forked from PulseFocusPlatform/PulseFocusPlatform
448 lines
18 KiB
Python
448 lines
18 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from ppdet.core.workspace import register
|
||
|
from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly
|
||
|
from ppdet.modeling.layers import TTFBox
|
||
|
try:
|
||
|
from collections.abc import Sequence
|
||
|
except Exception:
|
||
|
from collections import Sequence
|
||
|
|
||
|
__all__ = [
|
||
|
'BBoxPostProcess',
|
||
|
'MaskPostProcess',
|
||
|
'FCOSPostProcess',
|
||
|
'S2ANetBBoxPostProcess',
|
||
|
'JDEBBoxPostProcess',
|
||
|
'CenterNetPostProcess',
|
||
|
]
|
||
|
|
||
|
|
||
|
@register
|
||
|
class BBoxPostProcess(object):
|
||
|
__shared__ = ['num_classes']
|
||
|
__inject__ = ['decode', 'nms']
|
||
|
|
||
|
def __init__(self, num_classes=80, decode=None, nms=None):
|
||
|
super(BBoxPostProcess, self).__init__()
|
||
|
self.num_classes = num_classes
|
||
|
self.decode = decode
|
||
|
self.nms = nms
|
||
|
|
||
|
def __call__(self, head_out, rois, im_shape, scale_factor):
|
||
|
"""
|
||
|
Decode the bbox and do NMS if needed.
|
||
|
|
||
|
Args:
|
||
|
head_out (tuple): bbox_pred and cls_prob of bbox_head output.
|
||
|
rois (tuple): roi and rois_num of rpn_head output.
|
||
|
im_shape (Tensor): The shape of the input image.
|
||
|
scale_factor (Tensor): The scale factor of the input image.
|
||
|
Returns:
|
||
|
bbox_pred (Tensor): The output prediction with shape [N, 6], including
|
||
|
labels, scores and bboxes. The size of bboxes are corresponding
|
||
|
to the input image, the bboxes may be used in other branch.
|
||
|
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||
|
shape [1], and is N.
|
||
|
"""
|
||
|
if self.nms is not None:
|
||
|
bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
|
||
|
bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
|
||
|
else:
|
||
|
bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
|
||
|
scale_factor)
|
||
|
return bbox_pred, bbox_num
|
||
|
|
||
|
def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
|
||
|
"""
|
||
|
Rescale, clip and filter the bbox from the output of NMS to
|
||
|
get final prediction.
|
||
|
|
||
|
Notes:
|
||
|
Currently only support bs = 1.
|
||
|
|
||
|
Args:
|
||
|
bboxes (Tensor): The output bboxes with shape [N, 6] after decode
|
||
|
and NMS, including labels, scores and bboxes.
|
||
|
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||
|
shape [1], and is N.
|
||
|
im_shape (Tensor): The shape of the input image.
|
||
|
scale_factor (Tensor): The scale factor of the input image.
|
||
|
Returns:
|
||
|
pred_result (Tensor): The final prediction results with shape [N, 6]
|
||
|
including labels, scores and bboxes.
