forked from PulseFocusPlatform/PulseFocusPlatform
137 lines
3.8 KiB
Python
137 lines
3.8 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
# add python path of PadleDetection to sys.path
|
||
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
||
|
if parent_path not in sys.path:
|
||
|
sys.path.append(parent_path)
|
||
|
|
||
|
# ignore warning log
|
||
|
import warnings
|
||
|
warnings.filterwarnings('ignore')
|
||
|
|
||
|
import paddle
|
||
|
|
||
|
from ppdet.core.workspace import load_config, merge_config
|
||
|
from ppdet.utils.check import check_gpu, check_version, check_config
|
||
|
from ppdet.utils.cli import ArgsParser
|
||
|
from ppdet.engine import Trainer, init_parallel_env
|
||
|
from ppdet.metrics.coco_utils import json_eval_results
|
||
|
from ppdet.slim import build_slim_model
|
||
|
|
||
|
from ppdet.utils.logger import setup_logger
|
||
|
logger = setup_logger('eval')
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = ArgsParser()
|
||
|
parser.add_argument(
|
||
|
"--output_eval",
|
||
|
default=None,
|
||
|
type=str,
|
||
|
help="Evaluation directory, default is current directory.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
'--json_eval',
|
||
|
action='store_true',
|
||
|
default=False,
|
||
|
help='Whether to re eval with already exists bbox.json or mask.json')
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--slim_config",
|
||
|
default=None,
|
||
|
type=str,
|
||
|
help="Configuration file of slim method.")
|
||
|
|
||
|
# TODO: bias should be unified
|
||
|
parser.add_argument(
|
||
|
"--bias",
|
||
|
action="store_true",
|
||
|
help="whether add bias or not while getting w and h")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--classwise",
|
||
|
action="store_true",
|
||
|
help="whether per-category AP and draw P-R Curve or not.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
'--save_prediction_only',
|
||
|
action='store_true',
|
||
|
default=False,
|
||
|
help='Whether to save the evaluation results only')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def run(FLAGS, cfg):
|
||
|
if FLAGS.json_eval:
|
||
|
logger.info(
|
||
|
"In json_eval mode, PaddleDetection will evaluate json files in "
|
||
|
"output_eval directly. And proposal.json, bbox.json and mask.json "
|
||
|
"will be detected by default.")
|
||
|
json_eval_results(
|
||
|
cfg.metric,
|
||
|
json_directory=FLAGS.output_eval,
|
||
|
dataset=cfg['EvalDataset'])
|
||
|
return
|
||
|
|
||
|
# init parallel environment if nranks > 1
|
||
|
init_parallel_env()
|
||
|
|
||
|
# build trainer
|
||
|
trainer = Trainer(cfg, mode='eval')
|
||
|
|
||
|
# load weights
|
||
|
trainer.load_weights(cfg.weights)
|
||
|
|
||
|
# training
|
||
|
trainer.evaluate()
|
||
|
|
||
|
|
||
|
def main():
|
||
|
FLAGS = parse_args()
|
||
|
cfg = load_config(FLAGS.config)
|
||
|
# TODO: bias should be unified
|
||
|
cfg['bias'] = 1 if FLAGS.bias else 0
|
||
|
cfg['classwise'] = True if FLAGS.classwise else False
|
||
|
cfg['output_eval'] = FLAGS.output_eval
|
||
|
cfg['save_prediction_only'] = FLAGS.save_prediction_only
|
||
|
merge_config(FLAGS.opt)
|
||
|
|
||
|
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
|
||
|
|
||
|
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu:
|
||
|
cfg['norm_type'] = 'bn'
|
||
|
|
||
|
if FLAGS.slim_config:
|
||
|
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='eval')
|
||
|
|
||
|
check_config(cfg)
|
||
|
check_gpu(cfg.use_gpu)
|
||
|
check_version()
|
||
|
|
||
|
run(FLAGS, cfg)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|