forked from PulseFocusPlatform/PulseFocusPlatform
459 lines
15 KiB
Python
459 lines
15 KiB
Python
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import copy
|
||
|
import functools
|
||
|
import collections
|
||
|
import traceback
|
||
|
import numpy as np
|
||
|
import logging
|
||
|
|
||
|
from ppdet.core.workspace import register, serializable
|
||
|
|
||
|
from .parallel_map import ParallelMap
|
||
|
from .transform.batch_operators import Gt2YoloTarget
|
||
|
|
||
|
__all__ = ['Reader', 'create_reader']
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class Compose(object):
|
||
|
def __init__(self, transforms, ctx=None):
|
||
|
self.transforms = transforms
|
||
|
self.ctx = ctx
|
||
|
|
||
|
def __call__(self, data):
|
||
|
ctx = self.ctx if self.ctx else {}
|
||
|
for f in self.transforms:
|
||
|
try:
|
||
|
data = f(data, ctx)
|
||
|
except Exception as e:
|
||
|
stack_info = traceback.format_exc()
|
||
|
logger.warning(
|
||
|
"fail to map op [{}] with error: {} and stack:\n{}".format(
|
||
|
f, e, str(stack_info)))
|
||
|
raise e
|
||
|
return data
|
||
|
|
||
|
|
||
|
def _calc_img_weights(roidbs):
|
||
|
""" calculate the probabilities of each sample
|
||
|
"""
|
||
|
imgs_cls = []
|
||
|
num_per_cls = {}
|
||
|
img_weights = []
|
||
|
for i, roidb in enumerate(roidbs):
|
||
|
img_cls = set([k for cls in roidbs[i]['gt_class'] for k in cls])
|
||
|
imgs_cls.append(img_cls)
|
||
|
for c in img_cls:
|
||
|
if c not in num_per_cls:
|
||
|
num_per_cls[c] = 1
|
||
|
else:
|
||
|
num_per_cls[c] += 1
|
||
|
|
||
|
for i in range(len(roidbs)):
|
||
|
weights = 0
|
||
|
for c in imgs_cls[i]:
|
||
|
weights += 1 / num_per_cls[c]
|
||
|
img_weights.append(weights)
|
||
|
# probabilities sum to 1
|
||
|
img_weights = img_weights / np.sum(img_weights)
|
||
|
return img_weights
|
||
|
|
||
|
|
||
|
def _has_empty(item):
|
||
|
def empty(x):
|
||
|
if isinstance(x, np.ndarray) and x.size == 0:
|
||
|
return True
|
||
|
elif isinstance(x, collections.Sequence) and len(x) == 0:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
if isinstance(item, collections.Sequence) and len(item) == 0:
|
||
|
return True
|
||
|
if item is None:
|
||
|
return True
|
||
|
if empty(item):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _segm(samples):
|
||
|
assert 'gt_poly' in samples
|
||
|
segms = samples['gt_poly']
|
||
|
if 'is_crowd' in samples:
|
||
|
is_crowd = samples['is_crowd']
|
||
|
if len(segms) != 0:
|
||
|
assert len(segms) == is_crowd.shape[0]
|
||
|
|
||
|
gt_masks = []
|
||
|
valid = True
|
||
|
for i in range(len(segms)):
|
||
|
segm = segms[i]
|
||
|
gt_segm = []
|
||
|
if 'is_crowd' in samples and is_crowd[i]:
|
||
|
gt_segm.append([[0, 0]])
|
||
|
else:
|
||
|
for poly in segm:
|
||
|
if len(poly) == 0:
|
||
|
valid = False
|
||
|
break
|
||
|
gt_segm.append(np.array(poly).reshape(-1, 2))
|
||
|
if (not valid) or len(gt_segm) == 0:
|
||
|
break
|
||
|
gt_masks.append(gt_segm)
|
||
|
return gt_masks
|
||
|
|
||
|
|
||
|
def batch_arrange(batch_samples, fields):
|
||
|
def im_shape(samples, dim=3):
|
||
|
# hard code
|
||
|
assert 'h' in samples
|
||
|
assert 'w' in samples
|
||
|
if dim == 3: # RCNN, ..
|
||
|
return np.array((samples['h'], samples['w'], 1), dtype=np.float32)
|
||
|
else: # YOLOv3, ..
