forked from PulseFocusPlatform/PulseFocusPlatform
184 lines
6.2 KiB
Python
184 lines
6.2 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import paddle
|
||
|
import numpy as np
|
||
|
from scipy import interpolate
|
||
|
import paddle.nn.functional as F
|
||
|
from .map_utils import ap_per_class
|
||
|
from ppdet.modeling.bbox_utils import bbox_iou_np_expand
|
||
|
from .mot_eval_utils import MOTEvaluator
|
||
|
from .metrics import Metric
|
||
|
|
||
|
from ppdet.utils.logger import setup_logger
|
||
|
logger = setup_logger(__name__)
|
||
|
|
||
|
__all__ = ['JDEDetMetric', 'JDEReIDMetric', 'MOTMetric']
|
||
|
|
||
|
|
||
|
class JDEDetMetric(Metric):
|
||
|
def __init__(self, overlap_thresh=0.5):
|
||
|
self.overlap_thresh = overlap_thresh
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
self.AP_accum = np.zeros(1)
|
||
|
self.AP_accum_count = np.zeros(1)
|
||
|
|
||
|
def update(self, inputs, outputs):
|
||
|
bboxes = outputs['bbox'][:, 2:].numpy()
|
||
|
scores = outputs['bbox'][:, 1].numpy()
|
||
|
labels = outputs['bbox'][:, 0].numpy()
|
||
|
bbox_lengths = outputs['bbox_num'].numpy()
|
||
|
if bboxes.shape[0] == 1 and bboxes.sum() == 0.0:
|
||
|
return
|
||
|
|
||
|
gt_boxes = inputs['gt_bbox'].numpy()[0]
|
||
|
gt_labels = inputs['gt_class'].numpy()[0]
|
||
|
if gt_labels.shape[0] == 0:
|
||
|
return
|
||
|
|
||
|
correct = []
|
||
|
detected = []
|
||
|
for i in range(bboxes.shape[0]):
|
||
|
obj_pred = 0
|
||
|
pred_bbox = bboxes[i].reshape(1, 4)
|
||
|
# Compute iou with target boxes
|
||
|
iou = bbox_iou_np_expand(pred_bbox, gt_boxes, x1y1x2y2=True)[0]
|
||
|
# Extract index of largest overlap
|
||
|
best_i = np.argmax(iou)
|
||
|
# If overlap exceeds threshold and classification is correct mark as correct
|
||
|
if iou[best_i] > self.overlap_thresh and obj_pred == gt_labels[
|
||
|
best_i] and best_i not in detected:
|
||
|
correct.append(1)
|
||
|
detected.append(best_i)
|
||
|
else:
|
||
|
correct.append(0)
|
||
|
|
||
|
# Compute Average Precision (AP) per class
|
||
|
target_cls = list(gt_labels.T[0])
|
||
|
AP, AP_class, R, P = ap_per_class(
|
||
|
tp=correct,
|
||
|
conf=scores,
|
||
|
pred_cls=np.zeros_like(scores),
|
||
|
target_cls=target_cls)
|
||
|
self.AP_accum_count += np.bincount(AP_class, minlength=1)
|
||
|
self.AP_accum += np.bincount(AP_class, minlength=1, weights=AP)
|
||
|
|
||
|
def accumulate(self):
|
||
|
logger.info("Accumulating evaluatation results...")
|
||
|
self.map_stat = self.AP_accum[0] / (self.AP_accum_count[0] + 1E-16)
|
||
|
|
||
|
def log(self):
|
||
|
map_stat = 100. * self.map_stat
|
||
|
logger.info("mAP({:.2f}) = {:.2f}%".format(self.overlap_thresh,
|
||
|
map_stat))
|
||
|
|
||
|
def get_results(self):
|
||
|
return self.map_stat
|
||
|
|
||
|
|
||
|
class JDEReIDMetric(Metric):
|
||
|
def __init__(self, far_levels=[1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1]):
|
||
|
self.far_levels = far_levels
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
self.embedding = []
|
||
|
self.id_labels = []
|
||
|
self.eval_results = {}
|
||
|
|
||
|
def update(self, inputs, outputs):
|
||
|
for out in outputs:
|
||
|
feat, label = out[:-1].clone().detach(), int(out[-1])
|
||
|
if label != -1:
|
||
|
self.embedding.append(feat)
|
||
|
self.id_labels.append(label)
|
||
|
|
||
|
def accumulate(self):
|
||
|
logger.info("Computing pairwise similairity...")
|
||
|
assert len(self.embedding) == len(self.id_labels)
|
||
|
if len(self.embedding) < 1:
|
||
|
return None
|
||
|
embedding = paddle.stack(self.embedding, axis=0)
|
||
|
emb = F.normalize(embedding, axis=1).numpy()
|
||
|
pdist = np.matmul(emb, emb.T)
|
||
|
|
||
|
id_labels = np.array(self.id_labels, dtype='int32').reshape(-1, 1)
|
||
|
n = len(id_labels)
|
||
|
id_lbl = np.tile(id_labels, n).T
|
||
|
gt = id_lbl == id_lbl.T
|
||
|
|
||
|
up_triangle = np.where(np.triu(pdist) - np.eye(n) * pdist != 0)
|
||
|
pdist = pdist[up_triangle]
|
||
|
gt = gt[up_triangle]
|
||
|
|
||
|
# lazy import metrics here
|
||
|
from sklearn import metrics
|
||
|
far, tar, threshold = metrics.roc_curve(gt, pdist)
|
||
|
interp = interpolate.interp1d(far, tar)
|
||
|
tar_at_far = [interp(x) for x in self.far_levels]
|
||
|
|
||
|
for f, fa in enumerate(self.far_levels):
|
||
|
self.eval_results['TPR@FAR={:.7f}'.format(fa)] = ' {:.4f}'.format(
|
||
|
tar_at_far[f])
|
||
|
|
||
|
def log(self):
|
||
|
for k, v in self.eval_results.items():
|
||
|
logger.info('{}: {}'.format(k, v))
|
||
|
|
||
|
def get_results(self):
|
||
|
return self.eval_results
|
||
|
|
||
|
|
||
|
class MOTMetric(Metric):
|
||
|
def __init__(self, save_summary=False):
|
||
|
self.save_summary = save_summary
|
||
|
self.MOTEvaluator = MOTEvaluator
|
||
|
self.result_root = None
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
self.accs = []
|
||
|
self.seqs = []
|
||
|
|
||
|
def update(self, data_root, seq, data_type, result_root, result_filename):
|
||
|
evaluator = self.MOTEvaluator(data_root, seq, data_type)
|
||
|
self.accs.append(evaluator.eval_file(result_filename))
|
||
|
self.seqs.append(seq)
|
||
|
self.result_root = result_root
|
||
|
|
||
|
def accumulate(self):
|
||
|
import motmetrics as mm
|
||
|
metrics = mm.metrics.motchallenge_metrics
|
||
|
mh = mm.metrics.create()
|
||
|
summary = self.MOTEvaluator.get_summary(self.accs, self.seqs, metrics)
|
||
|
self.strsummary = mm.io.render_summary(
|
||
|
summary,
|
||
|
formatters=mh.formatters,
|
||
|
namemap=mm.io.motchallenge_metric_names)
|
||
|
if self.save_summary:
|
||
|
self.MOTEvaluator.save_summary(
|
||
|
summary, os.path.join(self.result_root, 'summary.xlsx'))
|
||
|
|
||
|
def log(self):
|
||
|
print(self.strsummary)
|
||
|
|
||
|
def get_results(self):
|
||
|
return self.strsummary
|