forked from PulseFocusPlatform/PulseFocusPlatform
309 lines
11 KiB
Python
309 lines
11 KiB
Python
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
# add python path of PadleDetection to sys.path
|
||
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
||
|
if parent_path not in sys.path:
|
||
|
sys.path.append(parent_path)
|
||
|
|
||
|
import paddle.fluid as fluid
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
import logging
|
||
|
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
|
||
|
logging.basicConfig(level=logging.INFO, format=FORMAT)
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
try:
|
||
|
import ppdet.utils.checkpoint as checkpoint
|
||
|
from ppdet.utils.cli import ArgsParser
|
||
|
from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
|
||
|
from ppdet.utils.widerface_eval_utils import get_shrink, bbox_vote, \
|
||
|
save_widerface_bboxes, save_fddb_bboxes, to_chw_bgr
|
||
|
from ppdet.core.workspace import load_config, merge_config, create
|
||
|
except ImportError as e:
|
||
|
if sys.argv[0].find('static') >= 0:
|
||
|
logger.error("Importing ppdet failed when running static model "
|
||
|
"with error: {}\n"
|
||
|
"please try:\n"
|
||
|
"\t1. run static model under PaddleDetection/static "
|
||
|
"directory\n"
|
||
|
"\t2. run 'pip uninstall ppdet' to uninstall ppdet "
|
||
|
"dynamic version firstly.".format(e))
|
||
|
sys.exit(-1)
|
||
|
else:
|
||
|
raise e
|
||
|
|
||
|
|
||
|
def face_img_process(image,
|
||
|
mean=[104., 117., 123.],
|
||
|
std=[127.502231, 127.502231, 127.502231]):
|
||
|
img = np.array(image)
|
||
|
img = to_chw_bgr(img)
|
||
|
img = img.astype('float32')
|
||
|
img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
|
||
|
img /= np.array(std)[:, np.newaxis, np.newaxis].astype('float32')
|
||
|
img = [img]
|
||
|
img = np.array(img)
|
||
|
return img
|
||
|
|
||
|
|
||
|
def face_eval_run(exe,
|
||
|
compile_program,
|
||
|
fetches,
|
||
|
image_dir,
|
||
|
gt_file,
|
||
|
pred_dir='output/pred',
|
||
|
eval_mode='widerface',
|
||
|
multi_scale=False):
|
||
|
# load ground truth files
|
||
|
with open(gt_file, 'r') as f:
|
||
|
gt_lines = f.readlines()
|
||
|
imid2path = []
|
||
|
pos_gt = 0
|
||
|
while pos_gt < len(gt_lines):
|
||
|
name_gt = gt_lines[pos_gt].strip('\n\t').split()[0]
|
||
|
imid2path.append(name_gt)
|
||
|
pos_gt += 1
|
||
|
n_gt = int(gt_lines[pos_gt].strip('\n\t').split()[0])
|
||
|
pos_gt += 1 + n_gt
|
||
|
logger.info('The ground truth file load {} images'.format(len(imid2path)))
|
||
|
|
||
|
dets_dist = OrderedDict()
|
||
|
for iter_id, im_path in enumerate(imid2path):
|
||
|
image_path = os.path.join(image_dir, im_path)
|
||
|
if eval_mode == 'fddb':
|
||
|
image_path += '.jpg'
|
||
|
assert os.path.exists(image_path)
|
||
|
image = cv2.imread(image_path)
|
||
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||
|
if multi_scale:
|
||
|
shrink, max_shrink = get_shrink(image.shape[0], image.shape[1])
|
||
|
det0 = detect_face(exe, compile_program, fetches, image, shrink)
|
||
|
det1 = flip_test(exe, compile_program, fetches, image, shrink)
|
||
|
[det2, det3] = multi_scale_test(exe, compile_program, fetches,
|
||
|
image, max_shrink)
|
||
|
det4 = multi_scale_test_pyramid(exe, compile_program, fetches,
|
||
|
image, max_shrink)
|
||
|
det = np.row_stack((det0, det1, det2, det3, det4))
|
||
|
dets = bbox_vote(det)
|
||
|
else:
|
||
|
dets = detect_face(exe, compile_program, fetches, image, 1)
|
||
|
if eval_mode == 'widerface':
|
||
|
save_widerface_bboxes(image_path, dets, pred_dir)
|
||
|
else:
|
||
|
dets_dist[im_path] = dets
|
||
|
if iter_id % 100 == 0:
|
||
|
logger.info('Test iter {}'.format(iter_id))
|
||
|
if eval_mode == 'fddb':
|
||
|
save_fddb_bboxes(dets_dist, pred_dir)
|
||
|
logger.info("Finish evaluation.")