|
||
|
return np.array((samples['h'], samples['w']), dtype=np.int32)
|
||
|
|
||
|
arrange_batch = []
|
||
|
for samples in batch_samples:
|
||
|
one_ins = ()
|
||
|
for i, field in enumerate(fields):
|
||
|
if field == 'gt_mask':
|
||
|
one_ins += (_segm(samples), )
|
||
|
elif field == 'im_shape':
|
||
|
one_ins += (im_shape(samples), )
|
||
|
elif field == 'im_size':
|
||
|
one_ins += (im_shape(samples, 2), )
|
||
|
else:
|
||
|
if field == 'is_difficult':
|
||
|
field = 'difficult'
|
||
|
assert field in samples, '{} not in samples'.format(field)
|
||
|
one_ins += (samples[field], )
|
||
|
arrange_batch.append(one_ins)
|
||
|
return arrange_batch
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class Reader(object):
|
||
|
"""
|
||
|
Args:
|
||
|
dataset (DataSet): DataSet object
|
||
|
sample_transforms (list of BaseOperator): a list of sample transforms
|
||
|
operators.
|
||
|
batch_transforms (list of BaseOperator): a list of batch transforms
|
||
|
operators.
|
||
|
batch_size (int): batch size.
|
||
|
shuffle (bool): whether shuffle dataset or not. Default False.
|
||
|
drop_last (bool): whether drop last batch or not. Default False.
|
||
|
drop_empty (bool): whether drop sample when it's gt is empty or not.
|
||
|
Default True.
|
||
|
mixup_epoch (int): mixup epoc number. Default is -1, meaning
|
||
|
not use mixup.
|
||
|
cutmix_epoch (int): cutmix epoc number. Default is -1, meaning
|
||
|
not use cutmix.
|
||
|
class_aware_sampling (bool): whether use class-aware sampling or not.
|
||
|
Default False.
|
||
|
worker_num (int): number of working threads/processes.
|
||
|
Default -1, meaning not use multi-threads/multi-processes.
|
||
|
use_process (bool): whether use multi-processes or not.
|
||
|
It only works when worker_num > 1. Default False.
|
||
|
bufsize (int): buffer size for multi-threads/multi-processes,
|
||
|
please note, one instance in buffer is one batch data.
|
||
|
memsize (str): size of shared memory used in result queue when
|
||
|
use_process is true. Default 3G.
|
||
|
inputs_def (dict): network input definition use to get input fields,
|
||
|
which is used to determine the order of returned data.
|
||
|
devices_num (int): number of devices.
|
||
|
num_trainers (int): number of trainers. Default 1.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
dataset=None,
|
||
|
sample_transforms=None,
|
||
|
batch_transforms=None,
|
||
|
batch_size=1,
|
||
|
shuffle=False,
|
||
|
drop_last=False,
|
||
|
drop_empty=True,
|
||
|
mixup_epoch=-1,
|
||
|
cutmix_epoch=-1,
|
||
|
class_aware_sampling=False,
|
||
|
worker_num=-1,
|
||
|
use_process=False,
|
||
|
use_fine_grained_loss=False,
|
||
|
num_classes=80,
|
||
|
bufsize=-1,
|
||
|
memsize='3G',
|
||
|
inputs_def=None,
|
||
|
devices_num=1,
|
||
|
num_trainers=1):
|
||
|
self._dataset = dataset
|
||
|
self._roidbs = self._dataset.get_roidb()
|
||
|
self._fields = copy.deepcopy(inputs_def[
|
||
|
'fields']) if inputs_def else None
|
||
|
|
||
|
# transform
|
||
|
self._sample_transforms = Compose(sample_transforms,
|
||
|
{'fields': self._fields})
|
||
|
self._batch_transforms = None
|
||
|
|
||
|
if use_fine_grained_loss:
|
||
|
for bt in batch_transforms:
|
||
|
if isinstance(bt, Gt2YoloTarget):
|
||
|
bt.num_classes = num_classes
|
||
|
elif batch_transforms:
|
||
|
batch_transforms = [
|
||
|
bt for bt in batch_transforms
|
||
|
if not isinstance(bt, Gt2YoloTarget)
|
||
|
]
|
||
|
|
||
|
if batch_transforms:
|
||
|
self._batch_transforms = Compose(batch_transforms,
|
||
|
{'fields': self._fields})
|
||
|
