forked from PulseFocusPlatform/PulseFocusPlatform
131 lines
4.3 KiB
Python
131 lines
4.3 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import ParamAttr
|
||
|
import paddle.nn as nn
|
||
|
from ppdet.core.workspace import register
|
||
|
from ..shape_spec import ShapeSpec
|
||
|
|
||
|
__all__ = ['HRFPN']
|
||
|
|
||
|
|
||
|
@register
|
||
|
class HRFPN(nn.Layer):
|
||
|
"""
|
||
|
Args:
|
||
|
in_channels (list): number of input feature channels from backbone
|
||
|
out_channel (int): number of output feature channels
|
||
|
share_conv (bool): whether to share conv for different layers' reduction
|
||
|
extra_stage (int): add extra stage for returning HRFPN fpn_feats
|
||
|
spatial_scales (list): feature map scaling factor
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels=[18, 36, 72, 144],
|
||
|
out_channel=256,
|
||
|
share_conv=False,
|
||
|
extra_stage=1,
|
||
|
spatial_scales=[1. / 4, 1. / 8, 1. / 16, 1. / 32]):
|
||
|
super(HRFPN, self).__init__()
|
||
|
in_channel = sum(in_channels)
|
||
|
self.in_channel = in_channel
|
||
|
self.out_channel = out_channel
|
||
|
self.share_conv = share_conv
|
||
|
for i in range(extra_stage):
|
||
|
spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
|
||
|
self.spatial_scales = spatial_scales
|
||
|
self.num_out = len(self.spatial_scales)
|
||
|
|
||
|
self.reduction = nn.Conv2D(
|
||
|
in_channels=in_channel,
|
||
|
out_channels=out_channel,
|
||
|
kernel_size=1,
|
||
|
weight_attr=ParamAttr(name='hrfpn_reduction_weights'),
|
||
|
bias_attr=False)
|
||
|
|
||
|
if share_conv:
|
||
|
self.fpn_conv = nn.Conv2D(
|
||
|
in_channels=out_channel,
|
||
|
out_channels=out_channel,
|
||
|
kernel_size=3,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(name='fpn_conv_weights'),
|
||
|
bias_attr=False)
|
||
|
else:
|
||
|
self.fpn_conv = []
|
||
|
for i in range(self.num_out):
|
||
|
conv_name = "fpn_conv_" + str(i)
|
||
|
conv = self.add_sublayer(
|
||
|
conv_name,
|
||
|
nn.Conv2D(
|
||
|
in_channels=out_channel,
|
||
|
out_channels=out_channel,
|
||
|
kernel_size=3,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(name=conv_name + "_weights"),
|
||
|
bias_attr=False))
|
||
|
self.fpn_conv.append(conv)
|
||
|
|
||
|
def forward(self, body_feats):
|
||
|
num_backbone_stages = len(body_feats)
|
||
|
|
||
|
outs = []
|
||
|
outs.append(body_feats[0])
|
||
|
|
||
|
# resize
|
||
|
for i in range(1, num_backbone_stages):
|
||
|
resized = F.interpolate(
|
||
|
body_feats[i], scale_factor=2**i, mode='bilinear')
|
||
|
outs.append(resized)
|
||
|
|
||
|
# concat
|
||
|
out = paddle.concat(outs, axis=1)
|
||
|
assert out.shape[
|
||
|
1] == self.in_channel, 'in_channel should be {}, be received {}'.format(
|
||
|
out.shape[1], self.in_channel)
|
||
|
|
||
|
# reduction
|
||
|
out = self.reduction(out)
|
||
|
|
||
|
# conv
|
||
|
outs = [out]
|
||
|
for i in range(1, self.num_out):
|
||
|
outs.append(F.avg_pool2d(out, kernel_size=2**i, stride=2**i))
|
||
|
outputs = []
|
||
|
|
||
|
for i in range(self.num_out):
|
||
|
conv_func = self.fpn_conv if self.share_conv else self.fpn_conv[i]
|
||
|
conv = conv_func(outs[i])
|
||
|
outputs.append(conv)
|
||
|
|
||
|
fpn_feats = [outputs[k] for k in range(self.num_out)]
|
||
|
return fpn_feats
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, input_shape):
|
||
|
return {
|
||
|
'in_channels': [i.channels for i in input_shape],
|
||
|
'spatial_scales': [1.0 / i.stride for i in input_shape],
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [
|
||
|
ShapeSpec(
|
||
|
channels=self.out_channel, stride=1. / s)
|
||
|
for s in self.spatial_scales
|
||
|
]
|