|
||
|
"""
|
||
|
|
||
|
if bboxes.shape[0] == 0:
|
||
|
bboxes = paddle.to_tensor(
|
||
|
np.array(
|
||
|
[[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
|
||
|
bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
|
||
|
|
||
|
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
|
||
|
|
||
|
origin_shape_list = []
|
||
|
scale_factor_list = []
|
||
|
# scale_factor: scale_y, scale_x
|
||
|
for i in range(bbox_num.shape[0]):
|
||
|
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
|
||
|
[bbox_num[i], 2])
|
||
|
scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
|
||
|
scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
|
||
|
expand_scale = paddle.expand(scale, [bbox_num[i], 4])
|
||
|
origin_shape_list.append(expand_shape)
|
||
|
scale_factor_list.append(expand_scale)
|
||
|
|
||
|
self.origin_shape_list = paddle.concat(origin_shape_list)
|
||
|
scale_factor_list = paddle.concat(scale_factor_list)
|
||
|
|
||
|
# bboxes: [N, 6], label, score, bbox
|
||
|
pred_label = bboxes[:, 0:1]
|
||
|
pred_score = bboxes[:, 1:2]
|
||
|
pred_bbox = bboxes[:, 2:]
|
||
|
# rescale bbox to original image
|
||
|
scaled_bbox = pred_bbox / scale_factor_list
|
||
|
origin_h = self.origin_shape_list[:, 0]
|
||
|
origin_w = self.origin_shape_list[:, 1]
|
||
|
zeros = paddle.zeros_like(origin_h)
|
||
|
# clip bbox to [0, original_size]
|
||
|
x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
|
||
|
y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
|
||
|
x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
|
||
|
y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
|
||
|
pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
|
||
|
# filter empty bbox
|
||
|
keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
|
||
|
keep_mask = paddle.unsqueeze(keep_mask, [1])
|
||
|
pred_label = paddle.where(keep_mask, pred_label,
|
||
|
paddle.ones_like(pred_label) * -1)
|
||
|
pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
|
||
|
return pred_result
|
||
|
|
||
|
def get_origin_shape(self, ):
|
||
|
return self.origin_shape_list
|
||
|
|
||
|
|
||
|
@register
|
||
|
class MaskPostProcess(object):
|
||
|
def __init__(self, binary_thresh=0.5):
|
||
|
super(MaskPostProcess, self).__init__()
|
||
|
self.binary_thresh = binary_thresh
|
||
|
|
||
|
def paste_mask(self, masks, boxes, im_h, im_w):
|
||
|
"""
|
||
|
Paste the mask prediction to the original image.
|
||
|
"""
|
||
|
x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
|
||
|
masks = paddle.unsqueeze(masks, [0, 1])
|
||
|
img_y = paddle.arange(0, im_h, dtype='float32') + 0.5
|
||
|
img_x = paddle.arange(0, im_w, dtype='float32') + 0.5
|
||
|
img_y = (img_y - y0) / (y1 - y0) * 2 - 1
|
||
|
img_x = (img_x - x0) / (x1 - x0) * 2 - 1
|
||
|
img_x = paddle.unsqueeze(img_x, [1])
|
||
|
img_y = paddle.unsqueeze(img_y, [2])
|
||
|
N = boxes.shape[0]
|
||
|
|
||
|
gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]])
|
||
|
gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]])
|
||
|
grid = paddle.stack([gx, gy], axis=3)
|
||
|
img_masks = F.grid_sample(masks, grid, align_corners=False)
|
||
|
return img_masks[:, 0]
|
||
|
|
||
|
def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
|
||
|
"""
|
||
|
Decode the mask_out and paste the mask to the origin image.
|
||
|
|
||
|
Args:
|
||
|
mask_out (Tensor): mask_head output with shape [N, 28, 28].
|
||
|
bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
|
||
|
and NMS, including labels, scores and bboxes.
|
||
|
bbox_num (Tensor): The number of prediction boxes of each batch with
|
||
|
shape [1], and is N.
|
||
|
origin_shape (Tensor): The origin shape of the input image, the tensor
|
||
|
shape is [N, 2], and each row is [h, w].
|
||
|
Returns:
|
||
|
pred_result (Tensor): The final prediction mask results with shape
|
||
|
[N, h, w] in binary mask style.
