forked from PulseFocusPlatform/PulseFocusPlatform
92 lines
2.9 KiB
Python
92 lines
2.9 KiB
Python
![]() |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from ppdet.core.workspace import register, create
|
||
|
from .meta_arch import BaseArch
|
||
|
|
||
|
__all__ = ['BlazeFace']
|
||
|
|
||
|
|
||
|
@register
|
||
|
class BlazeFace(BaseArch):
|
||
|
"""
|
||
|
BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs,
|
||
|
see https://arxiv.org/abs/1907.05047
|
||
|
|
||
|
Args:
|
||
|
backbone (nn.Layer): backbone instance
|
||
|
neck (nn.Layer): neck instance
|
||
|
blaze_head (nn.Layer): `blazeHead` instance
|
||
|
post_process (object): `BBoxPostProcess` instance
|
||
|
"""
|
||
|
|
||
|
__category__ = 'architecture'
|
||
|
__inject__ = ['post_process']
|
||
|
|
||
|
def __init__(self, backbone, blaze_head, neck, post_process):
|
||
|
super(BlazeFace, self).__init__()
|
||
|
self.backbone = backbone
|
||
|
self.neck = neck
|
||
|
self.blaze_head = blaze_head
|
||
|
self.post_process = post_process
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, *args, **kwargs):
|
||
|
# backbone
|
||
|
backbone = create(cfg['backbone'])
|
||
|
# fpn
|
||
|
kwargs = {'input_shape': backbone.out_shape}
|
||
|
neck = create(cfg['neck'], **kwargs)
|
||
|
# head
|
||
|
kwargs = {'input_shape': neck.out_shape}
|
||
|
blaze_head = create(cfg['blaze_head'], **kwargs)
|
||
|
|
||
|
return {
|
||
|
'backbone': backbone,
|
||
|
'neck': neck,
|
||
|
'blaze_head': blaze_head,
|
||
|
}
|
||
|
|
||
|
def _forward(self):
|
||
|
# Backbone
|
||
|
body_feats = self.backbone(self.inputs)
|
||
|
# neck
|
||
|
neck_feats = self.neck(body_feats)
|
||
|
# blaze Head
|
||
|
if self.training:
|
||
|
return self.blaze_head(neck_feats, self.inputs['image'],
|
||
|
self.inputs['gt_bbox'],
|
||
|
self.inputs['gt_class'])
|
||
|
else:
|
||
|
preds, anchors = self.blaze_head(neck_feats, self.inputs['image'])
|
||
|
bbox, bbox_num = self.post_process(preds, anchors,
|
||
|
self.inputs['im_shape'],
|
||
|
self.inputs['scale_factor'])
|
||
|
return bbox, bbox_num
|
||
|
|
||
|
def get_loss(self, ):
|
||
|
return {"loss": self._forward()}
|
||
|
|
||
|
def get_pred(self):
|
||
|
bbox_pred, bbox_num = self._forward()
|
||
|
output = {
|
||
|
"bbox": bbox_pred,
|
||
|
"bbox_num": bbox_num,
|
||
|
}
|
||
|
return output
|