PulseFocusPlatform/ppdet/modeling/bbox_utils.py

460 lines
15 KiB
Python
Raw Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import numpy as np
def bbox2delta(src_boxes, tgt_boxes, weights):
src_w = src_boxes[:, 2] - src_boxes[:, 0]
src_h = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
src_ctr_y = src_boxes[:, 1] + 0.5 * src_h
tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h
wx, wy, ww, wh = weights
dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
dw = ww * paddle.log(tgt_w / src_w)
dh = wh * paddle.log(tgt_h / src_h)
deltas = paddle.stack((dx, dy, dw, dh), axis=1)
return deltas
def delta2bbox(deltas, boxes, weights):
clip_scale = math.log(1000.0 / 16)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into paddle.exp()
dw = paddle.clip(dw, max=clip_scale)
dh = paddle.clip(dh, max=clip_scale)
pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
pred_w = paddle.exp(dw) * widths.unsqueeze(1)
pred_h = paddle.exp(dh) * heights.unsqueeze(1)
pred_boxes = []
pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
pred_boxes = paddle.stack(pred_boxes, axis=-1)
return pred_boxes
def expand_bbox(bboxes, scale):
w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
w_half *= scale
h_half *= scale
bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
bboxes_exp[:, 0] = x_c - w_half
bboxes_exp[:, 2] = x_c + w_half
bboxes_exp[:, 1] = y_c - h_half
bboxes_exp[:, 3] = y_c + h_half
return bboxes_exp
def clip_bbox(boxes, im_shape):
h, w = im_shape[0], im_shape[1]
x1 = boxes[:, 0].clip(0, w)
y1 = boxes[:, 1].clip(0, h)
x2 = boxes[:, 2].clip(0, w)
y2 = boxes[:, 3].clip(0, h)
return paddle.stack([x1, y1, x2, y2], axis=1)
def nonempty_bbox(boxes, min_size=0, return_mask=False):
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
mask = paddle.logical_and(w > min_size, w > min_size)
if return_mask:
return mask
keep = paddle.nonzero(mask).flatten()
return keep
def bbox_area(boxes):
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def bbox_overlaps(boxes1, boxes2):
"""
Calculate overlaps between boxes1 and boxes2
Args:
boxes1 (Tensor): boxes with shape [M, 4]
boxes2 (Tensor): boxes with shape [N, 4]
Return:
overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
"""
M = boxes1.shape[0]
N = boxes2.shape[0]
if M * N == 0:
return paddle.zeros([M, N], dtype='float32')
area1 = bbox_area(boxes1)
area2 = bbox_area(boxes2)
xy_max = paddle.minimum(
paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
xy_min = paddle.maximum(
paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
width_height = xy_max - xy_min
width_height = width_height.clip(min=0)
inter = width_height.prod(axis=2)
overlaps = paddle.where(inter > 0, inter /
(paddle.unsqueeze(area1, 1) + area2 - inter),
paddle.zeros_like(inter))
return overlaps
def xywh2xyxy(box):
x, y, w, h = box
x1 = x - w * 0.5
y1 = y - h * 0.5
x2 = x + w * 0.5
y2 = y + h * 0.5
return [x1, y1, x2, y2]
def make_grid(h, w, dtype):
yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
return paddle.stack((xv, yv), 2).cast(dtype=dtype)
def decode_yolo(box, anchor, downsample_ratio):
"""decode yolo box
Args:
box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
anchor (list): anchor with the shape [na, 2]
downsample_ratio (int): downsample ratio, default 32
scale (float): scale, default 1.
Return:
box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
"""
x, y, w, h = box
na, grid_h, grid_w = x.shape[1:4]
grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
y1 = (y + grid[:, :, :, :, 1:2]) / grid_h
anchor = paddle.to_tensor(anchor)
anchor = paddle.cast(anchor, x.dtype)
anchor = anchor.reshape((1, na, 1, 1, 2))
w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)
return [x1, y1, w1, h1]
def iou_similarity(box1, box2, eps=1e-9):
"""Calculate iou of box1 and box2
Args:
box1 (Tensor): box with the shape [N, M1, 4]
box2 (Tensor): box with the shape [N, M2, 4]
Return:
iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
"""
box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
x1y1 = paddle.maximum(px1y1, gx1y1)
x2y2 = paddle.minimum(px2y2, gx2y2)
overlap = (x2y2 - x1y1).clip(0).prod(-1)
area1 = (px2y2 - px1y1).clip(0).prod(-1)
area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
union = area1 + area2 - overlap + eps
return overlap / union
def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
"""calculate the iou of box1 and box2
Args:
box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
giou (bool): whether use giou or not, default False
diou (bool): whether use diou or not, default False
ciou (bool): whether use ciou or not, default False
eps (float): epsilon to avoid divide by zero
Return:
iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
"""
px1, py1, px2, py2 = box1
gx1, gy1, gx2, gy2 = box2
x1 = paddle.maximum(px1, gx1)
y1 = paddle.maximum(py1, gy1)
x2 = paddle.minimum(px2, gx2)
y2 = paddle.minimum(py2, gy2)
overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))
area1 = (px2 - px1) * (py2 - py1)
area1 = area1.clip(0)
area2 = (gx2 - gx1) * (gy2 - gy1)
area2 = area2.clip(0)
union = area1 + area2 - overlap + eps
iou = overlap / union
if giou or ciou or diou:
# convex w, h
cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
if giou:
c_area = cw * ch + eps
return iou - (c_area - union) / c_area
else:
# convex diagonal squared
c2 = cw**2 + ch**2 + eps
# center distance
rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
