forked from PulseFocusPlatform/PulseFocusPlatform
201 lines
7.2 KiB
Python
201 lines
7.2 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
import json
|
||
|
from collections import defaultdict
|
||
|
import numpy as np
|
||
|
from pycocotools.coco import COCO
|
||
|
from pycocotools.cocoeval import COCOeval
|
||
|
from ..modeling.keypoint_utils import oks_nms
|
||
|
|
||
|
__all__ = ['KeyPointTopDownCOCOEval']
|
||
|
|
||
|
|
||
|
class KeyPointTopDownCOCOEval(object):
|
||
|
def __init__(self,
|
||
|
anno_file,
|
||
|
num_samples,
|
||
|
num_joints,
|
||
|
output_eval,
|
||
|
iou_type='keypoints',
|
||
|
in_vis_thre=0.2,
|
||
|
oks_thre=0.9):
|
||
|
super(KeyPointTopDownCOCOEval, self).__init__()
|
||
|
self.coco = COCO(anno_file)
|
||
|
self.num_samples = num_samples
|
||
|
self.num_joints = num_joints
|
||
|
self.iou_type = iou_type
|
||
|
self.in_vis_thre = in_vis_thre
|
||
|
self.oks_thre = oks_thre
|
||
|
self.output_eval = output_eval
|
||
|
self.res_file = os.path.join(output_eval, "keypoints_results.json")
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
self.results = {
|
||
|
'all_preds': np.zeros(
|
||
|
(self.num_samples, self.num_joints, 3), dtype=np.float32),
|
||
|
'all_boxes': np.zeros((self.num_samples, 6)),
|
||
|
'image_path': []
|
||
|
}
|
||
|
self.eval_results = {}
|
||
|
self.idx = 0
|
||
|
|
||
|
def update(self, inputs, outputs):
|
||
|
kpts, _ = outputs['keypoint'][0]
|
||
|
|
||
|
num_images = inputs['image'].shape[0]
|
||
|
self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
|
||
|
3] = kpts[:, :, 0:3]
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images, 0:2] = inputs[
|
||
|
'center'].numpy()[:, 0:2]
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images, 2:4] = inputs[
|
||
|
'scale'].numpy()[:, 0:2]
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
|
||
|
inputs['scale'].numpy() * 200, 1)
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images,
|
||
|
5] = np.squeeze(inputs['score'].numpy())
|
||
|
self.results['image_path'].extend(inputs['im_id'].numpy())
|
||
|
|
||
|
self.idx += num_images
|
||
|
|
||
|
def _write_coco_keypoint_results(self, keypoints):
|
||
|
data_pack = [{
|
||
|
'cat_id': 1,
|
||
|
'cls': 'person',
|
||
|
'ann_type': 'keypoints',
|
||
|
'keypoints': keypoints
|
||
|
}]
|
||
|
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
|
||
|
if not os.path.exists(self.output_eval):
|
||
|
os.makedirs(self.output_eval)
|
||
|
with open(self.res_file, 'w') as f:
|
||
|
json.dump(results, f, sort_keys=True, indent=4)
|
||
|
try:
|
||
|
json.load(open(self.res_file))
|
||
|
except Exception:
|
||
|
content = []
|
||
|
with open(self.res_file, 'r') as f:
|
||
|
for line in f:
|
||
|
content.append(line)
|
||
|
content[-1] = ']'
|
||
|
with open(self.res_file, 'w') as f:
|
||
|
for c in content:
|
||
|
f.write(c)
|
||
|
|
||
|
def _coco_keypoint_results_one_category_kernel(self, data_pack):
|
||
|
cat_id = data_pack['cat_id']
|
||
|
keypoints = data_pack['keypoints']
|
||
|
cat_results = []
|
||
|
|
||
|
for img_kpts in keypoints:
|
||
|
if len(img_kpts) == 0:
