forked from PulseFocusPlatform/PulseFocusPlatform
321 lines
11 KiB
Python
321 lines
11 KiB
Python
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import math
|
||
|
import paddle
|
||
|
from paddle import ParamAttr
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle.nn.initializer import Normal
|
||
|
|
||
|
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
|
||
|
|
||
|
|
||
|
class ConvBNLayer(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_filters,
|
||
|
filter_size,
|
||
|
stride=1,
|
||
|
dilation=1,
|
||
|
groups=1,
|
||
|
act=None,
|
||
|
lr_mult=1.0,
|
||
|
name=None,
|
||
|
data_format="NCHW"):
|
||
|
super(ConvBNLayer, self).__init__()
|
||
|
conv_stdv = filter_size * filter_size * num_filters
|
||
|
self._conv = nn.Conv2D(
|
||
|
in_channels=num_channels,
|
||
|
out_channels=num_filters,
|
||
|
kernel_size=filter_size,
|
||
|
stride=stride,
|
||
|
padding=(filter_size - 1) // 2,
|
||
|
dilation=dilation,
|
||
|
groups=groups,
|
||
|
weight_attr=ParamAttr(
|
||
|
name=name + "_weights",
|
||
|
learning_rate=lr_mult,
|
||
|
initializer=Normal(0, math.sqrt(2. / conv_stdv))),
|
||
|
bias_attr=False,
|
||
|
data_format=data_format)
|
||
|
if name == "conv1":
|
||
|
bn_name = "bn_" + name
|
||
|
else:
|
||
|
bn_name = "bn" + name[3:]
|
||
|
self._batch_norm = nn.BatchNorm(
|
||
|
num_filters,
|
||
|
act=act,
|
||
|
param_attr=ParamAttr(name=bn_name + "_scale"),
|
||
|
bias_attr=ParamAttr(bn_name + "_offset"),
|
||
|
moving_mean_name=bn_name + "_mean",
|
||
|
moving_variance_name=bn_name + "_variance",
|
||
|
data_layout=data_format)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
y = self._conv(inputs)
|
||
|
y = self._batch_norm(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class BottleneckBlock(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_filters,
|
||
|
stride,
|
||
|
shortcut=True,
|
||
|
name=None,
|
||
|
lr_mult=1.0,
|
||
|
dilation=1,
|
||
|
data_format="NCHW"):
|
||
|
super(BottleneckBlock, self).__init__()
|
||
|
self.conv0 = ConvBNLayer(
|
||
|
num_channels=num_channels,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=1,
|
||
|
dilation=dilation,
|
||
|
act="relu",
|
||
|
lr_mult=lr_mult,
|
||
|
name=name + "_branch2a",
|
||
|
data_format=data_format)
|
||
|
self.conv1 = ConvBNLayer(
|
||
|
num_channels=num_filters,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=3,
|
||
|
dilation=dilation,
|
||
|
stride=stride,
|
||
|
act="relu",
|
||
|
lr_mult=lr_mult,
|
||
|
name=name + "_branch2b",
|
||
|
data_format=data_format)
|
||
|
self.conv2 = ConvBNLayer(
|
||
|
num_channels=num_filters,
|
||
|
num_filters=num_filters * 4,
|
||
|
filter_size=1,
|
||
|
dilation=dilation,
|
||
|
act=None,
|
||
|
lr_mult=lr_mult,
|
||
|
name=name + "_branch2c",
|
||
|
data_format=data_format)
|
||
|
if not shortcut:
|
||
|
self.short = ConvBNLayer(
|
||
|
num_channels=num_channels,
|
||
|
num_filters=num_filters * 4,
|
||
|
filter_size=1,
|
||
|
dilation=dilation,
|
||
|
stride=stride,
|
||
|
lr_mult=lr_mult,
|
||
|
name=name + "_branch1",
|
||
|
data_format=data_format)
|
||
|
self.shortcut = shortcut
|
||
|
self._num_channels_out = num_filters * 4
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
y = self.conv0(inputs)
|
||
|
conv1 = self.conv1(y)
|
||
|
conv2 = self.conv2(conv1)
|
||
|
if self.shortcut:
|
||
|
short = inputs
|
||
|
else:
|
||
|
short = self.short(inputs)
|
||
|
y = paddle.add(x=short, y=conv2)
|
||
|
y = F.relu(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_filters,
|
||
|
stride,
|
||
|
shortcut=True,
|
||
|
name=None,
|
||
|
data_format="NCHW"):
|
||
|
super(BasicBlock, self).__init__()
|
||
|
self.stride = stride
|
||
|
self.conv0 = ConvBNLayer(
|
||
|
num_channels=num_channels,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=3,
|
||
|
stride=stride,
|
||
|
act="relu",
|
||
|
name=name + "_branch2a",
|
||
|
data_format=data_format)
|
||
|
self.conv1 = ConvBNLayer(
|
||
|
num_channels=num_filters,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=3,
|
||
|
act=None,
|
||
|
name=name + "_branch2b",
|
||
|
data_format=data_format)
|
||
|
if not shortcut:
|
||
|
self.short = ConvBNLayer(
|
||
|
num_channels=num_channels,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=1,
|
||
|
stride=stride,
|
||
|
name=name + "_branch1",
|
||
|
data_format=data_format)
|
||
|
self.shortcut = shortcut
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
y = self.conv0(inputs)
|
||
|
conv1 = self.conv1(y)
|
