forked from PulseFocusPlatform/PulseFocusPlatform
95 lines
2.6 KiB
Python
95 lines
2.6 KiB
Python
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import collections
|
||
|
import numpy as np
|
||
|
|
||
|
__all__ = ['SmoothedValue', 'TrainingStats']
|
||
|
|
||
|
|
||
|
class SmoothedValue(object):
|
||
|
"""Track a series of values and provide access to smoothed values over a
|
||
|
window or the global series average.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, window_size=20, fmt=None):
|
||
|
if fmt is None:
|
||
|
fmt = "{median:.4f} ({avg:.4f})"
|
||
|
self.deque = collections.deque(maxlen=window_size)
|
||
|
self.fmt = fmt
|
||
|
self.total = 0.
|
||
|
self.count = 0
|
||
|
|
||
|
def update(self, value, n=1):
|
||
|
self.deque.append(value)
|
||
|
self.count += n
|
||
|
self.total += value * n
|
||
|
|
||
|
@property
|
||
|
def median(self):
|
||
|
return np.median(self.deque)
|
||
|
|
||
|
@property
|
||
|
def avg(self):
|
||
|
return np.mean(self.deque)
|
||
|
|
||
|
@property
|
||
|
def max(self):
|
||
|
return np.max(self.deque)
|
||
|
|
||
|
@property
|
||
|
def value(self):
|
||
|
return self.deque[-1]
|
||
|
|
||
|
@property
|
||
|
def global_avg(self):
|
||
|
return self.total / self.count
|
||
|
|
||
|
def __str__(self):
|
||
|
return self.fmt.format(
|
||
|
median=self.median, avg=self.avg, max=self.max, value=self.value)
|
||
|
|
||
|
|
||
|
class TrainingStats(object):
|
||
|
def __init__(self, window_size, delimiter=' '):
|
||
|
self.meters = None
|
||
|
self.window_size = window_size
|
||
|
self.delimiter = delimiter
|
||
|
|
||
|
def update(self, stats):
|
||
|
if self.meters is None:
|
||
|
self.meters = {
|
||
|
k: SmoothedValue(self.window_size)
|
||
|
for k in stats.keys()
|
||
|
}
|
||
|
for k, v in self.meters.items():
|
||
|
v.update(stats[k].numpy())
|
||
|
|
||
|
def get(self, extras=None):
|
||
|
stats = collections.OrderedDict()
|
||
|
if extras:
|
||
|
for k, v in extras.items():
|
||
|
stats[k] = v
|
||
|
for k, v in self.meters.items():
|
||
|
stats[k] = format(v.median, '.6f')
|
||
|
|
||
|
return stats
|
||
|
|
||
|
def log(self, extras=None):
|
||
|
d = self.get(extras)
|
||
|
strs = []
|
||
|
for k, v in d.items():
|
||
|
strs.append("{}: {}".format(k, str(v)))
|
||
|
return self.delimiter.join(strs)
|