forked from PulseFocusPlatform/PulseFocusPlatform
396 lines
14 KiB
Python
396 lines
14 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
from __future__ import unicode_literals
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
import numpy as np
|
||
|
import itertools
|
||
|
|
||
|
from ppdet.utils.logger import setup_logger
|
||
|
logger = setup_logger(__name__)
|
||
|
|
||
|
__all__ = [
|
||
|
'draw_pr_curve',
|
||
|
'bbox_area',
|
||
|
'jaccard_overlap',
|
||
|
'prune_zero_padding',
|
||
|
'DetectionMAP',
|
||
|
'ap_per_class',
|
||
|
'compute_ap',
|
||
|
]
|
||
|
|
||
|
|
||
|
def draw_pr_curve(precision,
|
||
|
recall,
|
||
|
iou=0.5,
|
||
|
out_dir='pr_curve',
|
||
|
file_name='precision_recall_curve.jpg'):
|
||
|
if not os.path.exists(out_dir):
|
||
|
os.makedirs(out_dir)
|
||
|
output_path = os.path.join(out_dir, file_name)
|
||
|
try:
|
||
|
import matplotlib.pyplot as plt
|
||
|
except Exception as e:
|
||
|
logger.error('Matplotlib not found, plaese install matplotlib.'
|
||
|
'for example: `pip install matplotlib`.')
|
||
|
raise e
|
||
|
plt.cla()
|
||
|
plt.figure('P-R Curve')
|
||
|
plt.title('Precision/Recall Curve(IoU={})'.format(iou))
|
||
|
plt.xlabel('Recall')
|
||
|
plt.ylabel('Precision')
|
||
|
plt.grid(True)
|
||
|
plt.plot(recall, precision)
|
||
|
plt.savefig(output_path)
|
||
|
|
||
|
|
||
|
def bbox_area(bbox, is_bbox_normalized):
|
||
|
"""
|
||
|
Calculate area of a bounding box
|
||
|
"""
|
||
|
norm = 1. - float(is_bbox_normalized)
|
||
|
width = bbox[2] - bbox[0] + norm
|
||
|
height = bbox[3] - bbox[1] + norm
|
||
|
return width * height
|
||
|
|
||
|
|
||
|
def jaccard_overlap(pred, gt, is_bbox_normalized=False):
|
||
|
"""
|
||
|
Calculate jaccard overlap ratio between two bounding box
|
||
|
"""
|
||
|
if pred[0] >= gt[2] or pred[2] <= gt[0] or \
|
||
|
pred[1] >= gt[3] or pred[3] <= gt[1]:
|
||
|
return 0.
|
||
|
inter_xmin = max(pred[0], gt[0])
|
||
|
inter_ymin = max(pred[1], gt[1])
|
||
|
inter_xmax = min(pred[2], gt[2])
|
||
|
inter_ymax = min(pred[3], gt[3])
|
||
|
inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
|
||
|
is_bbox_normalized)
|
||
|
pred_size = bbox_area(pred, is_bbox_normalized)
|
||
|
gt_size = bbox_area(gt, is_bbox_normalized)
|
||
|
overlap = float(inter_size) / (pred_size + gt_size - inter_size)
|
||
|
return overlap
|
||
|
|
||
|
|
||
|
def prune_zero_padding(gt_box, gt_label, difficult=None):
|
||
|
valid_cnt = 0
|
||
|
for i in range(len(gt_box)):
|
||
|
if gt_box[i, 0] == 0 and gt_box[i, 1] == 0 and \
|
||
|
gt_box[i, 2] == 0 and gt_box[i, 3] == 0:
|
||
|
break
|
||
|
valid_cnt += 1
|
||
|
return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
|
||
|
if difficult is not None else None)
|
||
|
|
||
|
|
||
|
class DetectionMAP(object):
|
||
|
"""
|
||
|
Calculate detection mean average precision.
|
||
|
Currently support two types: 11point and integral
|
||
|
|
||
|
Args:
|
||
|
class_num (int): The class number.