|
||
|
# data
|
||
|
if inputs_def and inputs_def.get('multi_scale', False):
|
||
|
from ppdet.modeling.architectures.input_helper import multiscale_def
|
||
|
im_shape = inputs_def[
|
||
|
'image_shape'] if 'image_shape' in inputs_def else [
|
||
|
3, None, None
|
||
|
]
|
||
|
_, ms_fields = multiscale_def(im_shape, inputs_def['num_scales'],
|
||
|
inputs_def['use_flip'])
|
||
|
self._fields += ms_fields
|
||
|
self._batch_size = batch_size
|
||
|
self._shuffle = shuffle
|
||
|
self._drop_last = drop_last
|
||
|
self._drop_empty = drop_empty
|
||
|
|
||
|
# sampling
|
||
|
self._mixup_epoch = mixup_epoch // num_trainers
|
||
|
self._cutmix_epoch = cutmix_epoch // num_trainers
|
||
|
self._class_aware_sampling = class_aware_sampling
|
||
|
|
||
|
self._load_img = False
|
||
|
self._sample_num = len(self._roidbs)
|
||
|
|
||
|
if self._class_aware_sampling:
|
||
|
self.img_weights = _calc_img_weights(self._roidbs)
|
||
|
self._indexes = None
|
||
|
|
||
|
self._pos = -1
|
||
|
self._epoch = -1
|
||
|
|
||
|
self._curr_iter = 0
|
||
|
|
||
|
# multi-process
|
||
|
self._worker_num = worker_num
|
||
|
self._parallel = None
|
||
|
if self._worker_num > -1:
|
||
|
task = functools.partial(self.worker, self._drop_empty)
|
||
|
bufsize = devices_num * 2 if bufsize == -1 else bufsize
|
||
|
self._parallel = ParallelMap(self, task, worker_num, bufsize,
|
||
|
use_process, memsize)
|
||
|
|
||
|
def __call__(self):
|
||
|
if self._worker_num > -1:
|
||
|
return self._parallel
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
def __iter__(self):
|
||
|
return self
|
||
|
|
||
|
def reset(self):
|
||
|
"""implementation of Dataset.reset
|
||
|
"""
|
||
|
if self._epoch < 0:
|
||
|
self._epoch = 0
|
||
|
else:
|
||
|
self._epoch += 1
|
||
|
|
||
|
self.indexes = [i for i in range(self.size())]
|
||
|
if self._class_aware_sampling:
|
||
|
self.indexes = np.random.choice(
|
||
|
self._sample_num,
|
||
|
self._sample_num,
|
||
|
replace=True,
|
||
|
p=self.img_weights)
|
||
|
|
||
|
if self._shuffle:
|
||
|
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
|
||
|
np.random.seed(self._epoch + trainer_id)
|
||
|
np.random.shuffle(self.indexes)
|
||
|
|
||
|
if self._mixup_epoch > 0 and len(self.indexes) < 2:
|
||
|
logger.debug("Disable mixup for dataset samples "
|
||
|
"less than 2 samples")
|
||
|
self._mixup_epoch = -1
|
||
|
if self._cutmix_epoch > 0 and len(self.indexes) < 2:
|
||
|
logger.info("Disable cutmix for dataset samples "
|
||
|
"less than 2 samples")
|
||
|
self._cutmix_epoch = -1
|
||
|
|
||
|
self._pos = 0
|
||
|
|
||
|
def __next__(self):
|
||
|
return self.next()
|
||
|
|
||
|
def next(self):
|
||
|
if self._epoch < 0:
|
||
|
self.reset()
|
||
|
if self.drained():
|
||
|
raise StopIteration
|
||
|
batch = self._load_batch()
|
||
|
self._curr_iter += 1
|
||
|
if self._drop_last and len(batch) < self._batch_size:
|
||
|
raise StopIteration
|
||
|
if self._worker_num > -1:
|
||
|
return batch
|
||
|
else:
|
||
|
return self.worker(self._drop_empty, batch)
|
||
|
|
||
|
def _load_batch(self):
|
||
|
batch = []
|
||
|
bs = 0
|
||
|
while bs != self._batch_size:
|
||
|
if self._pos >= self.size():
|
||
|
break
|
||
|
pos = self.indexes[self._pos]
|
||
|
sample = copy.deepcopy(self._roidbs[pos])
|
||
|
sample["curr_iter"] = self._curr_iter
|
||
|
self._pos += 1
|
||
|
|
||
|
if self._drop_empty and self._fields and 'gt_bbox' in sample:
|
||
|
if _has_empty(sample['gt_bbox']):
|
||
|
#logger.warn('gt_bbox {} is empty or not valid in {}, '
|
||
|
# 'drop this sample'.format(
|
||
|
