PulseFocusPlatform/build/lib/ppdet/utils/stats.py

95 lines
2.6 KiB
Python
Raw Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import numpy as np
__all__ = ['SmoothedValue', 'TrainingStats']
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({avg:.4f})"
self.deque = collections.deque(maxlen=window_size)
self.fmt = fmt
self.total = 0.
self.count = 0
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
return np.median(self.deque)
@property
def avg(self):
return np.mean(self.deque)
@property
def max(self):
return np.max(self.deque)
@property
def value(self):
return self.deque[-1]
@property
def global_avg(self):
return self.total / self.count
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, max=self.max, value=self.value)
class TrainingStats(object):
def __init__(self, window_size, delimiter=' '):
self.meters = None
self.window_size = window_size
self.delimiter = delimiter
def update(self, stats):
if self.meters is None:
self.meters = {
k: SmoothedValue(self.window_size)
for k in stats.keys()
}
for k, v in self.meters.items():
v.update(stats[k].numpy())
def get(self, extras=None):
stats = collections.OrderedDict()
if extras:
for k, v in extras.items():
stats[k] = v
for k, v in self.meters.items():
stats[k] = format(v.median, '.6f')
return stats
def log(self, extras=None):
d = self.get(extras)
strs = []
for k, v in d.items():
strs.append("{}: {}".format(k, str(v)))
return self.delimiter.join(strs)