|
||
|
"""
|
||
|
num_mask = mask_out.shape[0]
|
||
|
origin_shape = paddle.cast(origin_shape, 'int32')
|
||
|
# TODO: support bs > 1 and mask output dtype is bool
|
||
|
pred_result = paddle.zeros(
|
||
|
[num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
|
||
|
if bbox_num == 1 and bboxes[0][0] == -1:
|
||
|
return pred_result
|
||
|
|
||
|
# TODO: optimize chunk paste
|
||
|
pred_result = []
|
||
|
for i in range(bboxes.shape[0]):
|
||
|
im_h, im_w = origin_shape[i][0], origin_shape[i][1]
|
||
|
pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h,
|
||
|
im_w)
|
||
|
pred_mask = pred_mask >= self.binary_thresh
|
||
|
pred_mask = paddle.cast(pred_mask, 'int32')
|
||
|
pred_result.append(pred_mask)
|
||
|
pred_result = paddle.concat(pred_result)
|
||
|
return pred_result
|
||
|
|
||
|
|
||
|
@register
|
||
|
class FCOSPostProcess(object):
|
||
|
__inject__ = ['decode', 'nms']
|
||
|
|
||
|
def __init__(self, decode=None, nms=None):
|
||
|
super(FCOSPostProcess, self).__init__()
|
||
|
self.decode = decode
|
||
|
self.nms = nms
|
||
|
|
||
|
def __call__(self, fcos_head_outs, scale_factor):
|
||
|
"""
|
||
|
Decode the bbox and do NMS in FCOS.
|
||
|
"""
|
||
|
locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
|
||
|
bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
|
||
|
centerness, scale_factor)
|
||
|
bbox_pred, bbox_num, _ = self.nms(bboxes, score)
|
||
|
return bbox_pred, bbox_num
|
||
|
|
||
|
|
||
|
@register
|
||
|
class S2ANetBBoxPostProcess(nn.Layer):
|
||
|
__shared__ = ['num_classes']
|
||
|
__inject__ = ['nms']
|
||
|
|
||
|
def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
|
||
|
super(S2ANetBBoxPostProcess, self).__init__()
|
||
|
self.num_classes = num_classes
|
||
|
self.nms_pre = nms_pre
|
||
|
self.min_bbox_size = min_bbox_size
|
||
|
self.nms = nms
|
||
|
self.origin_shape_list = []
|
||
|
self.fake_pred_cls_score_bbox = paddle.to_tensor(
|
||
|
np.array(
|
||
|
[[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
|
||
|
dtype='float32'))
|
||
|
self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
|
||
|
|
||
|
def forward(self, pred_scores, pred_bboxes):
|
||
|
"""
|
||
|
pred_scores : [N, M] score
|
||
|
pred_bboxes : [N, 5] xc, yc, w, h, a
|
||
|
im_shape : [N, 2] im_shape
|
||
|
scale_factor : [N, 2] scale_factor
|
||
|
"""
|
||
|
pred_ploys0 = rbox2poly(pred_bboxes)
|
||
|
pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
|
||
|
|
||
|
# pred_scores [NA, 16] --> [16, NA]
|
||
|
pred_scores0 = paddle.transpose(pred_scores, [1, 0])
|
||
|
pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
|
||
|
|
||
|
pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
|
||
|
self.num_classes)
|
||
|
# Prevent empty bbox_pred from decode or NMS.
|
||
|
# Bboxes and score before NMS may be empty due to the score threshold.
|
||
|
if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
|
||
|
1] <= 1:
|
||
|
pred_cls_score_bbox = self.fake_pred_cls_score_bbox
|
||
|
bbox_num = self.fake_bbox_num
|
||
|
|
||
|
pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
|
||
|
return pred_cls_score_bbox, bbox_num
|
||
|
|
||
|
def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
|
||
|
"""
|
||
|
Rescale, clip and filter the bbox from the output of NMS to
|
||
|
get final prediction.
|
||
|
Args:
|
||
|
bboxes(Tensor): bboxes [N, 10]
|
||
|
bbox_num(Tensor): bbox_num
|
||
|
im_shape(Tensor): [1 2]
|
||
|
scale_factor(Tensor): [1 2]
|
||
|
Returns:
|
||
|
bbox_pred(Tensor): The output is the prediction with shape [N, 8]
|
||
|
including labels, scores and bboxes. The size of
|
||
|
bboxes are corresponding to the original image.