# sample['im_file'], sample['gt_bbox']))
|
||
|
continue
|
||
|
has_mask = 'gt_mask' in self._fields or 'gt_segm' in self._fields
|
||
|
if self._drop_empty and self._fields and has_mask:
|
||
|
if _has_empty(_segm(sample)):
|
||
|
#logger.warn('gt_mask is empty or not valid in {}'.format(
|
||
|
# sample['im_file']))
|
||
|
continue
|
||
|
|
||
|
if self._load_img:
|
||
|
sample['image'] = self._load_image(sample['im_file'])
|
||
|
|
||
|
if self._epoch < self._mixup_epoch:
|
||
|
num = len(self.indexes)
|
||
|
mix_idx = np.random.randint(1, num)
|
||
|
mix_idx = self.indexes[(mix_idx + self._pos - 1) % num]
|
||
|
sample['mixup'] = copy.deepcopy(self._roidbs[mix_idx])
|
||
|
sample['mixup']["curr_iter"] = self._curr_iter
|
||
|
if self._load_img:
|
||
|
sample['mixup']['image'] = self._load_image(sample['mixup'][
|
||
|
'im_file'])
|
||
|
if self._epoch < self._cutmix_epoch:
|
||
|
num = len(self.indexes)
|
||
|
mix_idx = np.random.randint(1, num)
|
||
|
sample['cutmix'] = copy.deepcopy(self._roidbs[mix_idx])
|
||
|
sample['cutmix']["curr_iter"] = self._curr_iter
|
||
|
if self._load_img:
|
||
|
sample['cutmix']['image'] = self._load_image(sample[
|
||
|
'cutmix']['im_file'])
|
||
|
|
||
|
batch.append(sample)
|
||
|
bs += 1
|
||
|
return batch
|
||
|
|
||
|
def worker(self, drop_empty=True, batch_samples=None):
|
||
|
"""
|
||
|
sample transform and batch transform.
|
||
|
"""
|
||
|
batch = []
|
||
|
for sample in batch_samples:
|
||
|
sample = self._sample_transforms(sample)
|
||
|
if drop_empty and 'gt_bbox' in sample:
|
||
|
if _has_empty(sample['gt_bbox']):
|
||
|
#logger.warn('gt_bbox {} is empty or not valid in {}, '
|
||
|
# 'drop this sample'.format(
|
||
|
# sample['im_file'], sample['gt_bbox']))
|
||
|
continue
|
||
|
batch.append(sample)
|
||
|
if len(batch) > 0 and self._batch_transforms:
|
||
|
batch = self._batch_transforms(batch)
|
||
|
if len(batch) > 0 and self._fields:
|
||
|
batch = batch_arrange(batch, self._fields)
|
||
|
return batch
|
||
|
|
||
|
def _load_image(self, filename):
|
||
|
with open(filename, 'rb') as f:
|
||
|
return f.read()
|
||
|
|
||
|
def size(self):
|
||
|
""" implementation of Dataset.size
|
||
|
"""
|
||
|
return self._sample_num
|
||
|
|
||
|
def drained(self):
|
||
|
""" implementation of Dataset.drained
|
||
|
"""
|
||
|
assert self._epoch >= 0, 'The first epoch has not begin!'
|
||
|
return self._pos >= self.size()
|
||
|
|
||
|
def stop(self):
|
||
|
if self._parallel:
|
||
|
self._parallel.stop()
|
||
|
|
||
|
|
||
|
def create_reader(cfg,
|
||
|
max_iter=0,
|
||
|
global_cfg=None,
|
||
|
devices_num=1,
|
||
|
num_trainers=1):
|
||
|
"""
|
||
|
Return iterable data reader.
|
||
|
|
||
|
Args:
|
||
|
max_iter (int): number of iterations.
|
||
|
"""
|
||
|
if not isinstance(cfg, dict):
|
||
|
raise TypeError("The config should be a dict when creating reader.")
|
||
|
|
||
|
# synchornize use_fine_grained_loss/num_classes from global_cfg to reader cfg
|
||
|
if global_cfg:
|
||
|
cfg['use_fine_grained_loss'] = getattr(global_cfg,
|
||
|
'use_fine_grained_loss', False)
|
||
|
cfg['num_classes'] = getattr(global_cfg, 'num_classes', 80)
|
||
|
cfg['devices_num'] = devices_num
|
||
|
cfg['num_trainers'] = num_trainers
|
||
|
reader = Reader(**cfg)()
|
||
|
|
||
|
def _reader():
|
||
|
n = 0
|
||
|
while True:
|
||
|
for _batch in reader:
|
||
|
if len(_batch) > 0:
|
||
|
yield _batch
|
||
|
n += 1
|
||
|
if max_iter > 0 and n == max_iter:
|
||
|
return
|
||
|
reader.reset()
|
||
|
if max_iter <= 0:
|
||
|
return
|
||
|
|
||
|
return _reader
|