PulseFocusPlatform/ppdet/modeling/architectures/ttfnet.py

99 lines
3.1 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['TTFNet']
@register
class TTFNet(BaseArch):
"""
TTFNet network, see https://arxiv.org/abs/1909.00700
Args:
backbone (object): backbone instance
neck (object): 'TTFFPN' instance
ttf_head (object): 'TTFHead' instance
post_process (object): 'BBoxPostProcess' instance
"""
__category__ = 'architecture'
__inject__ = ['post_process']
def __init__(self,
backbone='DarkNet',
neck='TTFFPN',
ttf_head='TTFHead',
post_process='BBoxPostProcess'):
super(TTFNet, self).__init__()
self.backbone = backbone
self.neck = neck
self.ttf_head = ttf_head
self.post_process = post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
ttf_head = create(cfg['ttf_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"ttf_head": ttf_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
body_feats = self.neck(body_feats)
hm, wh = self.ttf_head(body_feats)
if self.training:
return hm, wh
else:
bbox, bbox_num = self.post_process(hm, wh, self.inputs['im_shape'],
self.inputs['scale_factor'])
return bbox, bbox_num
def get_loss(self, ):
loss = {}
heatmap = self.inputs['ttf_heatmap']
box_target = self.inputs['ttf_box_target']
reg_weight = self.inputs['ttf_reg_weight']
hm, wh = self._forward()
head_loss = self.ttf_head.get_loss(hm, wh, heatmap, box_target,
reg_weight)
loss.update(head_loss)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num = self._forward()
output = {
"bbox": bbox_pred,
"bbox_num": bbox_num,
}
return output