forked from PulseFocusPlatform/PulseFocusPlatform
164 lines
5.5 KiB
Python
164 lines
5.5 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import sys
|
||
|
import os.path as osp
|
||
|
import json
|
||
|
import glob
|
||
|
import cv2
|
||
|
import argparse
|
||
|
|
||
|
# add python path of PadleDetection to sys.path
|
||
|
parent_path = osp.abspath(osp.join(__file__, *(['..'] * 3)))
|
||
|
if parent_path not in sys.path:
|
||
|
sys.path.append(parent_path)
|
||
|
|
||
|
from ppdet.modeling.bbox_utils import poly2rbox
|
||
|
from ppdet.utils.logger import setup_logger
|
||
|
logger = setup_logger(__name__)
|
||
|
|
||
|
class_name_15 = [
|
||
|
'plane', 'baseball-diamond', 'bridge', 'ground-track-field',
|
||
|
'small-vehicle', 'large-vehicle', 'ship', 'tennis-court',
|
||
|
'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout',
|
||
|
'harbor', 'swimming-pool', 'helicopter'
|
||
|
]
|
||
|
|
||
|
class_name_16 = [
|
||
|
'plane', 'baseball-diamond', 'bridge', 'ground-track-field',
|
||
|
'small-vehicle', 'large-vehicle', 'ship', 'tennis-court',
|
||
|
'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout',
|
||
|
'harbor', 'swimming-pool', 'helicopter', 'container-crane'
|
||
|
]
|
||
|
|
||
|
|
||
|
def dota_2_coco(image_dir,
|
||
|
txt_dir,
|
||
|
json_path='dota_coco.json',
|
||
|
is_obb=True,
|
||
|
dota_version='v1.0'):
|
||
|
"""
|
||
|
image_dir: image dir
|
||
|
txt_dir: txt label dir
|
||
|
json_path: json save path
|
||
|
is_obb: is obb or not
|
||
|
dota_version: dota_version v1.0 or v1.5 or v2.0
|
||
|
"""
|
||
|
|
||
|
img_lists = glob.glob("{}/*.png".format(image_dir))
|
||
|
data_dict = {}
|
||
|
data_dict['images'] = []
|
||
|
data_dict['categories'] = []
|
||
|
data_dict['annotations'] = []
|
||
|
inst_count = 0
|
||
|
|
||
|
# categories
|
||
|
class_name2id = {}
|
||
|
if dota_version == 'v1.0':
|
||
|
for class_id, class_name in enumerate(class_name_15):
|
||
|
class_name2id[class_name] = class_id + 1
|
||
|
single_cat = {
|
||
|
'id': class_id + 1,
|
||
|
'name': class_name,
|
||
|
'supercategory': class_name
|
||
|
}
|
||
|
data_dict['categories'].append(single_cat)
|
||
|
|
||
|
for image_id, img_path in enumerate(img_lists):
|
||
|
single_image = {}
|
||
|
basename = osp.basename(img_path)
|
||
|
single_image['file_name'] = basename
|
||
|
single_image['id'] = image_id
|
||
|
img = cv2.imread(img_path)
|
||
|
height, width, _ = img.shape
|
||
|
single_image['width'] = width
|
||
|
single_image['height'] = height
|
||
|
# add image
|
||
|
data_dict['images'].append(single_image)
|
||
|
|
||
|
# annotations
|
||
|
anno_txt_path = osp.join(txt_dir, osp.splitext(basename)[0] + '.txt')
|
||
|
if not osp.exists(anno_txt_path):
|
||
|
logger.warning('path of {} not exists'.format(anno_txt_path))
|
||
|
|
||
|
for line in open(anno_txt_path):
|
||
|
line = line.strip()
|
||
|
# skip
|
||
|
if line.find('imagesource') >= 0 or line.find('gsd') >= 0:
|
||
|
continue
|
||
|
|
||
|
# x1,y1,x2,y2,x3,y3,x4,y4 class_name, is_different
|
||
|
single_obj_anno = line.split(' ')
|
||
|
assert len(single_obj_anno) == 10
|
||
|
single_obj_poly = [float(e) for e in single_obj_anno[0:8]]
|
||
|
single_obj_classname = single_obj_anno[8]
|
||
|
single_obj_different = int(single_obj_anno[9])
|
||
|
|
||
|
single_obj = {}
|
||
|
|
||
|
single_obj['category_id'] = class_name2id[single_obj_classname]
|
||
|
single_obj['segmentation'] = []
|
||
|
single_obj['segmentation'].append(single_obj_poly)
|
||
|
single_obj['iscrowd'] = 0
|
||
|
|
||
|
# rbox or bbox
|
||
|
if is_obb:
|
||
|
polys = [single_obj_poly]
|
||
|
rboxs = poly2rbox(polys)
|
||
|
rbox = rboxs[0].tolist()
|
||
|
single_obj['bbox'] = rbox
|
||
|
single_obj['area'] = rbox[2] * rbox[3]
|
||
|
else:
|
||
|
xmin, ymin, xmax, ymax = min(single_obj_poly[0::2]), min(single_obj_poly[1::2]), \
|
||
|
max(single_obj_poly[0::2]), max(single_obj_poly[1::2])
|
||
|
|
||
|
width, height = xmax - xmin, ymax - ymin
|
||
|
single_obj['bbox'] = xmin, ymin, width, height
|
||
|
single_obj['area'] = width * height
|
||
|
|
||
|
single_obj['image_id'] = image_id
|
||
|
data_dict['annotations'].append(single_obj)
|
||
|
single_obj['id'] = inst_count
|
||
|
inst_count = inst_count + 1
|
||
|
# add annotation
|
||
|
data_dict['annotations'].append(single_obj)
|
||
|
|
||
|
with open(json_path, 'w') as f:
|
||
|
json.dump(data_dict, f)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser(description='dota anno to coco')
|
||
|
parser.add_argument('--images_dir', help='path_to_images')
|
||
|
parser.add_argument('--label_dir', help='path_to_labelTxt', type=str)
|
||
|
parser.add_argument(
|
||
|
'--json_path',
|
||
|
help='save json path',
|
||
|
type=str,
|
||
|
default='dota_coco.json')
|
||
|
parser.add_argument(
|
||
|
'--is_obb', help='is_obb or not', type=bool, default=True)
|
||
|
parser.add_argument(
|
||
|
'--dota_version',
|
||
|
help='dota_version, v1.0 or v1.5 or v2.0',
|
||
|
type=str,
|
||
|
default='v1.0')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
# process
|
||
|
dota_2_coco(args.images_dir, args.label_dir, args.json_path, args.is_obb,
|
||
|
args.dota_version)
|
||
|
print('done!')
|