|
||
|
"""
|
||
|
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
|
||
|
|
||
|
origin_shape_list = []
|
||
|
scale_factor_list = []
|
||
|
# scale_factor: scale_y, scale_x
|
||
|
for i in range(bbox_num.shape[0]):
|
||
|
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
|
||
|
[bbox_num[i], 2])
|
||
|
scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
|
||
|
scale = paddle.concat([
|
||
|
scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
|
||
|
scale_y
|
||
|
])
|
||
|
expand_scale = paddle.expand(scale, [bbox_num[i], 8])
|
||
|
origin_shape_list.append(expand_shape)
|
||
|
scale_factor_list.append(expand_scale)
|
||
|
|
||
|
origin_shape_list = paddle.concat(origin_shape_list)
|
||
|
scale_factor_list = paddle.concat(scale_factor_list)
|
||
|
|
||
|
# bboxes: [N, 10], label, score, bbox
|
||
|
pred_label_score = bboxes[:, 0:2]
|
||
|
pred_bbox = bboxes[:, 2:]
|
||
|
|
||
|
# rescale bbox to original image
|
||
|
pred_bbox = pred_bbox.reshape([-1, 8])
|
||
|
scaled_bbox = pred_bbox / scale_factor_list
|
||
|
origin_h = origin_shape_list[:, 0]
|
||
|
origin_w = origin_shape_list[:, 1]
|
||
|
|
||
|
bboxes = scaled_bbox
|
||
|
zeros = paddle.zeros_like(origin_h)
|
||
|
x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
|
||
|
y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
|
||
|
x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
|
||
|
y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
|
||
|
x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
|
||
|
y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
|
||
|
x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
|
||
|
y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
|
||
|
pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
|
||
|
pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
|
||
|
return pred_result
|
||
|
|
||
|
|
||
|
@register
|
||
|
class JDEBBoxPostProcess(BBoxPostProcess):
|
||
|
def __call__(self, head_out, anchors):
|
||
|
"""
|
||
|
Decode the bbox and do NMS for JDE model.
|
||
|
|
||
|
Args:
|
||
|
head_out (list): Bbox_pred and cls_prob of bbox_head output.
|
||
|
anchors (list): Anchors of JDE model.
|
||
|
|
||
|
Returns:
|
||
|
boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'.
|
||
|
bbox_pred (Tensor): The output is the prediction with shape [N, 6]
|
||
|
including labels, scores and bboxes.
|
||
|
bbox_num (Tensor): The number of prediction of each batch with shape [N].
|
||
|
nms_keep_idx (Tensor): The index of kept bboxes after NMS.
|
||
|
"""
|
||
|
boxes_idx, bboxes, score = self.decode(head_out, anchors)
|
||
|
bbox_pred, bbox_num, nms_keep_idx = self.nms(bboxes, score,
|
||
|
self.num_classes)
|
||
|
if bbox_pred.shape[0] == 0:
|
||
|
bbox_pred = paddle.to_tensor(
|
||
|
np.array(
|
||
|
[[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
|
||
|
bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
|
||
|
nms_keep_idx = paddle.to_tensor(np.array([[0]], dtype='int32'))
|
||
|
|
||
|
return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
|
||
|
|
||
|
|
||
|
@register
|
||
|
class CenterNetPostProcess(TTFBox):
|
||
|
"""
|
||
|
Postprocess the model outputs to get final prediction:
|
||
|
1. Do NMS for heatmap to get top `max_per_img` bboxes.
|
||
|
2. Decode bboxes using center offset and box size.
|
||
|
3. Rescale decoded bboxes reference to the origin image shape.
|
||
|
|
||
|
Args:
|
||
|
max_per_img(int): the maximum number of predicted objects in a image,
|
||
|
500 by default.