|
||
|
|
||
|
|
||
|
def detect_face(exe, compile_program, fetches, image, shrink):
|
||
|
image_shape = [3, image.shape[0], image.shape[1]]
|
||
|
if shrink != 1:
|
||
|
h, w = int(image_shape[1] * shrink), int(image_shape[2] * shrink)
|
||
|
image = cv2.resize(image, (w, h))
|
||
|
image_shape = [3, h, w]
|
||
|
|
||
|
img = face_img_process(image)
|
||
|
detection, = exe.run(compile_program,
|
||
|
feed={'image': img},
|
||
|
fetch_list=[fetches['bbox']],
|
||
|
return_numpy=False)
|
||
|
detection = np.array(detection)
|
||
|
# layout: xmin, ymin, xmax. ymax, score
|
||
|
if np.prod(detection.shape) == 1:
|
||
|
logger.info("No face detected")
|
||
|
return np.array([[0, 0, 0, 0, 0]])
|
||
|
det_conf = detection[:, 1]
|
||
|
det_xmin = image_shape[2] * detection[:, 2] / shrink
|
||
|
det_ymin = image_shape[1] * detection[:, 3] / shrink
|
||
|
det_xmax = image_shape[2] * detection[:, 4] / shrink
|
||
|
det_ymax = image_shape[1] * detection[:, 5] / shrink
|
||
|
|
||
|
det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
|
||
|
return det
|
||
|
|
||
|
|
||
|
def flip_test(exe, compile_program, fetches, image, shrink):
|
||
|
img = cv2.flip(image, 1)
|
||
|
det_f = detect_face(exe, compile_program, fetches, img, shrink)
|
||
|
det_t = np.zeros(det_f.shape)
|
||
|
img_width = image.shape[1]
|
||
|
det_t[:, 0] = img_width - det_f[:, 2]
|
||
|
det_t[:, 1] = det_f[:, 1]
|
||
|
det_t[:, 2] = img_width - det_f[:, 0]
|
||
|
det_t[:, 3] = det_f[:, 3]
|
||
|
det_t[:, 4] = det_f[:, 4]
|
||
|
return det_t
|
||
|
|
||
|
|
||
|
def multi_scale_test(exe, compile_program, fetches, image, max_shrink):
|
||
|
# Shrink detecting is only used to detect big faces
|
||
|
st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink
|
||
|
det_s = detect_face(exe, compile_program, fetches, image, st)
|
||
|
index = np.where(
|
||
|
np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1)
|
||
|
> 30)[0]
|
||
|
det_s = det_s[index, :]
|
||
|
# Enlarge one times
|
||
|
bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2
|
||
|
det_b = detect_face(exe, compile_program, fetches, image, bt)
|
||
|
|
||
|
# Enlarge small image x times for small faces
|
||
|
if max_shrink > 2:
|
||
|
bt *= 2
|
||
|
while bt < max_shrink:
|
||
|
det_b = np.row_stack((det_b, detect_face(exe, compile_program,
|
||
|
fetches, image, bt)))
|
||
|
bt *= 2
|
||
|
det_b = np.row_stack((det_b, detect_face(exe, compile_program, fetches,
|
||
|
image, max_shrink)))
|
||
|
|
||
|
# Enlarged images are only used to detect small faces.
|
||
|
if bt > 1:
|
||
|
index = np.where(
|
||
|
np.minimum(det_b[:, 2] - det_b[:, 0] + 1,
|
||
|
det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
|
||
|
det_b = det_b[index, :]