||
|
if self.shortcut:
|
||
|
short = inputs
|
||
|
else:
|
||
|
short = self.short(inputs)
|
||
|
y = paddle.add(x=short, y=conv1)
|
||
|
y = F.relu(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class ResNet(nn.Layer):
|
||
|
def __init__(self,
|
||
|
layers=50,
|
||
|
lr_mult=1.0,
|
||
|
last_conv_stride=2,
|
||
|
last_conv_dilation=1):
|
||
|
super(ResNet, self).__init__()
|
||
|
self.layers = layers
|
||
|
self.data_format = "NCHW"
|
||
|
self.input_image_channel = 3
|
||
|
supported_layers = [18, 34, 50, 101, 152]
|
||
|
assert layers in supported_layers, \
|
||
|
"supported layers are {} but input layer is {}".format(
|
||
|
supported_layers, layers)
|
||
|
if layers == 18:
|
||
|
depth = [2, 2, 2, 2]
|
||
|
elif layers == 34 or layers == 50:
|
||
|
depth = [3, 4, 6, 3]
|
||
|
elif layers == 101:
|
||
|
depth = [3, 4, 23, 3]
|
||
|
elif layers == 152:
|
||
|
depth = [3, 8, 36, 3]
|
||
|
num_channels = [64, 256, 512,
|
||
|
1024] if layers >= 50 else [64, 64, 128, 256]
|
||
|
num_filters = [64, 128, 256, 512]
|
||
|
self.conv = ConvBNLayer(
|
||
|
num_channels=self.input_image_channel,
|
||
|
num_filters=64,
|
||
|
filter_size=7,
|
||
|
stride=2,
|
||
|
act="relu",
|
||
|
lr_mult=lr_mult,
|
||
|
name="conv1",
|
||
|
data_format=self.data_format)
|
||
|
self.pool2d_max = nn.MaxPool2D(
|
||
|
kernel_size=3, stride=2, padding=1, data_format=self.data_format)
|
||
|
self.block_list = []
|
||
|
if layers >= 50:
|
||
|
for block in range(len(depth)):
|
||
|
shortcut = False
|
||
|
for i in range(depth[block]):
|
||
|
if layers in [101, 152] and block == 2:
|
||
|
if i == 0:
|
||
|
conv_name = "res" + str(block + 2) + "a"
|
||
|
else:
|
||
|
conv_name = "res" + str(block + 2) + "b" + str(i)
|
||
|
else:
|
||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||
|
if i != 0 or block == 0:
|
||
|
stride = 1
|
||
|
elif block == len(depth) - 1:
|
||
|
stride = last_conv_stride
|
||
|
else:
|
||
|
stride = 2
|
||
|
bottleneck_block = self.add_sublayer(
|
||
|
conv_name,
|
||
|
BottleneckBlock(
|
||
|
num_channels=num_channels[block]
|
||
|
if i == 0 else num_filters[block] * 4,
|
||
|
num_filters=num_filters[block],
|
||
|
stride=stride,
|
||
|
shortcut=shortcut,
|
||
|
name=conv_name,
|
||
|
lr_mult=lr_mult,
|
||
|
dilation=last_conv_dilation
|
||
|
if block == len(depth) - 1 else 1,
|
||
|
data_format=self.data_format))
|
||
|
self.block_list.append(bottleneck_block)
|
||
|
shortcut = True
|
||
|
else:
|
||
|
for block in range(len(depth)):
|
||
|
shortcut = False
|
||
|
for i in range(depth[block]):
|
||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||
|
basic_block = self.add_sublayer(
|
||
|
conv_name,
|
||
|
BasicBlock(
|
||
|
num_channels=num_channels[block]
|
||
|
if i == 0 else num_filters[block],
|
||
|
num_filters=num_filters[block],
|
||
|
stride=2 if i == 0 and block != 0 else 1,
|
||
|
shortcut=shortcut,
|
||
|
name=conv_name,
|
||
|
data_format=self.data_format))
|
||
|
self.block_list.append(basic_block)
|
||
|
shortcut = True
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
y = self.conv(inputs)
|
||
|
y = self.pool2d_max(y)
|
||
|
for block in self.block_list:
|
||
|
y = block(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
def ResNet18(**args):
|
||
|
model = ResNet(layers=18, **args)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def ResNet34(**args):
|
||
|
model = ResNet(layers=34, **args)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def ResNet50(pretrained=None, **args):
|
||
|
model = ResNet(layers=50, **args)
|
||
|
if pretrained is not None:
|
||
|
if not (os.path.isdir(pretrained) or
|
||
|
os.path.exists(pretrained + '.pdparams')):
|
||
|
raise ValueError("Model pretrain path {} does not "
|
||
|
"exists.".format(pretrained))
|
||
|
param_state_dict = paddle.load(pretrained + '.pdparams')
|
||
|
model.set_dict(param_state_dict)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def ResNet101(pretrained=None, **args):
|
||
|
model = ResNet(layers=101, **args)
|
||
|
if pretrained is not None:
|
||
|
if not (os.path.isdir(pretrained) or
|
||
|
os.path.exists(pretrained + '.pdparams')):
|
||
|
raise ValueError("Model pretrain path {} does not "
|
||
|
"exists.".format(pretrained))
|
||
|
param_state_dict = paddle.load(pretrained + '.pdparams')
|
||
|
model.set_dict(param_state_dict)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def ResNet152(**args):
|
||
|
model = ResNet(layers=152, **args)
|
||
|
return model
|