forked from PulseFocusPlatform/PulseFocusPlatform
534 lines
21 KiB
Python
534 lines
21 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import copy
|
||
|
import time
|
||
|
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
|
||
|
import paddle
|
||
|
import paddle.distributed as dist
|
||
|
from paddle.distributed import fleet
|
||
|
from paddle import amp
|
||
|
from paddle.static import InputSpec
|
||
|
from ppdet.optimizer import ModelEMA
|
||
|
|
||
|
from ppdet.core.workspace import create
|
||
|
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
|
||
|
from ppdet.utils.visualizer import visualize_results, save_result
|
||
|
from ppdet.metrics import JDEDetMetric, JDEReIDMetric
|
||
|
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval
|
||
|
from ppdet.data.source.category import get_categories
|
||
|
import ppdet.utils.stats as stats
|
||
|
|
||
|
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
|
||
|
from .export_utils import _dump_infer_config
|
||
|
|
||
|
from ppdet.utils.logger import setup_logger
|
||
|
logger = setup_logger('ppdet.engine')
|
||
|
|
||
|
__all__ = ['Trainer']
|
||
|
|
||
|
|
||
|
class Trainer(object):
|
||
|
def __init__(self, cfg, mode='train'):
|
||
|
self.cfg = cfg
|
||
|
assert mode.lower() in ['train', 'eval', 'test'], \
|
||
|
"mode should be 'train', 'eval' or 'test'"
|
||
|
self.mode = mode.lower()
|
||
|
self.optimizer = None
|
||
|
self.is_loaded_weights = False
|
||
|
|
||
|
# build data loader
|
||
|
self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
|
||
|
if self.mode == 'train':
|
||
|
self.loader = create('{}Reader'.format(self.mode.capitalize()))(
|
||
|
self.dataset, cfg.worker_num)
|
||
|
|
||
|
if cfg.architecture == 'JDE' and self.mode == 'train':
|
||
|
cfg['JDEEmbeddingHead'][
|
||
|
'num_identifiers'] = self.dataset.total_identities
|
||
|
|
||
|
if cfg.architecture == 'FairMOT' and self.mode == 'train':
|
||
|
cfg['FairMOTEmbeddingHead'][
|
||
|
'num_identifiers'] = self.dataset.total_identities
|
||
|
|
||
|
# build model
|
||
|
if 'model' not in self.cfg:
|
||
|
self.model = create(cfg.architecture)
|
||
|
else:
|
||
|
self.model = self.cfg.model
|
||
|
self.is_loaded_weights = True
|
||
|
|
||
|
self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
|
||
|
if self.use_ema:
|
||
|
self.ema = ModelEMA(
|
||
|
cfg['ema_decay'], self.model, use_thres_step=True)
|
||
|
|
||
|
# EvalDataset build with BatchSampler to evaluate in single device
|
||
|
# TODO: multi-device evaluate
|
||
|
if self.mode == 'eval':
|
||
|
self._eval_batch_sampler = paddle.io.BatchSampler(
|
||
|
self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
|
||
|
self.loader = create('{}Reader'.format(self.mode.capitalize()))(
|
||
|
self.dataset, cfg.worker_num, self._eval_batch_sampler)
|
||
|
# TestDataset build after user set images, skip loader creation here
|
||
|
|
||
|
# build optimizer in train mode
|
||
|
if self.mode == 'train':
|
||
|
steps_per_epoch = len(self.loader)
|
||
|
self.lr = create('LearningRate')(steps_per_epoch)
|
||
|
self.optimizer = create('OptimizerBuilder')(self.lr,
|
||
|
self.model.parameters())
|
||
|
|
||
|
self._nranks = dist.get_world_size()
|
||
|
self._local_rank = dist.get_rank()
