forked from PulseFocusPlatform/PulseFocusPlatform
244 lines
7.0 KiB
Python
244 lines
7.0 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from ppdet.core.workspace import register, serializable
|
||
|
from ppdet.modeling.layers import ConvNormLayer
|
||
|
from ..shape_spec import ShapeSpec
|
||
|
|
||
|
DLA_cfg = {34: ([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512])}
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Layer):
|
||
|
def __init__(self, ch_in, ch_out, stride=1):
|
||
|
super(BasicBlock, self).__init__()
|
||
|
self.conv1 = ConvNormLayer(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
filter_size=3,
|
||
|
stride=stride,
|
||
|
bias_on=False,
|
||
|
norm_decay=None)
|
||
|
self.conv2 = ConvNormLayer(
|
||
|
ch_out,
|
||
|
ch_out,
|
||
|
filter_size=3,
|
||
|
stride=1,
|
||
|
bias_on=False,
|
||
|
norm_decay=None)
|
||
|
|
||
|
def forward(self, inputs, residual=None):
|
||
|
if residual is None:
|
||
|
residual = inputs
|
||
|
|
||
|
out = self.conv1(inputs)
|
||
|
out = F.relu(out)
|
||
|
|
||
|
out = self.conv2(out)
|
||
|
|
||
|
out = paddle.add(x=out, y=residual)
|
||
|
out = F.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class Root(nn.Layer):
|
||
|
def __init__(self, ch_in, ch_out, kernel_size, residual):
|
||
|
super(Root, self).__init__()
|
||
|
self.conv = ConvNormLayer(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
bias_on=False,
|
||
|
norm_decay=None)
|
||
|
self.residual = residual
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
children = inputs
|
||
|
out = self.conv(paddle.concat(inputs, axis=1))
|
||
|
if self.residual:
|
||
|
out = paddle.add(x=out, y=children[0])
|
||
|
out = F.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class Tree(nn.Layer):
|
||
|
def __init__(self,
|
||
|
level,
|
||
|
block,
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
stride=1,
|
||
|
level_root=False,
|
||
|
root_dim=0,
|
||
|
root_kernel_size=1,
|
||
|
root_residual=False):
|
||
|
super(Tree, self).__init__()
|
||
|
if root_dim == 0:
|
||
|
root_dim = 2 * ch_out
|
||
|
if level_root:
|
||
|
root_dim += ch_in
|
||
|
if level == 1:
|
||
|
self.tree1 = block(ch_in, ch_out, stride)
|
||
|
self.tree2 = block(ch_out, ch_out, 1)
|
||
|
else:
|
||
|
self.tree1 = Tree(
|
||
|
level - 1,
|
||
|
block,
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
stride,
|
||
|
root_dim=0,
|
||
|
root_kernel_size=root_kernel_size,
|
||
|
root_residual=root_residual)
|
||
|
self.tree2 = Tree(
|
||
|
level - 1,
|
||
|
block,
|
||
|
ch_out,
|
||
|
ch_out,
|
||
|
1,
|
||
|
root_dim=root_dim + ch_out,
|
||
|
root_kernel_size=root_kernel_size,
|
||
|
root_residual=root_residual)
|
||
|
|
||
|
if level == 1:
|
||
|
self.root = Root(root_dim, ch_out, root_kernel_size, root_residual)
|
||
|
self.level_root = level_root
|
||
|
self.root_dim = root_dim
|
||
|
self.downsample = None
|
||
|
self.project = None
|
||
|
self.level = level
|
||
|
if stride > 1:
|
||
|
self.downsample = nn.MaxPool2D(stride, stride=stride)
|
||
|
if ch_in != ch_out:
|
||
|
self.project = ConvNormLayer(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
bias_on=False,
|
||
|
norm_decay=None)
|
||
|
|
||
|
def forward(self, x, residual=None, children=None):
|
||
|
children = [] if children is None else children
|
||
|
bottom = self.downsample(x) if self.downsample else x
|
||
|
residual = self.project(bottom) if self.project else bottom
|
||
|
if self.level_root:
|
||
|
children.append(bottom)
|
||
|
x1 = self.tree1(x, residual)
|
||
|
if self.level == 1:
|
||
|
x2 = self.tree2(x1)
|
||
|
x = self.root([x2, x1] + children)
|
||
|
else:
|
||
|
children.append(x1)
|
||
|
x = self.tree2(x1, children=children)
|
||
|
return x
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class DLA(nn.Layer):
|
||
|
"""
|
||
|
DLA, see https://arxiv.org/pdf/1707.06484.pdf
|
||
|
|
||
|
Args:
|
||
|
depth (int): DLA depth, should be 34.
|
||
|
residual_root (bool): whether use a reidual layer in the root block
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, depth=34, residual_root=False):
|
||
|
super(DLA, self).__init__()
|
||
|
levels, channels = DLA_cfg[depth]
|
||
|
if depth == 34:
|
||
|
block = BasicBlock
|
||
|
self.channels = channels
|
||
|
self.base_layer = nn.Sequential(
|
||
|
ConvNormLayer(
|
||
|
3,
|
||
|
channels[0],
|
||
|
filter_size=7,
|
||
|
stride=1,
|
||
|
bias_on=False,
|
||
|
norm_decay=None),
|
||
|
nn.ReLU())
|
||
|
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
|
||
|
self.level1 = self._make_conv_level(
|
||
|
channels[0], channels[1], levels[1], stride=2)
|
||
|
self.level2 = Tree(
|
||
|
levels[2],
|
||
|
block,
|
||
|
channels[1],
|
||
|
channels[2],
|
||
|
2,
|
||
|
level_root=False,
|
||
|
root_residual=residual_root)
|
||
|
self.level3 = Tree(
|
||
|
levels[3],
|
||
|
block,
|
||
|
channels[2],
|
||
|
channels[3],
|
||
|
2,
|
||
|
level_root=True,
|
||
|
root_residual=residual_root)
|
||
|
self.level4 = Tree(
|
||
|
levels[4],
|
||
|
block,
|
||
|
channels[3],
|
||
|
channels[4],
|
||
|
2,
|
||
|
level_root=True,
|
||
|
root_residual=residual_root)
|
||
|
self.level5 = Tree(
|
||
|
levels[5],
|
||
|
block,
|
||
|
channels[4],
|
||
|
channels[5],
|
||
|
2,
|
||
|
level_root=True,
|
||
|
root_residual=residual_root)
|
||
|
|
||
|
def _make_conv_level(self, ch_in, ch_out, conv_num, stride=1):
|
||
|
modules = []
|
||
|
for i in range(conv_num):
|
||
|
modules.extend([
|
||
|
ConvNormLayer(
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
filter_size=3,
|
||
|
stride=stride if i == 0 else 1,
|
||
|
bias_on=False,
|
||
|
norm_decay=None), nn.ReLU()
|
||
|
])
|
||
|
ch_in = ch_out
|
||
|
return nn.Sequential(*modules)
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [ShapeSpec(channels=self.channels[i]) for i in range(6)]
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
outs = []
|
||
|
im = inputs['image']
|
||
|
feats = self.base_layer(im)
|
||
|
for i in range(6):
|
||
|
feats = getattr(self, 'level{}'.format(i))(feats)
|
||
|
outs.append(feats)
|
||
|
|
||
|
return outs
|