PulseFocusPlatform/static/tools/train.py

414 lines
15 KiB
Python
Raw Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import time
import numpy as np
import random
import datetime
import six
from collections import deque
from paddle.fluid import profiler
from paddle import fluid
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.optimizer import ExponentialMovingAverage
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
try:
from ppdet.experimental import mixed_precision_context
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader
from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_xpu, check_version, check_config, enable_static_mode
import ppdet.utils.checkpoint as checkpoint
except ImportError as e:
if sys.argv[0].find('static') >= 0:
logger.error("Importing ppdet failed when running static model "
"with error: {}\n"
"please try:\n"
"\t1. run static model under PaddleDetection/static "
"directory\n"
"\t2. run 'pip uninstall ppdet' to uninstall ppdet "
"dynamic version firstly.".format(e))
sys.exit(-1)
else:
raise e
def main():
env = os.environ
FLAGS.dist = 'PADDLE_TRAINER_ID' in env \
and 'PADDLE_TRAINERS_NUM' in env \
and int(env['PADDLE_TRAINERS_NUM']) > 1
num_trainers = int(env.get('PADDLE_TRAINERS_NUM', 1))
if FLAGS.dist:
trainer_id = int(env['PADDLE_TRAINER_ID'])
local_seed = (99 + trainer_id)
random.seed(local_seed)
np.random.seed(local_seed)
if FLAGS.enable_ce:
random.seed(0)
np.random.seed(0)
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
use_xpu = False
if hasattr(cfg, 'use_xpu'):
check_xpu(cfg.use_xpu)
use_xpu = cfg.use_xpu
# check if paddlepaddle version is satisfied
check_version()
assert not (use_xpu and cfg.use_gpu), \
'Can not run on both XPU and GPU'
save_only = getattr(cfg, 'save_prediction_only', False)
if save_only:
raise NotImplementedError('The config file only support prediction,'
' training stage is not implemented now')
main_arch = cfg.architecture
if cfg.use_gpu:
devices_num = fluid.core.get_cuda_device_count()
elif use_xpu:
# ToDo(qingshu): XPU only support single card now
devices_num = 1
else:
devices_num = int(os.environ.get('CPU_NUM', 1))
if cfg.use_gpu and 'FLAGS_selected_gpus' in env:
device_id = int(env['FLAGS_selected_gpus'])
elif use_xpu and 'FLAGS_selected_xpus' in env:
device_id = int(env['FLAGS_selected_xpus'])
else:
device_id = 0
if cfg.use_gpu:
place = fluid.CUDAPlace(device_id)
elif use_xpu:
place = fluid.XPUPlace(device_id)
else:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
lr_builder = create('LearningRate')
optim_builder = create('OptimizerBuilder')
# build program
startup_prog = fluid.Program()
train_prog = fluid.Program()
if FLAGS.enable_ce:
startup_prog.random_seed = 1000
train_prog.random_seed = 1000
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
model = create(main_arch)
if FLAGS.fp16:
assert (getattr(model.backbone, 'norm_type', None)
!= 'affine_channel'), \
'--fp16 currently does not support affine channel, ' \
' please modify backbone settings to use batch norm'
with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
inputs_def = cfg['TrainReader']['inputs_def']
feed_vars, train_loader = model.build_inputs(**inputs_def)
train_fetches = model.train(feed_vars)
loss = train_fetches['loss']
if FLAGS.fp16:
loss *= ctx.get_loss_scale_var()
lr = lr_builder()
optimizer = optim_builder(lr)
optimizer.minimize(loss)
if FLAGS.fp16:
loss /= ctx.get_loss_scale_var()
if 'use_ema' in cfg and cfg['use_ema']:
global_steps = _decay_step_counter()
ema = ExponentialMovingAverage(
cfg['ema_decay'], thres_steps=global_steps)
ema.update()
# parse train fetches
train_keys, train_values, _ = parse_fetches(train_fetches)
train_values.append(lr)
if FLAGS.eval:
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup_prog):
with fluid.unique_name.guard():
model = create(main_arch)
inputs_def = cfg['EvalReader']['inputs_def']
feed_vars, eval_loader = model.build_inputs(**inputs_def)
fetches = model.eval(feed_vars)
eval_prog = eval_prog.clone(True)
eval_reader = create_reader(cfg.EvalReader, devices_num=1)
# When iterable mode, set set_sample_list_generator(eval_reader, place)
eval_loader.set_sample_list_generator(eval_reader)
# parse eval fetches
extra_keys = []
if cfg.metric == 'COCO':
extra_keys = ['im_info', 'im_id', 'im_shape']
if cfg.metric == 'VOC':
extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
if cfg.metric == 'WIDERFACE':
extra_keys = ['im_id', 'im_shape', 'gt_bbox']
eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
extra_keys)
# compile program for multi-devices
build_strategy = fluid.BuildStrategy()
build_strategy.fuse_all_optimizer_ops = False
# only enable sync_bn in multi GPU devices
sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
and cfg.use_gpu
exec_strategy = fluid.ExecutionStrategy()
