PulseFocusPlatform/static/ppdet/modeling/backbones/cb_resnet.py

452 lines
16 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import Variable
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.initializer import Constant
from ppdet.core.workspace import register, serializable
from numbers import Integral
from .name_adapter import NameAdapter
from .nonlocal_helper import add_space_nonlocal
__all__ = ['CBResNet']
@register
@serializable
class CBResNet(object):
"""
CBNet, see https://arxiv.org/abs/1909.03625
Args:
depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
freeze_at (int): freeze the backbone at which stage
norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
freeze_norm (bool): freeze normalization layers
norm_decay (float): weight decay for normalization layer weights
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
feature_maps (list): index of stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
nonlocal_stages (list): index of stages who select nonlocal networks
repeat_num (int): number of repeat for backbone
Attention:
1. Here we set the ResNet as the base backbone.
2. All the pretraned params are copied from corresponding names,
but with different names to avoid name refliction.
"""
def __init__(self,
depth=50,
freeze_at=2,
norm_type='bn',
freeze_norm=True,
norm_decay=0.,
variant='b',
feature_maps=[2, 3, 4, 5],
dcn_v2_stages=[],
nonlocal_stages=[],
repeat_num=2,
lr_mult_list=[1., 1., 1., 1.]):
super(CBResNet, self).__init__()
if isinstance(feature_maps, Integral):
feature_maps = [feature_maps]
assert depth in [18, 34, 50, 101, 152, 200], \
"depth {} not in [18, 34, 50, 101, 152, 200]"
assert variant in ['a', 'b', 'c', 'd'], "invalid ResNet variant"
assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4"
assert len(feature_maps) > 0, "need one or more feature maps"
assert norm_type in ['bn', 'sync_bn', 'affine_channel']
assert not (len(nonlocal_stages)>0 and depth<50), \
"non-local is not supported for resnet18 or resnet34"
self.depth = depth
self.dcn_v2_stages = dcn_v2_stages
self.freeze_at = freeze_at
self.norm_type = norm_type
self.norm_decay = norm_decay
self.freeze_norm = freeze_norm
self.variant = variant
self._model_type = 'ResNet'
self.feature_maps = feature_maps
self.repeat_num = repeat_num
self.curr_level = 0
self.depth_cfg = {
18: ([2, 2, 2, 2], self.basicblock),
34: ([3, 4, 6, 3], self.basicblock),
50: ([3, 4, 6, 3], self.bottleneck),
101: ([3, 4, 23, 3], self.bottleneck),
152: ([3, 8, 36, 3], self.bottleneck),
200: ([3, 12, 48, 3], self.bottleneck),
}
self.nonlocal_stages = nonlocal_stages
self.nonlocal_mod_cfg = {
50: 2,
101: 5,
152: 8,
200: 12,
}
self.lr_mult_list = lr_mult_list
self.stage_num = -1
self.stage_filters = [64, 128, 256, 512]
self._c1_out_chan_num = 64
self.na = NameAdapter(self)
def _conv_offset(self,
input,
filter_size,
stride,
padding,
act=None,
name=None):
out_channel = filter_size * filter_size * 3
out = fluid.layers.conv2d(
input,
num_filters=out_channel,
filter_size=filter_size,
stride=stride,
padding=padding,
param_attr=ParamAttr(
initializer=Constant(0.0), name=name + ".w_0"),
bias_attr=ParamAttr(
initializer=Constant(0.0), name=name + ".b_0"),
act=act,
name=name)
return out
def _conv_norm(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
dcn=False):
# need fine lr for distilled model, default as 1.0
lr_mult = 1.0
mult_idx = max(self.stage_num - 2, 0)
mult_idx = min(self.stage_num - 2, 3)
lr_mult = self.lr_mult_list[mult_idx]
if not dcn:
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(
name=name + "_weights_" + str(self.curr_level),
learning_rate=lr_mult),
bias_attr=False)
else:
offset_mask = self._conv_offset(
input=input,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
act=None,
name=name + "_conv_offset_" + str(self.curr_level))
offset_channel = filter_size**2 * 2
mask_channel = filter_size**2
offset, mask = fluid.layers.split(
input=offset_mask,
num_or_sections=[offset_channel, mask_channel],
dim=1)
mask = fluid.layers.sigmoid(mask)
conv = fluid.layers.deformable_conv(
input=input,
offset=offset,
mask=mask,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
deformable_groups=1,
im2col_step=1,
param_attr=ParamAttr(
name=name + "_weights_" + str(self.curr_level),
learning_rate=lr_mult),
bias_attr=False)
bn_name = self.na.fix_conv_norm_name(name)
norm_lr = 0. if self.freeze_norm else lr_mult
norm_decay = self.norm_decay
pattr = ParamAttr(
name=bn_name + '_scale_' + str(self.curr_level),
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
battr = ParamAttr(
name=bn_name + '_offset_' + str(self.curr_level),
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
if self.norm_type in ['bn', 'sync_bn']:
global_stats = True if self.freeze_norm else False
out = fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output.1_' + str(self.curr_level),
param_attr=pattr,
bias_attr=battr,
moving_mean_name=bn_name + '_mean_' + str(self.curr_level),
moving_variance_name=bn_name + '_variance_' +
str(self.curr_level),
use_global_stats=global_stats)
scale = fluid.framework._get_var(pattr.name)
bias = fluid.framework._get_var(battr.name)
elif self.norm_type == 'affine_channel':
assert False, "deprecated!!!"