|
||
|
|
||
|
self.status = {}
|
||
|
|
||
|
self.start_epoch = 0
|
||
|
self.end_epoch = cfg.epoch
|
||
|
|
||
|
# initial default callbacks
|
||
|
self._init_callbacks()
|
||
|
|
||
|
# initial default metrics
|
||
|
self._init_metrics()
|
||
|
self._reset_metrics()
|
||
|
|
||
|
def _init_callbacks(self):
|
||
|
if self.mode == 'train':
|
||
|
self._callbacks = [LogPrinter(self), Checkpointer(self)]
|
||
|
if self.cfg.get('use_vdl', False):
|
||
|
self._callbacks.append(VisualDLWriter(self))
|
||
|
self._compose_callback = ComposeCallback(self._callbacks)
|
||
|
elif self.mode == 'eval':
|
||
|
self._callbacks = [LogPrinter(self)]
|
||
|
if self.cfg.metric == 'WiderFace':
|
||
|
self._callbacks.append(WiferFaceEval(self))
|
||
|
self._compose_callback = ComposeCallback(self._callbacks)
|
||
|
elif self.mode == 'test' and self.cfg.get('use_vdl', False):
|
||
|
self._callbacks = [VisualDLWriter(self)]
|
||
|
self._compose_callback = ComposeCallback(self._callbacks)
|
||
|
else:
|
||
|
self._callbacks = []
|
||
|
self._compose_callback = None
|
||
|
|
||
|
def _init_metrics(self, validate=False):
|
||
|
if self.mode == 'test' or (self.mode == 'train' and not validate):
|
||
|
self._metrics = []
|
||
|
return
|
||
|
classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
|
||
|
if self.cfg.metric == 'COCO':
|
||
|
# TODO: bias should be unified
|
||
|
bias = self.cfg['bias'] if 'bias' in self.cfg else 0
|
||
|
output_eval = self.cfg['output_eval'] \
|
||
|
if 'output_eval' in self.cfg else None
|
||
|
save_prediction_only = self.cfg.get('save_prediction_only', False)
|
||
|
|
||
|
# pass clsid2catid info to metric instance to avoid multiple loading
|
||
|
# annotation file
|
||
|
clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
|
||
|
if self.mode == 'eval' else None
|
||
|
|
||
|
# when do validation in train, annotation file should be get from
|
||
|
# EvalReader instead of self.dataset(which is TrainReader)
|
||
|
anno_file = self.dataset.get_anno()
|
||
|
if self.mode == 'train' and validate:
|
||
|
eval_dataset = self.cfg['EvalDataset']
|
||
|
eval_dataset.check_or_download_dataset()
|
||
|
anno_file = eval_dataset.get_anno()
|
||
|
|
||
|
IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
|
||
|
self._metrics = [
|
||
|
COCOMetric(
|
||
|
anno_file=anno_file,
|
||
|
clsid2catid=clsid2catid,
|
||
|
classwise=classwise,
|
||
|
output_eval=output_eval,
|
||
|
bias=bias,
|
||
|
IouType=IouType,
|
||
|
save_prediction_only=save_prediction_only)
|
||
|
]
|
||
|
elif self.cfg.metric == 'VOC':
|
||
|
self._metrics = [
|
||
|
VOCMetric(
|
||
|
label_list=self.dataset.get_label_list(),
|
||
|
class_num=self.cfg.num_classes,
|
||
|
map_type=self.cfg.map_type,
|
||
|
classwise=classwise)
|
||
|
]
|
||
|
elif self.cfg.metric == 'WiderFace':
|
||
|
multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
|
||
|
self._metrics = [
|
||
|
WiderFaceMetric(
|
||
|
image_dir=os.path.join(self.dataset.dataset_dir,
|
||
|
self.dataset.image_dir),
|
||
|
anno_file=self.dataset.get_anno(),
|
||
|
multi_scale=multi_scale)
|
||
|
]
|
||
|
elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
|
||
|
eval_dataset = self.cfg['EvalDataset']
|
||
|
eval_dataset.check_or_download_dataset()