|
||
|
continue
|
||
|
|
||
|
_key_points = np.array(
|
||
|
[img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
|
||
|
_key_points = _key_points.reshape(_key_points.shape[0], -1)
|
||
|
|
||
|
result = [{
|
||
|
'image_id': img_kpts[k]['image'],
|
||
|
'category_id': cat_id,
|
||
|
'keypoints': _key_points[k].tolist(),
|
||
|
'score': img_kpts[k]['score'],
|
||
|
'center': list(img_kpts[k]['center']),
|
||
|
'scale': list(img_kpts[k]['scale'])
|
||
|
} for k in range(len(img_kpts))]
|
||
|
cat_results.extend(result)
|
||
|
|
||
|
return cat_results
|
||
|
|
||
|
def get_final_results(self, preds, all_boxes, img_path):
|
||
|
_kpts = []
|
||
|
for idx, kpt in enumerate(preds):
|
||
|
_kpts.append({
|
||
|
'keypoints': kpt,
|
||
|
'center': all_boxes[idx][0:2],
|
||
|
'scale': all_boxes[idx][2:4],
|
||
|
'area': all_boxes[idx][4],
|
||
|
'score': all_boxes[idx][5],
|
||
|
'image': int(img_path[idx])
|
||
|
})
|
||
|
# image x person x (keypoints)
|
||
|
kpts = defaultdict(list)
|
||
|
for kpt in _kpts:
|
||
|
kpts[kpt['image']].append(kpt)
|
||
|
|
||
|
# rescoring and oks nms
|
||
|
num_joints = preds.shape[1]
|
||
|
in_vis_thre = self.in_vis_thre
|
||
|
oks_thre = self.oks_thre
|
||
|
oks_nmsed_kpts = []
|
||
|
for img in kpts.keys():
|
||
|
img_kpts = kpts[img]
|
||
|
for n_p in img_kpts:
|
||
|
box_score = n_p['score']
|
||
|
kpt_score = 0
|
||
|
valid_num = 0
|
||
|
for n_jt in range(0, num_joints):
|
||
|
t_s = n_p['keypoints'][n_jt][2]
|
||
|
if t_s > in_vis_thre:
|
||
|
kpt_score = kpt_score + t_s
|
||
|
valid_num = valid_num + 1
|
||
|
if valid_num != 0:
|
||
|
kpt_score = kpt_score / valid_num
|
||
|
# rescoring
|
||
|
n_p['score'] = kpt_score * box_score
|
||
|
|
||
|
keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
|
||
|
oks_thre)
|
||
|
|
||
|
if len(keep) == 0:
|
||
|
oks_nmsed_kpts.append(img_kpts)
|
||
|
else:
|
||
|
oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])
|
||
|
|
||
|
self._write_coco_keypoint_results(oks_nmsed_kpts)
|
||
|
|
||
|
def accumulate(self):
|
||
|
self.get_final_results(self.results['all_preds'],
|
||
|
self.results['all_boxes'],
|
||
|
self.results['image_path'])
|
||
|
coco_dt = self.coco.loadRes(self.res_file)
|
||
|
coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
|
||
|
coco_eval.params.useSegm = None
|
||
|
coco_eval.evaluate()
|
||
|
coco_eval.accumulate()
|
||
|
coco_eval.summarize()
|
||
|
|
||
|
keypoint_stats = []
|
||
|
for ind in range(len(coco_eval.stats)):
|
||
|
keypoint_stats.append((coco_eval.stats[ind]))
|
||
|
self.eval_results['keypoint'] = keypoint_stats
|
||
|
|
||
|
def log(self):
|
||
|
stats_names = [
|
||
|
'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
|
||
|
'AR .75', 'AR (M)', 'AR (L)'
|
||
|
]
|
||
|
num_values = len(stats_names)
|
||
|
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
|
||
|
print('|---' * (num_values + 1) + '|')
|
||
|
|
||
|
print(' '.join([
|
||
|
'| {:.3f}'.format(value) for value in self.eval_results['keypoint']
|
||
|
]) + ' |')
|
||
|
|
||
|
def get_results(self):
|
||
|
return self.eval_results
|