PulseFocusPlatform/ppdet/modeling/necks/centernet_fpn.py

184 lines
6.4 KiB
Python
Raw Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import math
import paddle
import paddle.nn as nn
from paddle.nn.initializer import KaimingUniform
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec
def fill_up_weights(up):
weight = up.weight
f = math.ceil(weight.shape[2] / 2)
c = (2 * f - 1 - f % 2) / (2. * f)
for i in range(weight.shape[2]):
for j in range(weight.shape[3]):
weight[0, 0, i, j] = \
(1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
for c in range(1, weight.shape[0]):
weight[c, 0, :, :] = weight[0, 0, :, :]
class IDAUp(nn.Layer):
def __init__(self, ch_ins, ch_out, up_strides, dcn_v2=True):
super(IDAUp, self).__init__()
for i in range(1, len(ch_ins)):
ch_in = ch_ins[i]
up_s = int(up_strides[i])
proj = nn.Sequential(
ConvNormLayer(
ch_in,
ch_out,
filter_size=3,
stride=1,
use_dcn=dcn_v2,
bias_on=dcn_v2,
norm_decay=None,
dcn_lr_scale=1.,
dcn_regularizer=None),
nn.ReLU())
node = nn.Sequential(
ConvNormLayer(
ch_out,
ch_out,
filter_size=3,
stride=1,
use_dcn=dcn_v2,
bias_on=dcn_v2,
norm_decay=None,
dcn_lr_scale=1.,
dcn_regularizer=None),
nn.ReLU())
param_attr = paddle.ParamAttr(initializer=KaimingUniform())
up = nn.Conv2DTranspose(
ch_out,
ch_out,
kernel_size=up_s * 2,
weight_attr=param_attr,
stride=up_s,
padding=up_s // 2,
groups=ch_out,
bias_attr=False)
# TODO: uncomment fill_up_weights
#fill_up_weights(up)
setattr(self, 'proj_' + str(i), proj)
setattr(self, 'up_' + str(i), up)
setattr(self, 'node_' + str(i), node)
def forward(self, inputs, start_level, end_level):
for i in range(start_level + 1, end_level):
upsample = getattr(self, 'up_' + str(i - start_level))
project = getattr(self, 'proj_' + str(i - start_level))
inputs[i] = project(inputs[i])
inputs[i] = upsample(inputs[i])
node = getattr(self, 'node_' + str(i - start_level))
inputs[i] = node(paddle.add(inputs[i], inputs[i - 1]))
class DLAUp(nn.Layer):
def __init__(self, start_level, channels, scales, ch_in=None, dcn_v2=True):
super(DLAUp, self).__init__()
self.start_level = start_level
if ch_in is None:
ch_in = channels
self.channels = channels
channels = list(channels)
scales = np.array(scales, dtype=int)
for i in range(len(channels) - 1):
j = -i - 2
setattr(
self,
'ida_{}'.format(i),
IDAUp(
ch_in[j:],
channels[j],
scales[j:] // scales[j],
dcn_v2=dcn_v2))
scales[j + 1:] = scales[j]
ch_in[j + 1:] = [channels[j] for _ in channels[j + 1:]]
def forward(self, inputs):
out = [inputs[-1]] # start with 32
for i in range(len(inputs) - self.start_level - 1):
ida = getattr(self, 'ida_{}'.format(i))
ida(inputs, len(inputs) - i - 2, len(inputs))
out.insert(0, inputs[-1])
return out
@register
@serializable
class CenterNetDLAFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[16, 32, 64, 128, 256, 512] by default, means the channels of DLA-34
down_ratio (int): the down ratio from images to heatmap, 4 by default
last_level (int): the last level of input feature fed into the upsamplng block
out_channel (int): the channel of the output feature, 0 by default means
the channel of the input feature whose down ratio is `down_ratio`
dcn_v2 (bool): whether use the DCNv2, true by default
"""
def __init__(self,
in_channels,
down_ratio=4,
last_level=5,
out_channel=0,
dcn_v2=True):
super(CenterNetDLAFPN, self).__init__()
self.first_level = int(np.log2(down_ratio))
self.down_ratio = down_ratio
self.last_level = last_level
scales = [2**i for i in range(len(in_channels[self.first_level:]))]
self.dla_up = DLAUp(
self.first_level,
in_channels[self.first_level:],
scales,
dcn_v2=dcn_v2)
self.out_channel = out_channel
if out_channel == 0:
self.out_channel = in_channels[self.first_level]
self.ida_up = IDAUp(
in_channels[self.first_level:self.last_level],
self.out_channel,
[2**i for i in range(self.last_level - self.first_level)],
dcn_v2=dcn_v2)
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape]}
def forward(self, body_feats):
dla_up_feats = self.dla_up(body_feats)
ida_up_feats = []
for i in range(self.last_level - self.first_level):
ida_up_feats.append(dla_up_feats[i].clone())
self.ida_up(ida_up_feats, 0, len(ida_up_feats))
return ida_up_feats[-1]
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, stride=self.down_ratio)]