|
||
|
anno_file = eval_dataset.get_anno()
|
||
|
self._metrics = [
|
||
|
KeyPointTopDownCOCOEval(anno_file,
|
||
|
len(eval_dataset), self.cfg.num_joints,
|
||
|
self.cfg.save_dir)
|
||
|
]
|
||
|
elif self.cfg.metric == 'MOTDet':
|
||
|
self._metrics = [JDEDetMetric(), ]
|
||
|
elif self.cfg.metric == 'ReID':
|
||
|
self._metrics = [JDEReIDMetric(), ]
|
||
|
else:
|
||
|
logger.warning("Metric not support for metric type {}".format(
|
||
|
self.cfg.metric))
|
||
|
self._metrics = []
|
||
|
|
||
|
def _reset_metrics(self):
|
||
|
for metric in self._metrics:
|
||
|
metric.reset()
|
||
|
|
||
|
def register_callbacks(self, callbacks):
|
||
|
callbacks = [c for c in list(callbacks) if c is not None]
|
||
|
for c in callbacks:
|
||
|
assert isinstance(c, Callback), \
|
||
|
"metrics shoule be instances of subclass of Metric"
|
||
|
self._callbacks.extend(callbacks)
|
||
|
self._compose_callback = ComposeCallback(self._callbacks)
|
||
|
|
||
|
def register_metrics(self, metrics):
|
||
|
metrics = [m for m in list(metrics) if m is not None]
|
||
|
for m in metrics:
|
||
|
assert isinstance(m, Metric), \
|
||
|
"metrics shoule be instances of subclass of Metric"
|
||
|
self._metrics.extend(metrics)
|
||
|
|
||
|
def load_weights(self, weights):
|
||
|
if self.is_loaded_weights:
|
||
|
return
|
||
|
self.start_epoch = 0
|
||
|
if hasattr(self.model, 'detector'):
|
||
|
if self.model.__class__.__name__ == 'FairMOT':
|
||
|
load_pretrain_weight(self.model, weights)
|
||
|
else:
|
||
|
load_pretrain_weight(self.model.detector, weights)
|
||
|
else:
|
||
|
load_pretrain_weight(self.model, weights)
|
||
|
logger.debug("Load weights {} to start training".format(weights))
|
||
|
|
||
|
def resume_weights(self, weights):
|
||
|
# support Distill resume weights
|
||
|
if hasattr(self.model, 'student_model'):
|
||
|
self.start_epoch = load_weight(self.model.student_model, weights,
|
||
|
self.optimizer)
|
||
|
else:
|
||
|
self.start_epoch = load_weight(self.model, weights, self.optimizer)
|
||
|
logger.debug("Resume weights of epoch {}".format(self.start_epoch))
|
||
|
|
||
|
def train(self, validate=False):
|
||
|
assert self.mode == 'train', "Model not in 'train' mode"
|
||
|
|
||
|
# if validation in training is enabled, metrics should be re-init
|
||
|
if validate:
|
||
|
self._init_metrics(validate=validate)
|
||
|
self._reset_metrics()
|
||
|
|
||
|
model = self.model
|
||
|
if self.cfg.get('fleet', False):
|
||
|
model = fleet.distributed_model(model)
|
||
|
self.optimizer = fleet.distributed_optimizer(self.optimizer)
|
||
|
elif self._nranks > 1:
|
||
|
find_unused_parameters = self.cfg[
|
||
|
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
|
||
|
model = paddle.DataParallel(
|
||
|
self.model, find_unused_parameters=find_unused_parameters)
|
||
|
|
||
|
# initial fp16
|
||
|
if self.cfg.get('fp16', False):
|
||
|
scaler = amp.GradScaler(
|
||
|
enable=self.cfg.use_gpu, init_loss_scaling=1024)
|
||
|
|
||
|
self.status.update({
|
||
|
'epoch_id': self.start_epoch,
|
||
|
'step_id': 0,
|
||
|
'steps_per_epoch': len(self.loader)
|
||
|
})
|
||
|
|
||
|
self.status['batch_time'] = stats.SmoothedValue(
|
||
|
self.cfg.log_iter, fmt='{avg:.4f}')
|
||
|
