PulseFocusPlatform/static/ppdet/modeling/backbones/fpn.py

240 lines
9.5 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
import copy
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.regularizer import L2Decay
from ppdet.core.workspace import register
from ppdet.modeling.ops import ConvNorm
__all__ = ['FPN']
@register
class FPN(object):
"""
Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
Args:
num_chan (int): number of feature channels
min_level (int): lowest level of the backbone feature map to use
max_level (int): highest level of the backbone feature map to use
spatial_scale (list): feature map scaling factor
has_extra_convs (bool): whether has extral convolutions in higher levels
norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
norm_decay (float): weight decay for normalization layer weights.
reverse_out (bool): whether to flip the output.
"""
__shared__ = ['norm_type', 'freeze_norm']
def __init__(self,
num_chan=256,
min_level=2,
max_level=6,
spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
has_extra_convs=False,
norm_type=None,
norm_decay=0.,
freeze_norm=False,
use_c5=True,
reverse_out=False):
self.freeze_norm = freeze_norm
self.num_chan = num_chan
self.min_level = min_level
self.max_level = max_level
self.spatial_scale = spatial_scale
self.has_extra_convs = has_extra_convs
self.norm_type = norm_type
self.norm_decay = norm_decay
self.use_c5 = use_c5
self.reverse_out = reverse_out
def _add_topdown_lateral(self, body_name, body_input, upper_output):
lateral_name = 'fpn_inner_' + body_name + '_lateral'
topdown_name = 'fpn_topdown_' + body_name
fan = body_input.shape[1]
if self.norm_type:
initializer = Xavier(fan_out=fan)
lateral = ConvNorm(
body_input,
self.num_chan,
1,
initializer=initializer,
norm_type=self.norm_type,
norm_decay=self.norm_decay,
freeze_norm=self.freeze_norm,
name=lateral_name,
norm_name=lateral_name)
else:
lateral = fluid.layers.conv2d(
body_input,
self.num_chan,
1,
param_attr=ParamAttr(
name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
bias_attr=ParamAttr(
name=lateral_name + "_b",
learning_rate=2.,
regularizer=L2Decay(0.)),
name=lateral_name)
if body_input.shape[2] == -1 and body_input.shape[3] == -1:
topdown = fluid.layers.resize_nearest(
upper_output, scale=2., name=topdown_name)
else:
topdown = fluid.layers.resize_nearest(
upper_output,
out_shape=[body_input.shape[2], body_input.shape[3]],
name=topdown_name)
return fluid.layers.elementwise_add(lateral, topdown)
def get_output(self, body_dict):
"""
Add FPN onto backbone.
Args:
body_dict(OrderedDict): Dictionary of variables and each element is the
output of backbone.
Return:
fpn_dict(OrderedDict): A dictionary represents the output of FPN with
their name.
spatial_scale(list): A list of multiplicative spatial scale factor.
"""
spatial_scale = copy.deepcopy(self.spatial_scale)
body_name_list = list(body_dict.keys())[::-1]
num_backbone_stages = len(body_name_list)
self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
fpn_inner_name = 'fpn_inner_' + body_name_list[0]
body_input = body_dict[body_name_list[0]]
fan = body_input.shape[1]
if self.norm_type:
initializer = Xavier(fan_out=fan)
self.fpn_inner_output[0] = ConvNorm(
body_input,
self.num_chan,
1,
initializer=initializer,
norm_type=self.norm_type,
norm_decay=self.norm_decay,
freeze_norm=self.freeze_norm,
name=fpn_inner_name,
norm_name=fpn_inner_name)
else:
self.fpn_inner_output[0] = fluid.layers.conv2d(
body_input,
self.num_chan,
1,
param_attr=ParamAttr(
name=fpn_inner_name + "_w",
initializer=Xavier(fan_out=fan)),
bias_attr=ParamAttr(
name=fpn_inner_name + "_b",
learning_rate=2.,
regularizer=L2Decay(0.)),
name=fpn_inner_name)
for i in range(1, num_backbone_stages):
body_name = body_name_list[i]
body_input = body_dict[body_name]
top_output = self.fpn_inner_output[i - 1]
fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
top_output)
self.fpn_inner_output[i] = fpn_inner_single
fpn_dict = {}
fpn_name_list = []
for i in range(num_backbone_stages):
fpn_name = 'fpn_' + body_name_list[i]
fan = self.fpn_inner_output[i].shape[1] * 3 * 3
if self.norm_type:
initializer = Xavier(fan_out=fan)
fpn_output = ConvNorm(
self.fpn_inner_output[i],
self.num_chan,
3,
initializer=initializer,
norm_type=self.norm_type,
norm_decay=self.norm_decay,
freeze_norm=self.freeze_norm,
name=fpn_name,
norm_name=fpn_name)
else:
fpn_output = fluid.layers.conv2d(
self.fpn_inner_output[i],
self.num_chan,
filter_size=3,
padding=1,
param_attr=ParamAttr(
name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
bias_attr=ParamAttr(
name=fpn_name + "_b",
learning_rate=2.,
regularizer=L2Decay(0.)),
name=fpn_name)
fpn_dict[fpn_name] = fpn_output
fpn_name_list.append(fpn_name)
if not self.has_extra_convs and self.max_level - self.min_level == len(
spatial_scale):
body_top_name = fpn_name_list[0]
body_top_extension = fluid.layers.pool2d(
fpn_dict[body_top_name],
1,
'max',
pool_stride=2,
name=body_top_name + '_subsampled_2x')
fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
spatial_scale.insert(0, spatial_scale[0] * 0.5)
# Coarser FPN levels introduced for RetinaNet
highest_backbone_level = self.min_level + len(spatial_scale) - 1
if self.has_extra_convs and self.max_level > highest_backbone_level:
if self.use_c5:
fpn_blob = body_dict[body_name_list[0]]
else:
fpn_blob = fpn_dict[fpn_name_list[0]]
for i in range(highest_backbone_level + 1, self.max_level + 1):
fpn_blob_in = fpn_blob
fpn_name = 'fpn_' + str(i)
if i > highest_backbone_level + 1:
fpn_blob_in = fluid.layers.relu(fpn_blob)
fan = fpn_blob_in.shape[1] * 3 * 3
fpn_blob = fluid.layers.conv2d(
input=fpn_blob_in,
num_filters=self.num_chan,
filter_size=3,
stride=2,
padding=1,
param_attr=ParamAttr(
name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
bias_attr=ParamAttr(
name=fpn_name + "_b",
learning_rate=2.,
regularizer=L2Decay(0.)),
name=fpn_name)
fpn_dict[fpn_name] = fpn_blob
fpn_name_list.insert(0, fpn_name)
spatial_scale.insert(0, spatial_scale[0] * 0.5)
if self.reverse_out:
fpn_name_list = fpn_name_list[::-1]
res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
return res_dict, spatial_scale