|
||
|
overlap_thresh (float): The threshold of overlap
|
||
|
ratio between prediction bounding box and
|
||
|
ground truth bounding box for deciding
|
||
|
true/false positive. Default 0.5.
|
||
|
map_type (str): Calculation method of mean average
|
||
|
precision, currently support '11point' and
|
||
|
'integral'. Default '11point'.
|
||
|
is_bbox_normalized (bool): Whether bounding boxes
|
||
|
is normalized to range[0, 1]. Default False.
|
||
|
evaluate_difficult (bool): Whether to evaluate
|
||
|
difficult bounding boxes. Default False.
|
||
|
catid2name (dict): Mapping between category id and category name.
|
||
|
classwise (bool): Whether per-category AP and draw
|
||
|
P-R Curve or not.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
class_num,
|
||
|
overlap_thresh=0.5,
|
||
|
map_type='11point',
|
||
|
is_bbox_normalized=False,
|
||
|
evaluate_difficult=False,
|
||
|
catid2name=None,
|
||
|
classwise=False):
|
||
|
self.class_num = class_num
|
||
|
self.overlap_thresh = overlap_thresh
|
||
|
assert map_type in ['11point', 'integral'], \
|
||
|
"map_type currently only support '11point' "\
|
||
|
"and 'integral'"
|
||
|
self.map_type = map_type
|
||
|
self.is_bbox_normalized = is_bbox_normalized
|
||
|
self.evaluate_difficult = evaluate_difficult
|
||
|
self.classwise = classwise
|
||
|
self.classes = []
|
||
|
for cname in catid2name.values():
|
||
|
self.classes.append(cname)
|
||
|
self.reset()
|
||
|
|
||
|
def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
|
||
|
"""
|
||
|
Update metric statics from given prediction and ground
|
||
|
truth infomations.
|
||
|
"""
|
||
|
if difficult is None:
|
||
|
difficult = np.zeros_like(gt_label)
|
||
|
|
||
|
# record class gt count
|
||
|
for gtl, diff in zip(gt_label, difficult):
|
||
|
if self.evaluate_difficult or int(diff) == 0:
|
||
|
self.class_gt_counts[int(np.array(gtl))] += 1
|
||
|
|
||
|
# record class score positive
|
||
|
visited = [False] * len(gt_label)
|
||
|
for b, s, l in zip(bbox, score, label):
|
||
|
xmin, ymin, xmax, ymax = b.tolist()
|
||
|
pred = [xmin, ymin, xmax, ymax]
|
||
|
max_idx = -1
|
||
|
max_overlap = -1.0
|
||
|
for i, gl in enumerate(gt_label):
|
||
|
if int(gl) == int(l):
|
||
|
overlap = jaccard_overlap(pred, gt_box[i],
|
||
|
self.is_bbox_normalized)
|
||
|
if overlap > max_overlap:
|
||
|
max_overlap = overlap
|
||
|
max_idx = i
|
||
|
|
||
|
if max_overlap > self.overlap_thresh:
|
||
|
if self.evaluate_difficult or \
|
||
|
int(np.array(difficult[max_idx])) == 0:
|
||
|
if not visited[max_idx]:
|
||
|
self.class_score_poss[int(l)].append([s, 1.0])
|
||
|
visited[max_idx] = True
|
||
|
else:
|
||
|
self.class_score_poss[int(l)].append([s, 0.0])
|
||
|
else:
|
||
|
self.class_score_poss[int(l)].append([s, 0.0])
|
||
|
|
||
|
def reset(self):
|
||
|
"""
|
||
|
Reset metric statics
|
||
|
"""
|
||
|
self.class_score_poss = [[] for _ in range(self.class_num)]
|
||
|
self.class_gt_counts = [0] * self.class_num
|
||
|
self.mAP = None
|
||
|
|
||
|
def accumulate(self):
|
||
|
"""
|
||
|
Accumulate metric results and calculate mAP
|
||
|
"""
|
||
|
mAP = 0.