# iteration number when CompiledProgram tries to drop local execution scopes.
# Set it to be 1 to save memory usages, so that unused variables in
# local execution scopes can be deleted after each iteration.
exec_strategy.num_iteration_per_drop_scope = 1
if FLAGS.dist:
dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
train_prog)
exec_strategy.num_threads = 1
exe.run(startup_prog)
compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
if use_xpu:
compiled_train_prog = train_prog
if FLAGS.eval:
compiled_eval_prog = fluid.CompiledProgram(eval_prog)
if use_xpu:
compiled_eval_prog = eval_prog
fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
ignore_params = cfg.finetune_exclude_pretrained_params \
if 'finetune_exclude_pretrained_params' in cfg else []
start_iter = 0
if FLAGS.resume_checkpoint:
checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
start_iter = checkpoint.global_step()
elif cfg.pretrain_weights and fuse_bn and not ignore_params:
checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
elif cfg.pretrain_weights:
checkpoint.load_params(
exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params)
train_reader = create_reader(
cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num,
cfg,
devices_num=devices_num,
num_trainers=num_trainers)
# When iterable mode, set set_sample_list_generator(train_reader, place)
train_loader.set_sample_list_generator(train_reader)
# whether output bbox is normalized in model output layer
is_bbox_normalized = False
if hasattr(model, 'is_bbox_normalized') and \
callable(model.is_bbox_normalized):
is_bbox_normalized = model.is_bbox_normalized()
# if map_type not set, use default 11point, only use in VOC eval
map_type = cfg.map_type if 'map_type' in cfg else '11point'
train_stats = TrainingStats(cfg.log_iter, train_keys)
train_loader.start()
start_time = time.time()
end_time = time.time()
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(cfg.save_dir, cfg_name)
time_stat = deque(maxlen=cfg.log_iter)
best_box_ap_list = [0.0, 0] #[map, iter]
# use VisualDL to log data
if FLAGS.use_vdl:
assert six.PY3, "VisualDL requires Python >= 3.5"
from visualdl import LogWriter
vdl_writer = LogWriter(FLAGS.vdl_log_dir)
vdl_loss_step = 0
vdl_mAP_step = 0
for it in range(start_iter, cfg.max_iters):
start_time = end_time
end_time = time.time()
time_stat.append(end_time - start_time)
time_cost = np.mean(time_stat)
eta_sec = (cfg.max_iters - it) * time_cost
eta = str(datetime.timedelta(seconds=int(eta_sec)))
outs = exe.run(compiled_train_prog, fetch_list=train_values)
stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}
# use vdl-paddle to log loss
if FLAGS.use_vdl:
if it % cfg.log_iter == 0:
for loss_name, loss_value in stats.items():
vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step)
vdl_loss_step += 1
train_stats.update(stats)
logs = train_stats.log()
if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
ips = float(cfg['TrainReader']['batch_size']) / time_cost
strs = 'iter: {}, lr: {:.6f}, {}, eta: {}, batch_cost: {:.5f} sec, ips: {:.5f} images/sec'.format(
it, np.mean(outs[-1]), logs, eta, time_cost, ips)
logger.info(strs)
# NOTE : profiler tools, used for benchmark
if FLAGS.is_profiler and it == 5:
profiler.start_profiler("All")
elif FLAGS.is_profiler and it == 10:
profiler.stop_profiler("total", FLAGS.profiler_path)
return
if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
and (not FLAGS.dist or trainer_id == 0):
save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
if 'use_ema' in cfg and cfg['use_ema']:
exe.run(ema.apply_program)
checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))
if FLAGS.eval:
# evaluation
resolution = None
if 'Mask' in cfg.architecture:
resolution = model.mask_head.resolution
results = eval_run(
exe,
compiled_eval_prog,
eval_loader,
eval_keys,
eval_values,
eval_cls,
cfg,
resolution=resolution)
box_ap_stats = eval_results(
results, cfg.metric, cfg.num_classes, resolution,
is_bbox_normalized, FLAGS.output_eval, map_type,
cfg['EvalReader']['dataset'])
# use vdl_paddle to log mAP
if FLAGS.use_vdl:
vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step)
vdl_mAP_step += 1
if box_ap_stats[0] > best_box_ap_list[0]:
best_box_ap_list[0] = box_ap_stats[0]
best_box_ap_list[1] = it
checkpoint.save(exe, train_prog,
os.path.join(save_dir, "best_model"))
logger.info("Best test box ap: {}, in iter: {}".format(
best_box_ap_list[0], best_box_ap_list[1]))
if 'use_ema' in cfg and cfg['use_ema']:
exe.run(ema.restore_program)
train_loader.reset()
if __name__ == '__main__':
enable_static_mode()
parser = ArgsParser()
parser.add_argument(
"-r",
"--resume_checkpoint",
default=None,
type=str,
help="Checkpoint path for resuming training.")
parser.add_argument(
"--fp16",
action='store_true',
default=False,
help="Enable mixed precision training.")
parser.add_argument(
"--loss_scale",
default=8.,
type=float,
help="Mixed precision training loss scale.")
parser.add_argument(
"--eval",
action='store_true',
default=False,
help="Whether to perform evaluation in train")
parser.add_argument(
"--output_eval",
default=None,
type=str,
help="Evaluation directory, default is current directory.")
parser.add_argument(
"--use_vdl",
type=bool,
default=False,
help="whether to record the data to VisualDL.")
parser.add_argument(
'--vdl_log_dir',
type=str,
default="vdl_log_dir/scalar",
help='VisualDL logging directory for scalar.')
parser.add_argument(
"--enable_ce",
type=bool,
default=False,
help="If set True, enable continuous evaluation job."
"This flag is only used for internal test.")
#NOTE:args for profiler tools, used for benchmark
parser.add_argument(
'--is_profiler',
type=int,
default=0,
help='The switch of profiler tools. (used for benchmark)')
parser.add_argument(
'--profiler_path',
type=str,
default="./detection.profiler",
help='The profiler output file path. (used for benchmark)')
FLAGS = parser.parse_args()
main()