if diou:
return iou - rho2 / c2
else:
w1, h1 = px2 - px1, py2 - py1 + eps
w2, h2 = gx2 - gx1, gy2 - gy1 + eps
delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
v = (4 / math.pi**2) * paddle.pow(delta, 2)
alpha = v / (1 + eps - iou + v)
alpha.stop_gradient = True
return iou - (rho2 / c2 + v * alpha)
else:
return iou
def poly2rbox(polys):
"""
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
to
rotated_boxes:[x_ctr,y_ctr,w,h,angle]
"""
rotated_boxes = []
for poly in polys:
poly = np.array(poly[:8], dtype=np.float32)
pt1 = (poly[0], poly[1])
pt2 = (poly[2], poly[3])
pt3 = (poly[4], poly[5])
pt4 = (poly[6], poly[7])
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[
1]) * (pt1[1] - pt2[1]))
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[
1]) * (pt2[1] - pt3[1]))
width = max(edge1, edge2)
height = min(edge1, edge2)
rbox_angle = 0
if edge1 > edge2:
rbox_angle = np.arctan2(
np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0]))
elif edge2 >= edge1:
rbox_angle = np.arctan2(
np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0]))
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
return (angle - range[0]) % range[1] + range[0]
rbox_angle = norm_angle(rbox_angle)
x_ctr = np.float(pt1[0] + pt3[0]) / 2
y_ctr = np.float(pt1[1] + pt3[1]) / 2
rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle])
rotated_boxes.append(rotated_box)
ret_rotated_boxes = np.array(rotated_boxes)
assert ret_rotated_boxes.shape[1] == 5
return ret_rotated_boxes
def cal_line_length(point1, point2):
import math
return math.sqrt(
math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
def get_best_begin_point_single(coordinate):
x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
xmin = min(x1, x2, x3, x4)
ymin = min(y1, y2, y3, y4)
xmax = max(x1, x2, x3, x4)
ymax = max(y1, y2, y3, y4)
combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
[[x4, y4], [x1, y1], [x2, y2], [x3, y3]],
[[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
[[x2, y2], [x3, y3], [x4, y4], [x1, y1]]]
dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
force = 100000000.0
force_flag = 0
for i in range(4):
temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \
+ cal_line_length(combinate[i][1], dst_coordinate[1]) \
+ cal_line_length(combinate[i][2], dst_coordinate[2]) \
+ cal_line_length(combinate[i][3], dst_coordinate[3])
if temp_force < force:
force = temp_force
force_flag = i
if force_flag != 0:
pass
return np.array(combinate[force_flag]).reshape(8)
def rbox2poly_np(rrects):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
polys = []
for i in range(rrects.shape[0]):
rrect = rrects[i]
# x_ctr, y_ctr, width, height, angle = rrect[:5]
x_ctr = rrect[0]
y_ctr = rrect[1]
width = rrect[2]
height = rrect[3]
angle = rrect[4]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
poly = get_best_begin_point_single(poly)
polys.append(poly)
polys = np.array(polys)
return polys
def rbox2poly(rrects):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
N = paddle.shape(rrects)[0]
x_ctr = rrects[:, 0]
y_ctr = rrects[:, 1]
width = rrects[:, 2]
height = rrects[:, 3]
angle = rrects[:, 4]
tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5
normal_rects = paddle.stack(
[tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0)
normal_rects = paddle.reshape(normal_rects, [2, 4, N])
normal_rects = paddle.transpose(normal_rects, [2, 0, 1])
sin, cos = paddle.sin(angle), paddle.cos(angle)
# M.shape=[N,2,2]
M = paddle.stack([cos, -sin, sin, cos], axis=0)
M = paddle.reshape(M, [2, 2, N])
M = paddle.transpose(M, [2, 0, 1])
# polys:[N,8]
polys = paddle.matmul(M, normal_rects)
polys = paddle.transpose(polys, [2, 1, 0])
polys = paddle.reshape(polys, [-1, N])
polys = paddle.transpose(polys, [1, 0])
tmp = paddle.stack(
[x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1)
polys = polys + tmp
return polys
def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
"""
Calculate the iou of box1 and box2 with numpy.
Args:
box1 (ndarray): [N, 4]
box2 (ndarray): [M, 4], usually N != M
x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True
eps (float): epsilon to avoid divide by zero
Return:
iou (ndarray): iou of box1 and box2, [N, M]
"""
N, M = len(box1), len(box2) # usually N != M
if x1y1x2y2:
b1_x1, b1_y1 = box1[:, 0], box1[:, 1]
b1_x2, b1_y2 = box1[:, 2], box1[:, 3]
b2_x1, b2_y1 = box2[:, 0], box2[:, 1]
b2_x2, b2_y2 = box2[:, 2], box2[:, 3]
else:
# cxcywh style
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
# get the coordinates of the intersection rectangle
inter_rect_x1 = np.zeros((N, M), dtype=np.float32)
inter_rect_y1 = np.zeros((N, M), dtype=np.float32)
inter_rect_x2 = np.zeros((N, M), dtype=np.float32)
inter_rect_y2 = np.zeros((N, M), dtype=np.float32)
for i in range(len(box2)):
inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i])
inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i])
inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i])
inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i])
# Intersection area
inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum(
inter_rect_y2 - inter_rect_y1, 0)
# Union Area
b1_area = np.repeat(
((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1)
b2_area = np.repeat(
((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0)
ious = inter_area / (b1_area + b2_area - inter_area + eps)
return ious