PulseFocusPlatform/tools/eval.py

137 lines
3.8 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
# ignore warning log
import warnings
warnings.filterwarnings('ignore')
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.engine import Trainer, init_parallel_env
from ppdet.metrics.coco_utils import json_eval_results
from ppdet.slim import build_slim_model
from ppdet.utils.logger import setup_logger
logger = setup_logger('eval')
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--output_eval",
default=None,
type=str,
help="Evaluation directory, default is current directory.")
parser.add_argument(
'--json_eval',
action='store_true',
default=False,
help='Whether to re eval with already exists bbox.json or mask.json')
parser.add_argument(
"--slim_config",
default=None,
type=str,
help="Configuration file of slim method.")
# TODO: bias should be unified
parser.add_argument(
"--bias",
action="store_true",
help="whether add bias or not while getting w and h")
parser.add_argument(
"--classwise",
action="store_true",
help="whether per-category AP and draw P-R Curve or not.")
parser.add_argument(
'--save_prediction_only',
action='store_true',
default=False,
help='Whether to save the evaluation results only')
args = parser.parse_args()
return args
def run(FLAGS, cfg):
if FLAGS.json_eval:
logger.info(
"In json_eval mode, PaddleDetection will evaluate json files in "
"output_eval directly. And proposal.json, bbox.json and mask.json "
"will be detected by default.")
json_eval_results(
cfg.metric,
json_directory=FLAGS.output_eval,
dataset=cfg['EvalDataset'])
return
# init parallel environment if nranks > 1
init_parallel_env()
# build trainer
trainer = Trainer(cfg, mode='eval')
# load weights
trainer.load_weights(cfg.weights)
# training
trainer.evaluate()
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
# TODO: bias should be unified
cfg['bias'] = 1 if FLAGS.bias else 0
cfg['classwise'] = True if FLAGS.classwise else False
cfg['output_eval'] = FLAGS.output_eval
cfg['save_prediction_only'] = FLAGS.save_prediction_only
merge_config(FLAGS.opt)
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu:
cfg['norm_type'] = 'bn'
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='eval')
check_config(cfg)
check_gpu(cfg.use_gpu)
check_version()
run(FLAGS, cfg)
if __name__ == '__main__':
main()