forked from PulseFocusPlatform/PulseFocusPlatform
158 lines
3.0 KiB
YAML
158 lines
3.0 KiB
YAML
|
architecture: EfficientDet
|
||
|
max_iters: 281250
|
||
|
use_gpu: true
|
||
|
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar
|
||
|
weights: output/efficientdet_d0/model_final
|
||
|
log_iter: 20
|
||
|
snapshot_iter: 10000
|
||
|
metric: COCO
|
||
|
save_dir: output
|
||
|
num_classes: 81
|
||
|
use_ema: true
|
||
|
ema_decay: 0.9998
|
||
|
|
||
|
EfficientDet:
|
||
|
backbone: EfficientNet
|
||
|
fpn: BiFPN
|
||
|
efficient_head: EfficientHead
|
||
|
anchor_grid: AnchorGrid
|
||
|
box_loss_weight: 50.
|
||
|
|
||
|
EfficientNet:
|
||
|
# norm_type: sync_bn
|
||
|
# TODO
|
||
|
norm_type: bn
|
||
|
scale: b0
|
||
|
use_se: true
|
||
|
|
||
|
BiFPN:
|
||
|
num_chan: 64
|
||
|
repeat: 3
|
||
|
levels: 5
|
||
|
|
||
|
EfficientHead:
|
||
|
repeat: 3
|
||
|
num_chan: 64
|
||
|
prior_prob: 0.01
|
||
|
num_anchors: 9
|
||
|
gamma: 1.5
|
||
|
alpha: 0.25
|
||
|
delta: 0.1
|
||
|
output_decoder:
|
||
|
score_thresh: 0.05 # originally 0.
|
||
|
nms_thresh: 0.5
|
||
|
pre_nms_top_n: 1000 # originally 5000
|
||
|
detections_per_im: 100
|
||
|
nms_eta: 1.0
|
||
|
|
||
|
AnchorGrid:
|
||
|
anchor_base_scale: 4
|
||
|
num_scales: 3
|
||
|
aspect_ratios: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
|
||
|
|
||
|
LearningRate:
|
||
|
base_lr: 0.16
|
||
|
schedulers:
|
||
|
- !CosineDecayWithSkip
|
||
|
total_steps: 281250
|
||
|
skip_steps: 938
|
||
|
- !LinearWarmup
|
||
|
start_factor: 0.05
|
||
|
steps: 938
|
||
|
|
||
|
OptimizerBuilder:
|
||
|
clip_grad_by_norm: 10.
|
||
|
optimizer:
|
||
|
momentum: 0.9
|
||
|
type: Momentum
|
||
|
regularizer:
|
||
|
factor: 0.00004
|
||
|
type: L2
|
||
|
|
||
|
TrainReader:
|
||
|
inputs_def:
|
||
|
fields: ['image', 'im_id', 'fg_num', 'gt_label', 'gt_target']
|
||
|
dataset:
|
||
|
!COCODataSet
|
||
|
image_dir: train2017
|
||
|
anno_path: annotations/instances_train2017.json
|
||
|
dataset_dir: dataset/coco
|
||
|
sample_transforms:
|
||
|
- !DecodeImage
|
||
|
to_rgb: true
|
||
|
- !RandomFlipImage
|
||
|
prob: 0.5
|
||
|
- !NormalizeImage
|
||
|
is_channel_first: false
|
||
|
is_scale: true
|
||
|
mean: [0.485,0.456,0.406]
|
||
|
std: [0.229, 0.224,0.225]
|
||
|
- !RandomScaledCrop
|
||
|
target_dim: 512
|
||
|
scale_range: [.1, 2.]
|
||
|
interp: 1
|
||
|
- !Permute
|
||
|
to_bgr: false
|
||
|
channel_first: true
|
||
|
- !TargetAssign
|
||
|
image_size: 512
|
||
|
batch_size: 16
|
||
|
shuffle: true
|
||
|
worker_num: 32
|
||
|
bufsize: 16
|
||
|
use_process: true
|
||
|
drop_empty: false
|
||
|
|
||
|
EvalReader:
|
||
|
inputs_def:
|
||
|
fields: ['image', 'im_info', 'im_id']
|
||
|
dataset:
|
||
|
!COCODataSet
|
||
|
image_dir: val2017
|
||
|
anno_path: annotations/instances_val2017.json
|
||
|
dataset_dir: dataset/coco
|
||
|
sample_transforms:
|
||
|
- !DecodeImage
|
||
|
to_rgb: true
|
||
|
with_mixup: false
|
||
|
- !NormalizeImage
|
||
|
is_channel_first: false
|
||
|
is_scale: true
|
||
|
mean: [0.485,0.456,0.406]
|
||
|
std: [0.229, 0.224,0.225]
|
||
|
- !ResizeAndPad
|
||
|
target_dim: 512
|
||
|
interp: 1
|
||
|
- !Permute
|
||
|
channel_first: true
|
||
|
to_bgr: false
|
||
|
drop_empty: false
|
||
|
batch_size: 16
|
||
|
shuffle: false
|
||
|
worker_num: 2
|
||
|
|
||
|
TestReader:
|
||
|
inputs_def:
|
||
|
fields: ['image', 'im_info', 'im_id']
|
||
|
image_shape: [3, 512, 512]
|
||
|
dataset:
|
||
|
!ImageFolder
|
||
|
anno_path: annotations/instances_val2017.json
|
||
|
sample_transforms:
|
||
|
- !DecodeImage
|
||
|
to_rgb: true
|
||
|
with_mixup: false
|
||
|
- !NormalizeImage
|
||
|
is_channel_first: false
|
||
|
is_scale: true
|
||
|
mean: [0.485,0.456,0.406]
|
||
|
std: [0.229, 0.224,0.225]
|
||
|
- !ResizeAndPad
|
||
|
target_dim: 512
|
||
|
interp: 1
|
||
|
- !Permute
|
||
|
channel_first: true
|
||
|
to_bgr: false
|
||
|
batch_size: 16
|
||
|
shuffle: false
|