self.status['data_time'] = stats.SmoothedValue(
|
||
|
self.cfg.log_iter, fmt='{avg:.4f}')
|
||
|
self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)
|
||
|
|
||
|
for epoch_id in range(self.start_epoch, self.cfg.epoch):
|
||
|
self.status['mode'] = 'train'
|
||
|
self.status['epoch_id'] = epoch_id
|
||
|
self._compose_callback.on_epoch_begin(self.status)
|
||
|
self.loader.dataset.set_epoch(epoch_id)
|
||
|
model.train()
|
||
|
iter_tic = time.time()
|
||
|
for step_id, data in enumerate(self.loader):
|
||
|
self.status['data_time'].update(time.time() - iter_tic)
|
||
|
self.status['step_id'] = step_id
|
||
|
self._compose_callback.on_step_begin(self.status)
|
||
|
|
||
|
if self.cfg.get('fp16', False):
|
||
|
with amp.auto_cast(enable=self.cfg.use_gpu):
|
||
|
# model forward
|
||
|
outputs = model(data)
|
||
|
loss = outputs['loss']
|
||
|
|
||
|
# model backward
|
||
|
scaled_loss = scaler.scale(loss)
|
||
|
scaled_loss.backward()
|
||
|
# in dygraph mode, optimizer.minimize is equal to optimizer.step
|
||
|
scaler.minimize(self.optimizer, scaled_loss)
|
||
|
else:
|
||
|
# model forward
|
||
|
outputs = model(data)
|
||
|
loss = outputs['loss']
|
||
|
# model backward
|
||
|
loss.backward()
|
||
|
self.optimizer.step()
|
||
|
|
||
|
curr_lr = self.optimizer.get_lr()
|
||
|
self.lr.step()
|
||
|
self.optimizer.clear_grad()
|
||
|
self.status['learning_rate'] = curr_lr
|
||
|
|
||
|
if self._nranks < 2 or self._local_rank == 0:
|
||
|
self.status['training_staus'].update(outputs)
|
||
|
|
||
|
self.status['batch_time'].update(time.time() - iter_tic)
|
||
|
self._compose_callback.on_step_end(self.status)
|
||
|
if self.use_ema:
|
||
|
self.ema.update(self.model)
|
||
|
iter_tic = time.time()
|
||
|
|
||
|
# apply ema weight on model
|
||
|
if self.use_ema:
|
||
|
weight = copy.deepcopy(self.model.state_dict())
|
||
|
self.model.set_dict(self.ema.apply())
|
||
|
|
||
|
self._compose_callback.on_epoch_end(self.status)
|
||
|
|
||
|
if validate and (self._nranks < 2 or self._local_rank == 0) \
|
||
|
and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
|
||
|
or epoch_id == self.end_epoch - 1):
|
||
|
if not hasattr(self, '_eval_loader'):
|
||
|
# build evaluation dataset and loader
|
||
|
self._eval_dataset = self.cfg.EvalDataset
|
||
|
self._eval_batch_sampler = \
|
||
|
paddle.io.BatchSampler(
|
||
|
self._eval_dataset,
|
||
|
batch_size=self.cfg.EvalReader['batch_size'])
|
||
|
self._eval_loader = create('EvalReader')(
|
||
|
self._eval_dataset,
|
||
|
self.cfg.worker_num,
|
||
|
batch_sampler=self._eval_batch_sampler)
|
||
|
with paddle.no_grad():
|
||
|
self.status['save_best_model'] = True
|
||
|
self._eval_with_loader(self._eval_loader)
|
||
|
|
||
|
# restore origin weight on model
|
||
|
if self.use_ema:
|
||
|
self.model.set_dict(weight)
|
||
|
|
||
|
def _eval_with_loader(self, loader):
|
||
|
sample_num = 0
|
||
|
tic = time.time()
|
||
|
self._compose_callback.on_epoch_begin(self.status)
|
||
|
self.status['mode'] = 'eval'
|
||
|
self.model.eval()
|
||
|
for step_id, data in enumerate(loader):
|
||
|
self.status['step_id'] = step_id
|
||
|
self._compose_callback.on_step_begin(self.status)
|
||
|
# forward
|
||
|
outs = self.model(data)
|
||
|
|
||
|
# update metrics
|
||
|
