forked from PulseFocusPlatform/PulseFocusPlatform
174 lines
6.2 KiB
Python
174 lines
6.2 KiB
Python
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import unittest
|
||
|
import os
|
||
|
import sys
|
||
|
# add python path of PadleDetection to sys.path
|
||
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
|
||
|
if parent_path not in sys.path:
|
||
|
sys.path.append(parent_path)
|
||
|
|
||
|
from ppdet.data.source.coco import COCODataSet
|
||
|
from ppdet.data.reader import Reader
|
||
|
from ppdet.utils.download import get_path
|
||
|
from ppdet.utils.download import DATASET_HOME
|
||
|
|
||
|
from ppdet.data.transform.operators import DecodeImage, ResizeImage, Permute
|
||
|
from ppdet.data.transform.batch_operators import PadBatch
|
||
|
from ppdet.utils.check import enable_static_mode
|
||
|
|
||
|
COCO_VAL_URL = 'http://images.cocodataset.org/zips/val2017.zip'
|
||
|
COCO_VAL_MD5SUM = '442b8da7639aecaf257c1dceb8ba8c80'
|
||
|
COCO_ANNO_URL = 'http://images.cocodataset.org/annotations/annotations_trainval2017.zip'
|
||
|
COCO_ANNO_MD5SUM = 'f4bbac642086de4f52a3fdda2de5fa2c'
|
||
|
|
||
|
|
||
|
class TestReader(unittest.TestCase):
|
||
|
@classmethod
|
||
|
def setUpClass(cls):
|
||
|
""" setup
|
||
|
"""
|
||
|
root_path = os.path.join(DATASET_HOME, 'coco')
|
||
|
_, _ = get_path(COCO_VAL_URL, root_path, COCO_VAL_MD5SUM)
|
||
|
_, _ = get_path(COCO_ANNO_URL, root_path, COCO_ANNO_MD5SUM)
|
||
|
cls.anno_path = 'annotations/instances_val2017.json'
|
||
|
cls.image_dir = 'val2017'
|
||
|
cls.root_path = root_path
|
||
|
|
||
|
@classmethod
|
||
|
def tearDownClass(cls):
|
||
|
""" tearDownClass """
|
||
|
pass
|
||
|
|
||
|
def test_loader(self):
|
||
|
coco_loader = COCODataSet(
|
||
|
dataset_dir=self.root_path,
|
||
|
image_dir=self.image_dir,
|
||
|
anno_path=self.anno_path,
|
||
|
sample_num=10)
|
||
|
sample_trans = [
|
||
|
DecodeImage(to_rgb=True), ResizeImage(
|
||
|
target_size=800, max_size=1333, interp=1), Permute(to_bgr=False)
|
||
|
]
|
||
|
batch_trans = [PadBatch(pad_to_stride=32, use_padded_im_info=True), ]
|
||
|
|
||
|
inputs_def = {
|
||
|
'fields': [
|
||
|
'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd',
|
||
|
'gt_mask'
|
||
|
],
|
||
|
}
|
||
|
data_loader = Reader(
|
||
|
coco_loader,
|
||
|
sample_transforms=sample_trans,
|
||
|
batch_transforms=batch_trans,
|
||
|
batch_size=2,
|
||
|
shuffle=True,
|
||
|
drop_empty=True,
|
||
|
inputs_def=inputs_def)()
|
||
|
for i in range(2):
|
||
|
for samples in data_loader:
|
||
|
for sample in samples:
|
||
|
im_shape = sample[0].shape
|
||
|
self.assertEqual(im_shape[0], 3)
|
||
|
self.assertEqual(im_shape[1] % 32, 0)
|
||
|
self.assertEqual(im_shape[2] % 32, 0)
|
||
|
|
||
|
im_info_shape = sample[1].shape
|
||
|
self.assertEqual(im_info_shape[-1], 3)
|
||
|
|
||
|
im_id_shape = sample[2].shape
|
||
|
self.assertEqual(im_id_shape[-1], 1)
|
||
|
|
||
|
gt_bbox_shape = sample[3].shape
|
||
|
self.assertEqual(gt_bbox_shape[-1], 4)
|
||
|
|
||
|
gt_class_shape = sample[4].shape
|
||
|
self.assertEqual(gt_class_shape[-1], 1)
|
||
|
self.assertEqual(gt_class_shape[0], gt_bbox_shape[0])
|
||
|
|
||
|
is_crowd_shape = sample[5].shape
|
||
|
self.assertEqual(is_crowd_shape[-1], 1)
|
||
|
self.assertEqual(is_crowd_shape[0], gt_bbox_shape[0])
|
||
|
|
||
|
mask = sample[6]
|
||
|
self.assertEqual(len(mask), gt_bbox_shape[0])
|
||
|
self.assertEqual(mask[0][0].shape[-1], 2)
|
||
|
data_loader.reset()
|
||
|
|
||
|
def test_loader_multi_threads(self):
|
||
|
coco_loader = COCODataSet(
|
||
|
dataset_dir=self.root_path,
|
||
|
image_dir=self.image_dir,
|
||
|
anno_path=self.anno_path,
|
||
|
sample_num=10)
|
||
|
sample_trans = [
|
||
|
DecodeImage(to_rgb=True), ResizeImage(
|
||
|
target_size=800, max_size=1333, interp=1), Permute(to_bgr=False)
|
||
|
]
|
||
|
batch_trans = [PadBatch(pad_to_stride=32, use_padded_im_info=True), ]
|
||
|
|
||
|
inputs_def = {
|
||
|
'fields': [
|
||
|
'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd',
|
||
|
'gt_mask'
|
||
|
],
|
||
|
}
|
||
|
data_loader = Reader(
|
||
|
coco_loader,
|
||
|
sample_transforms=sample_trans,
|
||
|
batch_transforms=batch_trans,
|
||
|
batch_size=2,
|
||
|
shuffle=True,
|
||
|
drop_empty=True,
|
||
|
worker_num=2,
|
||
|
use_process=False,
|
||
|
bufsize=8,
|
||
|
inputs_def=inputs_def)()
|
||
|
for i in range(2):
|
||
|
for samples in data_loader:
|
||
|
for sample in samples:
|
||
|
im_shape = sample[0].shape
|
||
|
self.assertEqual(im_shape[0], 3)
|
||
|
self.assertEqual(im_shape[1] % 32, 0)
|
||
|
self.assertEqual(im_shape[2] % 32, 0)
|
||
|
|
||
|
im_info_shape = sample[1].shape
|
||
|
self.assertEqual(im_info_shape[-1], 3)
|
||
|
|
||
|
im_id_shape = sample[2].shape
|
||
|
self.assertEqual(im_id_shape[-1], 1)
|
||
|
|
||
|
gt_bbox_shape = sample[3].shape
|
||
|
self.assertEqual(gt_bbox_shape[-1], 4)
|
||
|
|
||
|
gt_class_shape = sample[4].shape
|
||
|
self.assertEqual(gt_class_shape[-1], 1)
|
||
|
self.assertEqual(gt_class_shape[0], gt_bbox_shape[0])
|
||
|
|
||
|
is_crowd_shape = sample[5].shape
|
||
|
self.assertEqual(is_crowd_shape[-1], 1)
|
||
|
self.assertEqual(is_crowd_shape[0], gt_bbox_shape[0])
|
||
|
|
||
|
mask = sample[6]
|
||
|
self.assertEqual(len(mask), gt_bbox_shape[0])
|
||
|
self.assertEqual(mask[0][0].shape[-1], 2)
|
||
|
data_loader.reset()
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
enable_static_mode()
|
||
|
unittest.main()
|