PulseFocusPlatform/ppdet/modeling/architectures/solov2.py

111 lines
3.7 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['SOLOv2']
@register
class SOLOv2(BaseArch):
"""
SOLOv2 network, see https://arxiv.org/abs/2003.10152
Args:
backbone (object): an backbone instance
solov2_head (object): an `SOLOv2Head` instance
mask_head (object): an `SOLOv2MaskHead` instance
neck (object): neck of network, such as feature pyramid network instance
"""
__category__ = 'architecture'
def __init__(self, backbone, solov2_head, mask_head, neck=None):
super(SOLOv2, self).__init__()
self.backbone = backbone
self.neck = neck
self.solov2_head = solov2_head
self.mask_head = mask_head
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
solov2_head = create(cfg['solov2_head'], **kwargs)
mask_head = create(cfg['mask_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
'solov2_head': solov2_head,
'mask_head': mask_head,
}
def model_arch(self):
body_feats = self.backbone(self.inputs)
body_feats = self.neck(body_feats)
self.seg_pred = self.mask_head(body_feats)
self.cate_pred_list, self.kernel_pred_list = self.solov2_head(
body_feats)
def get_loss(self, ):
loss = {}
# get gt_ins_labels, gt_cate_labels, etc.
gt_ins_labels, gt_cate_labels, gt_grid_orders = [], [], []
fg_num = self.inputs['fg_num']
for i in range(len(self.solov2_head.seg_num_grids)):
ins_label = 'ins_label{}'.format(i)
if ins_label in self.inputs:
gt_ins_labels.append(self.inputs[ins_label])
cate_label = 'cate_label{}'.format(i)
if cate_label in self.inputs:
gt_cate_labels.append(self.inputs[cate_label])
grid_order = 'grid_order{}'.format(i)
if grid_order in self.inputs:
gt_grid_orders.append(self.inputs[grid_order])
loss_solov2 = self.solov2_head.get_loss(
self.cate_pred_list, self.kernel_pred_list, self.seg_pred,
gt_ins_labels, gt_cate_labels, gt_grid_orders, fg_num)
loss.update(loss_solov2)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
seg_masks, cate_labels, cate_scores, bbox_num = self.solov2_head.get_prediction(
self.cate_pred_list, self.kernel_pred_list, self.seg_pred,
self.inputs['im_shape'], self.inputs['scale_factor'])
outs = {
"segm": seg_masks,
"bbox_num": bbox_num,
'cate_label': cate_labels,
'cate_score': cate_scores
}
return outs