for metric in self._metrics:
|
||
|
metric.update(data, outs)
|
||
|
|
||
|
sample_num += data['im_id'].numpy().shape[0]
|
||
|
self._compose_callback.on_step_end(self.status)
|
||
|
|
||
|
self.status['sample_num'] = sample_num
|
||
|
self.status['cost_time'] = time.time() - tic
|
||
|
|
||
|
# accumulate metric to log out
|
||
|
for metric in self._metrics:
|
||
|
metric.accumulate()
|
||
|
metric.log()
|
||
|
self._compose_callback.on_epoch_end(self.status)
|
||
|
# reset metric states for metric may performed multiple times
|
||
|
self._reset_metrics()
|
||
|
|
||
|
def evaluate(self):
|
||
|
with paddle.no_grad():
|
||
|
self._eval_with_loader(self.loader)
|
||
|
|
||
|
def predict(self,
|
||
|
images,
|
||
|
draw_threshold=0.5,
|
||
|
output_dir='output',
|
||
|
save_txt=False):
|
||
|
self.dataset.set_images(images)
|
||
|
loader = create('TestReader')(self.dataset, 0)
|
||
|
|
||
|
imid2path = self.dataset.get_imid2path()
|
||
|
|
||
|
anno_file = self.dataset.get_anno()
|
||
|
clsid2catid, catid2name = get_categories(
|
||
|
self.cfg.metric, anno_file=anno_file)
|
||
|
|
||
|
# Run Infer
|
||
|
self.status['mode'] = 'test'
|
||
|
self.model.eval()
|
||
|
for step_id, data in enumerate(loader):
|
||
|
self.status['step_id'] = step_id
|
||
|
# forward
|
||
|
outs = self.model(data)
|
||
|
|
||
|
for key in ['im_shape', 'scale_factor', 'im_id']:
|
||
|
outs[key] = data[key]
|
||
|
for key, value in outs.items():
|
||
|
if hasattr(value, 'numpy'):
|
||
|
outs[key] = value.numpy()
|
||
|
|
||
|
batch_res = get_infer_results(outs, clsid2catid)
|
||
|
bbox_num = outs['bbox_num']
|
||
|
|
||
|
start = 0
|
||
|
for i, im_id in enumerate(outs['im_id']):
|
||
|
image_path = imid2path[int(im_id)]
|
||
|
image = Image.open(image_path).convert('RGB')
|
||
|
self.status['original_image'] = np.array(image.copy())
|
||
|
|
||
|
end = start + bbox_num[i]
|
||
|
bbox_res = batch_res['bbox'][start:end] \
|
||
|
if 'bbox' in batch_res else None
|
||
|
mask_res = batch_res['mask'][start:end] \
|
||
|
if 'mask' in batch_res else None
|
||
|
segm_res = batch_res['segm'][start:end] \
|
||
|
if 'segm' in batch_res else None
|
||
|
keypoint_res = batch_res['keypoint'][start:end] \
|
||
|
if 'keypoint' in batch_res else None
|
||
|
image = visualize_results(
|
||
|
image, bbox_res, mask_res, segm_res, keypoint_res,
|
||
|
int(im_id), catid2name, draw_threshold)
|
||
|
self.status['result_image'] = np.array(image.copy())
|
||
|
if self._compose_callback:
|
||
|
self._compose_callback.on_step_end(self.status)
|
||
|
# save image with detection
|
||
|
save_name = self._get_save_image_name(output_dir, image_path)
|
||
|
logger.info("Detection bbox results save in {}".format(
|
||
|
save_name))
|
||
|
image.save(save_name, quality=95)
|
||
|
if save_txt:
|
||
|
save_path = os.path.splitext(save_name)[0] + '.txt'
|
||
|
results = {}
|
||
|
results["im_id"] = im_id
|
||
|
if bbox_res:
|
||
|
results["bbox_res"] = bbox_res
|
||
|
if keypoint_res:
|
||
|
results["keypoint_res"] = keypoint_res
|
||
|
save_result(save_path, results, catid2name, draw_threshold)
|
||
|
start = end
|
||
|
|
||
|
def _get_save_image_name(self, output_dir, image_path):
|
||
|
"""
|
||
|
Get save image name from source image path.