if self.freeze_norm:
scale.stop_gradient = True
bias.stop_gradient = True
return out
def _shortcut(self, input, ch_out, stride, is_first, name):
max_pooling_in_short_cut = self.variant == 'd'
ch_in = input.shape[1]
# the naming rule is same as pretrained weight
name = self.na.fix_shortcut_name(name)
if ch_in != ch_out or stride != 1 or (self.depth < 50 and is_first):
if max_pooling_in_short_cut and not is_first:
input = fluid.layers.pool2d(
input=input,
pool_size=2,
pool_stride=2,
pool_padding=0,
ceil_mode=True,
pool_type='avg')
return self._conv_norm(input, ch_out, 1, 1, name=name)
return self._conv_norm(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck(self, input, num_filters, stride, is_first, name, dcn=False):
if self.variant == 'a':
stride1, stride2 = stride, 1
else:
stride1, stride2 = 1, stride
# ResNeXt
groups = getattr(self, 'groups', 1)
group_width = getattr(self, 'group_width', -1)
if groups == 1:
expand = 4
elif (groups * group_width) == 256:
expand = 1
else: # FIXME hard code for now, handles 32x4d, 64x4d and 32x8d
num_filters = num_filters // 2
expand = 2
conv_name1, conv_name2, conv_name3, \
shortcut_name = self.na.fix_bottleneck_name(name)
conv_def = [[num_filters, 1, stride1, 'relu', 1, conv_name1],
[num_filters, 3, stride2, 'relu', groups, conv_name2],
[num_filters * expand, 1, 1, None, 1, conv_name3]]
residual = input
for i, (c, k, s, act, g, _name) in enumerate(conv_def):
residual = self._conv_norm(
input=residual,
num_filters=c,
filter_size=k,
stride=s,
act=act,
groups=g,
name=_name,
dcn=(i == 1 and dcn))
short = self._shortcut(
input,
num_filters * expand,
stride,
is_first=is_first,
name=shortcut_name)
# Squeeze-and-Excitation
if callable(getattr(self, '_squeeze_excitation', None)):
residual = self._squeeze_excitation(
input=residual, num_channels=num_filters, name='fc' + name)
return fluid.layers.elementwise_add(x=short, y=residual, act='relu')
def basicblock(self, input, num_filters, stride, is_first, name, dcn=False):
assert dcn is False, "Not implemented yet."
conv0 = self._conv_norm(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self._conv_norm(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
short = self._shortcut(
input, num_filters, stride, is_first, name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
def layer_warp(self, input, stage_num):
"""
Args:
input (Variable): input variable.
stage_num (int): the stage number, should be 2, 3, 4, 5
Returns:
The last variable in endpoint-th stage.
"""
assert stage_num in [2, 3, 4, 5]
self.stage_num = stage_num
stages, block_func = self.depth_cfg[self.depth]
count = stages[stage_num - 2]
ch_out = self.stage_filters[stage_num - 2]
is_first = False if stage_num != 2 else True
dcn = True if stage_num in self.dcn_v2_stages else False
nonlocal_mod = 1000
if stage_num in self.nonlocal_stages:
nonlocal_mod = self.nonlocal_mod_cfg[
self.depth] if stage_num == 4 else 2
# Make the layer name and parameter name consistent
# with ImageNet pre-trained model
conv = input
for i in range(count):
conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
if self.depth < 50:
is_first = True if i == 0 and stage_num == 2 else False
conv = block_func(
input=conv,
num_filters=ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
is_first=is_first,
name=conv_name,
dcn=dcn)
# add non local model
dim_in = conv.shape[1]
nonlocal_name = "nonlocal_conv{}_lvl{}".format(stage_num,
self.curr_level)
if i % nonlocal_mod == nonlocal_mod - 1:
conv = add_space_nonlocal(conv, dim_in, dim_in,
nonlocal_name + '_{}'.format(i),
int(dim_in / 2))
return conv
def c1_stage(self, input):
out_chan = self._c1_out_chan_num
conv1_name = self.na.fix_c1_stage_name()
if self.variant in ['c', 'd']:
conv1_1_name = "conv1_1"
conv1_2_name = "conv1_2"
conv1_3_name = "conv1_3"
conv_def = [
[out_chan // 2, 3, 2, conv1_1_name],
[out_chan // 2, 3, 1, conv1_2_name],
[out_chan, 3, 1, conv1_3_name],
]
else:
conv_def = [[out_chan, 7, 2, conv1_name]]
for (c, k, s, _name) in conv_def:
input = self._conv_norm(
input=input,
num_filters=c,
filter_size=k,
stride=s,
act='relu',
name=_name)
output = fluid.layers.pool2d(
input=input,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
return output
def connect(self, left, right, name):
ch_right = right.shape[1]
conv = self._conv_norm(
left,
num_filters=ch_right,
filter_size=1,
stride=1,
act="relu",
name=name + "_connect")
shape = fluid.layers.shape(right)
shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
out_shape_ = shape_hw
out_shape = fluid.layers.cast(out_shape_, dtype='int32')
out_shape.stop_gradient = True
conv = fluid.layers.resize_nearest(conv, scale=2., out_shape=out_shape)
output = fluid.layers.elementwise_add(x=right, y=conv)
return output
def __call__(self, input):
assert isinstance(input, Variable)
assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \
"feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps)
res_endpoints = []
self.curr_level = 0
res = self.c1_stage(input)
feature_maps = range(2, max(self.feature_maps) + 1)
for i in feature_maps:
res = self.layer_warp(res, i)
if i in self.feature_maps:
res_endpoints.append(res)
for num in range(1, self.repeat_num):
self.stage_num = -1
self.curr_level = num
res = self.c1_stage(input)
for i in range(len(res_endpoints)):
res = self.connect(res_endpoints[i], res, "test_c" + str(i + 1))
res = self.layer_warp(res, i + 2)
res_endpoints[i] = res
if self.freeze_at >= i + 2:
res.stop_gradient = True
return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
for idx, feat in enumerate(res_endpoints)])