|
||
|
# Shrinked images are only used to detect big faces.
|
||
|
else:
|
||
|
index = np.where(
|
||
|
np.maximum(det_b[:, 2] - det_b[:, 0] + 1,
|
||
|
det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
|
||
|
det_b = det_b[index, :]
|
||
|
return det_s, det_b
|
||
|
|
||
|
|
||
|
def multi_scale_test_pyramid(exe, compile_program, fetches, image, max_shrink):
|
||
|
# Use image pyramids to detect faces
|
||
|
det_b = detect_face(exe, compile_program, fetches, image, 0.25)
|
||
|
index = np.where(
|
||
|
np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
|
||
|
> 30)[0]
|
||
|
det_b = det_b[index, :]
|
||
|
|
||
|
st = [0.75, 1.25, 1.5, 1.75]
|
||
|
for i in range(len(st)):
|
||
|
if st[i] <= max_shrink:
|
||
|
det_temp = detect_face(exe, compile_program, fetches, image, st[i])
|
||
|
# Enlarged images are only used to detect small faces.
|
||
|
if st[i] > 1:
|
||
|
index = np.where(
|
||
|
np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
|
||
|
det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
|
||
|
det_temp = det_temp[index, :]
|
||
|
# Shrinked images are only used to detect big faces.
|
||
|
else:
|
||
|
index = np.where(
|
||
|
np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
|
||
|
det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
|
||
|
det_temp = det_temp[index, :]
|
||
|
det_b = np.row_stack((det_b, det_temp))
|
||
|
return det_b
|
||
|
|
||
|
|
||
|
def main():
|
||
|
"""
|
||
|
Main evaluate function
|
||
|
"""
|
||
|
cfg = load_config(FLAGS.config)
|
||
|
merge_config(FLAGS.opt)
|
||
|
check_config(cfg)
|
||
|
# check if set use_gpu=True in paddlepaddle cpu version
|
||
|
check_gpu(cfg.use_gpu)
|
||
|
check_version()
|
||
|
|
||
|
main_arch = cfg.architecture
|
||
|
|
||
|
# define executor
|
||
|
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
|
||
|
exe = fluid.Executor(place)
|
||
|
|
||
|
# build program
|
||
|
model = create(main_arch)
|
||
|
startup_prog = fluid.Program()
|
||
|
eval_prog = fluid.Program()
|
||
|
with fluid.program_guard(eval_prog, startup_prog):
|
||
|
with fluid.unique_name.guard():
|
||
|
inputs_def = cfg['EvalReader']['inputs_def']
|
||
|
inputs_def['use_dataloader'] = False
|
||
|
feed_vars, _ = model.build_inputs(**inputs_def)
|
||
|
fetches = model.eval(feed_vars)
|
||
|
|
||
|
eval_prog = eval_prog.clone(True)
|
||
|
|
||
|
# load model
|
||
|
exe.run(startup_prog)
|
||
|
if 'weights' in cfg:
|
||
|
checkpoint.load_params(exe, eval_prog, cfg.weights)
|
||
|
|
||
|
assert cfg.metric in ['WIDERFACE'], \
|
||
|
"unknown metric type {}".format(cfg.metric)
|
||
|
|
||
|
dataset = cfg['EvalReader']['dataset']
|
||
|
|
||
|
annotation_file = dataset.get_anno()
|
||
|
dataset_dir = dataset.dataset_dir
|
||
|
image_dir = os.path.join(
|
||
|
dataset_dir,
|
||
|
dataset.image_dir) if FLAGS.eval_mode == 'widerface' else dataset_dir
|
||
|
|
||
|
pred_dir = FLAGS.output_eval if FLAGS.output_eval else 'output/pred'
|
||
|
face_eval_run(
|
||
|
exe,
|
||
|
eval_prog,
|
||
|
fetches,
|
||
|
image_dir,
|
||
|
annotation_file,
|
||
|
pred_dir=pred_dir,
|
||
|
eval_mode=FLAGS.eval_mode,
|
||
|
multi_scale=FLAGS.multi_scale)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
enable_static_mode()
|
||
|
parser = ArgsParser()
|
||
|
parser.add_argument(
|
||
|
"-f",
|
||
|
"--output_eval",
|
||
|
default=None,
|
||
|
type=str,
|
||
|
help="Evaluation file directory, default is current directory.")
|
||
|
parser.add_argument(
|
||
|
"-e",
|
||
|
"--eval_mode",
|
||
|
default="widerface",
|
||
|
type=str,
|
||
|
help="Evaluation mode, include `widerface` and `fddb`, default is `widerface`."
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--multi_scale",
|
||
|
action='store_true',
|
||
|
default=False,
|
||
|
help="If True it will select `multi_scale` evaluation. Default is `False`, it will select `single-scale` evaluation."
|
||
|
)
|
||
|
FLAGS = parser.parse_args()
|
||
|
main()
|