forked from PulseFocusPlatform/PulseFocusPlatform
85 lines
3.0 KiB
Python
85 lines
3.0 KiB
Python
![]() |
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle import fluid
|
||
|
|
||
|
from ppdet.core.workspace import register
|
||
|
|
||
|
__all__ = ['FusedSemanticHead']
|
||
|
|
||
|
|
||
|
@register
|
||
|
class FusedSemanticHead(object):
|
||
|
def __init__(self, semantic_num_class=183):
|
||
|
super(FusedSemanticHead, self).__init__()
|
||
|
self.semantic_num_class = semantic_num_class
|
||
|
|
||
|
def get_out(self,
|
||
|
fpn_feats,
|
||
|
out_c=256,
|
||
|
num_convs=4,
|
||
|
fusion_level='fpn_res3_sum'):
|
||
|
new_feat = fpn_feats[fusion_level]
|
||
|
new_feat_list = [new_feat, ]
|
||
|
target_shape = fluid.layers.shape(new_feat)[2:]
|
||
|
for k, v in fpn_feats.items():
|
||
|
if k != fusion_level:
|
||
|
v = fluid.layers.resize_bilinear(
|
||
|
v, target_shape, align_corners=True)
|
||
|
v = fluid.layers.conv2d(v, out_c, 1)
|
||
|
new_feat_list.append(v)
|
||
|
new_feat = fluid.layers.sum(new_feat_list)
|
||
|
|
||
|
for i in range(num_convs):
|
||
|
new_feat = fluid.layers.conv2d(new_feat, out_c, 3, padding=1)
|
||
|
|
||
|
# conv embedding
|
||
|
semantic_feat = fluid.layers.conv2d(new_feat, out_c, 1)
|
||
|
# conv logits
|
||
|
seg_pred = fluid.layers.conv2d(new_feat, self.semantic_num_class, 1)
|
||
|
return semantic_feat, seg_pred
|
||
|
|
||
|
def get_loss(self, logit, label, ignore_index=255):
|
||
|
label = fluid.layers.resize_nearest(label,
|
||
|
fluid.layers.shape(logit)[2:])
|
||
|
label = fluid.layers.reshape(label, [-1, 1])
|
||
|
label = fluid.layers.cast(label, 'int64')
|
||
|
|
||
|
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
|
||
|
logit = fluid.layers.reshape(logit, [-1, self.semantic_num_class])
|
||
|
|
||
|
loss, probs = fluid.layers.softmax_with_cross_entropy(
|
||
|
logit,
|
||
|
label,
|
||
|
soft_label=False,
|
||
|
ignore_index=ignore_index,
|
||
|
return_softmax=True)
|
||
|
|
||
|
ignore_mask = (label.astype('int32') != 255).astype('int32')
|
||
|
if ignore_mask is not None:
|
||
|
ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
|
||
|
ignore_mask = fluid.layers.reshape(ignore_mask, [-1, 1])
|
||
|
loss = loss * ignore_mask
|
||
|
avg_loss = fluid.layers.mean(loss) / fluid.layers.mean(ignore_mask)
|
||
|
ignore_mask.stop_gradient = True
|
||
|
else:
|
||
|
avg_loss = fluid.layers.mean(loss)
|
||
|
label.stop_gradient = True
|
||
|
|
||
|
return avg_loss
|