|
||
|
down_ratio(int): the down ratio from images to heatmap, 4 by default.
|
||
|
regress_ltrb (bool): whether to regress left/top/right/bottom or
|
||
|
width/height for a box, true by default.
|
||
|
for_mot (bool): whether return other features used in tracking model.
|
||
|
|
||
|
"""
|
||
|
|
||
|
__shared__ = ['down_ratio']
|
||
|
|
||
|
def __init__(self,
|
||
|
max_per_img=500,
|
||
|
down_ratio=4,
|
||
|
regress_ltrb=True,
|
||
|
for_mot=False):
|
||
|
super(TTFBox, self).__init__()
|
||
|
self.max_per_img = max_per_img
|
||
|
self.down_ratio = down_ratio
|
||
|
self.regress_ltrb = regress_ltrb
|
||
|
self.for_mot = for_mot
|
||
|
|
||
|
def __call__(self, hm, wh, reg, im_shape, scale_factor):
|
||
|
heat = self._simple_nms(hm)
|
||
|
scores, inds, clses, ys, xs = self._topk(heat)
|
||
|
scores = paddle.tensor.unsqueeze(scores, [1])
|
||
|
clses = paddle.tensor.unsqueeze(clses, [1])
|
||
|
|
||
|
reg_t = paddle.transpose(reg, [0, 2, 3, 1])
|
||
|
# Like TTFBox, batch size is 1.
|
||
|
# TODO: support batch size > 1
|
||
|
reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]])
|
||
|
reg = paddle.gather(reg, inds)
|
||
|
xs = paddle.cast(xs, 'float32')
|
||
|
ys = paddle.cast(ys, 'float32')
|
||
|
xs = xs + reg[:, 0:1]
|
||
|
ys = ys + reg[:, 1:2]
|
||
|
|
||
|
wh_t = paddle.transpose(wh, [0, 2, 3, 1])
|
||
|
wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
|
||
|
wh = paddle.gather(wh, inds)
|
||
|
|
||
|
if self.regress_ltrb:
|
||
|
x1 = xs - wh[:, 0:1]
|
||
|
y1 = ys - wh[:, 1:2]
|
||
|
x2 = xs + wh[:, 2:3]
|
||
|
y2 = ys + wh[:, 3:4]
|
||
|
else:
|
||
|
x1 = xs - wh[:, 0:1] / 2
|
||
|
y1 = ys - wh[:, 1:2] / 2
|
||
|
x2 = xs + wh[:, 0:1] / 2
|
||
|
y2 = ys + wh[:, 1:2] / 2
|
||
|
|
||
|
n, c, feat_h, feat_w = paddle.shape(hm)
|
||
|
padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
|
||
|
padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
|
||
|
x1 = x1 * self.down_ratio
|
||
|
y1 = y1 * self.down_ratio
|
||
|
x2 = x2 * self.down_ratio
|
||
|
y2 = y2 * self.down_ratio
|
||
|
|
||
|
x1 = x1 - padw
|
||
|
y1 = y1 - padh
|
||
|
x2 = x2 - padw
|
||
|
y2 = y2 - padh
|
||
|
|
||
|
bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
|
||
|
scale_y = scale_factor[:, 0:1]
|
||
|
scale_x = scale_factor[:, 1:2]
|
||
|
scale_expand = paddle.concat(
|
||
|
[scale_x, scale_y, scale_x, scale_y], axis=1)
|
||
|
boxes_shape = paddle.shape(bboxes)
|
||
|
boxes_shape.stop_gradient = True
|
||
|
scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
|
||
|
bboxes = paddle.divide(bboxes, scale_expand)
|
||
|
if self.for_mot:
|
||
|
results = paddle.concat([bboxes, scores, clses], axis=1)
|
||
|
return results, inds
|
||
|
else:
|
||
|
results = paddle.concat([clses, scores, bboxes], axis=1)
|
||
|
return results, paddle.shape(results)[0:1]
|