|
||
|
valid_cnt = 0
|
||
|
eval_results = []
|
||
|
for score_pos, count in zip(self.class_score_poss,
|
||
|
self.class_gt_counts):
|
||
|
if count == 0: continue
|
||
|
if len(score_pos) == 0:
|
||
|
valid_cnt += 1
|
||
|
continue
|
||
|
|
||
|
accum_tp_list, accum_fp_list = \
|
||
|
self._get_tp_fp_accum(score_pos)
|
||
|
precision = []
|
||
|
recall = []
|
||
|
for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
|
||
|
precision.append(float(ac_tp) / (ac_tp + ac_fp))
|
||
|
recall.append(float(ac_tp) / count)
|
||
|
|
||
|
one_class_ap = 0.0
|
||
|
if self.map_type == '11point':
|
||
|
max_precisions = [0.] * 11
|
||
|
start_idx = len(precision) - 1
|
||
|
for j in range(10, -1, -1):
|
||
|
for i in range(start_idx, -1, -1):
|
||
|
if recall[i] < float(j) / 10.:
|
||
|
start_idx = i
|
||
|
if j > 0:
|
||
|
max_precisions[j - 1] = max_precisions[j]
|
||
|
break
|
||
|
else:
|
||
|
if max_precisions[j] < precision[i]:
|
||
|
max_precisions[j] = precision[i]
|
||
|
one_class_ap = sum(max_precisions) / 11.
|
||
|
mAP += one_class_ap
|
||
|
valid_cnt += 1
|
||
|
elif self.map_type == 'integral':
|
||
|
import math
|
||
|
prev_recall = 0.
|
||
|
for i in range(len(precision)):
|
||
|
recall_gap = math.fabs(recall[i] - prev_recall)
|
||
|
if recall_gap > 1e-6:
|
||
|
one_class_ap += precision[i] * recall_gap
|
||
|
prev_recall = recall[i]
|
||
|
mAP += one_class_ap
|
||
|
valid_cnt += 1
|
||
|
else:
|
||
|
logger.error("Unspported mAP type {}".format(self.map_type))
|
||
|
sys.exit(1)
|
||
|
eval_results.append({
|
||
|
'class': self.classes[valid_cnt - 1],
|
||
|
'ap': one_class_ap,
|
||
|
'precision': precision,
|
||
|
'recall': recall,
|
||
|
})
|
||
|
self.eval_results = eval_results
|
||
|
self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
|
||
|
|
||
|
def get_map(self):
|
||
|
"""
|
||
|
Get mAP result
|
||
|
"""
|
||
|
if self.mAP is None:
|
||
|
logger.error("mAP is not calculated.")
|
||
|
if self.classwise:
|
||
|
# Compute per-category AP and PR curve
|
||
|
try:
|
||
|
from terminaltables import AsciiTable
|
||
|
except Exception as e:
|
||
|
logger.error(
|
||
|
'terminaltables not found, plaese install terminaltables. '
|
||
|
'for example: `pip install terminaltables`.')
|
||
|
raise e
|
||
|
results_per_category = []
|
||
|
for eval_result in self.eval_results:
|
||
|
results_per_category.append(
|
||
|
(str(eval_result['class']),
|
||
|
'{:0.3f}'.format(float(eval_result['ap']))))
|
||
|
draw_pr_curve(
|
||
|
eval_result['precision'],
|
||
|
eval_result['recall'],
|
||
|
out_dir='voc_pr_curve',
|
||
|
file_name='{}_precision_recall_curve.jpg'.format(
|
||
|
eval_result['class']))
|
||
|
|
||
|
num_columns = min(6, len(results_per_category) * 2)
|
||
|
results_flatten = list(itertools.chain(*results_per_category))
|
||
|
headers = ['category', 'AP'] * (num_columns // 2)
|
||
|
results_2d = itertools.zip_longest(
|
||
|
*[results_flatten[i::num_columns] for i in range(num_columns)])
|
||
|
table_data = [headers]
|
||
|
table_data += [result for result in results_2d]
|
||
|
table = AsciiTable(table_data)
|
||
|
logger.info('Per-category of VOC AP: \n{}'.format(table.table))
|
||
|
logger.info(
|
||
|
"per-category PR curve has output to voc_pr_curve folder.")
