://dataset.bj.bcebos.com/wider_face/wider_face_train_bbx_lmk_gt.txt)), and copy to the folder `wider_face/wider_face_split`:
```shell
cd dataset/wider_face/wider_face_split/
wget https://dataset.bj.bcebos.com/wider_face/wider_face_train_bbx_lmk_gt.txt
```
(2)Use `configs/face_detection/blazeface_keypoint.yml` configuration file for training and evaluation, the method of use is the same as the previous section.
### Evaluation
| Architecture | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set | Download | Configs |
|:------------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|:--------:|
| BlazeFace Keypoint | 640 | 16 | 16w | 0.852 | 0.816 | 0.662 | [download](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_keypoint.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/face_detection/blazeface_keypoint.yml) |
![](../images/12_Group_Group_12_Group_Group_12_84.jpg)
## Algorithm Description
### BlazeFace
**Introduction:**
[BlazeFace](https://arxiv.org/abs/1907.05047) is Google Research published face detection model.
It's lightweight but good performance, and tailored for mobile GPU inference. It runs at a speed
of 200-1000+ FPS on flagship devices.
**Particularity:**
- Anchor scheme stops at 8×8(input 128x128), 6 anchors per pixel at that resolution.
- 5 single, and 6 double BlazeBlocks: 5×5 depthwise convs, same accuracy with fewer layers.
- Replace the non-maximum suppression algorithm with a blending strategy that estimates the
regression parameters of a bounding box as a weighted mean between the overlapping predictions.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: Replace 5x5 conv with 3x3 conv, fewer network layers and conv channels.
- NAS: use `Neural Architecture Search` algorithm to optimized network structure,
less network layer and conv channel number than `Lite`.
- NAS_V2: this version of model architecture searched based on blazeface-NAS by the SANAS in PaddleSlim, the average precision is 3% higher than blazeface-NAS, the latency is only 5% higher than blazeface-NAS on chip 855.
### FaceBoxes
**Introduction:**
[FaceBoxes](https://arxiv.org/abs/1708.05234) which named A CPU Real-time Face Detector
with High Accuracy is face detector proposed by Shifeng Zhang, with high performance on
both speed and accuracy. This paper is published by IJCB(2017).
**Particularity:**
- Anchor scheme stops at 20x20, 10x10, 5x5, which network input size is 640x640,
including 3, 1, 1 anchors per pixel at each resolution. The corresponding densities
are 1, 2, 4(20x20), 4(10x10) and 4(5x5).
- 2 convs with CReLU, 2 poolings, 3 inceptions and 2 convs with ReLU.
- Use density prior box to improve detection accuracy.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: 2 convs with CReLU, 1 pooling, 2 convs with ReLU, 3 inceptions and 2 convs with ReLU.
Anchor scheme stops at 80x80 and 40x40, including 3, 1 anchors per pixel at each resolution.
The corresponding densities are 1, 2, 4(80x80) and 4(40x40), using less conv channel number than lite.
## Contributing
Contributions are highly welcomed and we would really appreciate your feedback!!