|
||
|
"""
|
||
|
if not os.path.exists(output_dir):
|
||
|
os.makedirs(output_dir)
|
||
|
image_name = os.path.split(image_path)[-1]
|
||
|
name, ext = os.path.splitext(image_name)
|
||
|
return os.path.join(output_dir, "{}".format(name)) + ext
|
||
|
|
||
|
def export(self, output_dir='output_inference'):
|
||
|
self.model.eval()
|
||
|
model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
|
||
|
save_dir = os.path.join(output_dir, model_name)
|
||
|
if not os.path.exists(save_dir):
|
||
|
os.makedirs(save_dir)
|
||
|
image_shape = None
|
||
|
if 'inputs_def' in self.cfg['TestReader']:
|
||
|
inputs_def = self.cfg['TestReader']['inputs_def']
|
||
|
image_shape = inputs_def.get('image_shape', None)
|
||
|
# set image_shape=[3, -1, -1] as default
|
||
|
if image_shape is None:
|
||
|
image_shape = [3, -1, -1]
|
||
|
|
||
|
self.model.eval()
|
||
|
if hasattr(self.model, 'deploy'): self.model.deploy = True
|
||
|
|
||
|
# Save infer cfg
|
||
|
_dump_infer_config(self.cfg,
|
||
|
os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
|
||
|
self.model)
|
||
|
|
||
|
input_spec = [{
|
||
|
"image": InputSpec(
|
||
|
shape=[None] + image_shape, name='image'),
|
||
|
"im_shape": InputSpec(
|
||
|
shape=[None, 2], name='im_shape'),
|
||
|
"scale_factor": InputSpec(
|
||
|
shape=[None, 2], name='scale_factor')
|
||
|
}]
|
||
|
|
||
|
# dy2st and save model
|
||
|
if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
|
||
|
static_model = paddle.jit.to_static(
|
||
|
self.model, input_spec=input_spec)
|
||
|
# NOTE: dy2st do not pruned program, but jit.save will prune program
|
||
|
# input spec, prune input spec here and save with pruned input spec
|
||
|
pruned_input_spec = self._prune_input_spec(
|
||
|
input_spec, static_model.forward.main_program,
|
||
|
static_model.forward.outputs)
|
||
|
paddle.jit.save(
|
||
|
static_model,
|
||
|
os.path.join(save_dir, 'model'),
|
||
|
input_spec=pruned_input_spec)
|
||
|
logger.info("Export model and saved in {}".format(save_dir))
|
||
|
else:
|
||
|
self.cfg.slim.save_quantized_model(
|
||
|
self.model,
|
||
|
os.path.join(save_dir, 'model'),
|
||
|
input_spec=input_spec)
|
||
|
|
||
|
def _prune_input_spec(self, input_spec, program, targets):
|
||
|
# try to prune static program to figure out pruned input spec
|
||
|
# so we perform following operations in static mode
|
||
|
paddle.enable_static()
|
||
|
pruned_input_spec = [{}]
|
||
|
program = program.clone()
|
||
|
program = program._prune(targets=targets)
|
||
|
global_block = program.global_block()
|
||
|
for name, spec in input_spec[0].items():
|
||
|
try:
|
||
|
v = global_block.var(name)
|
||
|
pruned_input_spec[0][name] = spec
|
||
|
except Exception:
|
||
|
pass
|
||
|
paddle.disable_static()
|
||
|
return pruned_input_spec
|