|
||
|
return self.mAP
|
||
|
|
||
|
def _get_tp_fp_accum(self, score_pos_list):
|
||
|
"""
|
||
|
Calculate accumulating true/false positive results from
|
||
|
[score, pos] records
|
||
|
"""
|
||
|
sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
|
||
|
accum_tp = 0
|
||
|
accum_fp = 0
|
||
|
accum_tp_list = []
|
||
|
accum_fp_list = []
|
||
|
for (score, pos) in sorted_list:
|
||
|
accum_tp += int(pos)
|
||
|
accum_tp_list.append(accum_tp)
|
||
|
accum_fp += 1 - int(pos)
|
||
|
accum_fp_list.append(accum_fp)
|
||
|
return accum_tp_list, accum_fp_list
|
||
|
|
||
|
|
||
|
def ap_per_class(tp, conf, pred_cls, target_cls):
|
||
|
"""
|
||
|
Computes the average precision, given the recall and precision curves.
|
||
|
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||
|
|
||
|
Args:
|
||
|
tp (list): True positives.
|
||
|
conf (list): Objectness value from 0-1.
|
||
|
pred_cls (list): Predicted object classes.
|
||
|
target_cls (list): Target object classes.
|
||
|
"""
|
||
|
tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(
|
||
|
pred_cls), np.array(target_cls)
|
||
|
|
||
|
# Sort by objectness
|
||
|
i = np.argsort(-conf)
|
||
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||
|
|
||
|
# Find unique classes
|
||
|
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
|
||
|
|
||
|
# Create Precision-Recall curve and compute AP for each class
|
||
|
ap, p, r = [], [], []
|
||
|
for c in unique_classes:
|
||
|
i = pred_cls == c
|
||
|
n_gt = sum(target_cls == c) # Number of ground truth objects
|
||
|
n_p = sum(i) # Number of predicted objects
|
||
|
|
||
|
if (n_p == 0) and (n_gt == 0):
|
||
|
continue
|
||
|
elif (n_p == 0) or (n_gt == 0):
|
||
|
ap.append(0)
|
||
|
r.append(0)
|
||
|
p.append(0)
|
||
|
else:
|
||
|
# Accumulate FPs and TPs
|
||
|
fpc = np.cumsum(1 - tp[i])
|
||
|
tpc = np.cumsum(tp[i])
|
||
|
|
||
|
# Recall
|
||
|
recall_curve = tpc / (n_gt + 1e-16)
|
||
|
r.append(tpc[-1] / (n_gt + 1e-16))
|
||
|
|
||
|
# Precision
|
||
|
precision_curve = tpc / (tpc + fpc)
|
||
|
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
|
||
|
|
||
|
# AP from recall-precision curve
|
||
|
ap.append(compute_ap(recall_curve, precision_curve))
|
||
|
|
||
|
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(
|
||
|
p)
|
||
|
|
||
|
|
||
|
def compute_ap(recall, precision):
|
||
|
"""
|
||
|
Computes the average precision, given the recall and precision curves.
|
||
|
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
|
||
|
|
||
|
Args:
|
||
|
recall (list): The recall curve.
|
||
|
precision (list): The precision curve.
|
||
|
|
||
|
Returns:
|
||
|
The average precision as computed in py-faster-rcnn.
|
||
|
"""
|
||
|
# correct AP calculation
|
||
|
# first append sentinel values at the end
|
||
|
mrec = np.concatenate(([0.], recall, [1.]))
|
||
|
mpre = np.concatenate(([0.], precision, [0.]))
|
||
|
|
||
|
# compute the precision envelope
|
||
|
for i in range(mpre.size - 1, 0, -1):
|
||
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
||
|
|
||
|
# to calculate area under PR curve, look for points
|
||
|
# where X axis (recall) changes value
|
||
|
i = np.where(mrec[1:] != mrec[:-1])[0]
|
||
|
|
||
|
# and sum (\Delta recall) * prec
|
||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
||
|
return ap
|