forked from PulseFocusPlatform/PulseFocusPlatform
658 lines
24 KiB
Python
658 lines
24 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
import yaml
|
||
|
import glob
|
||
|
from functools import reduce
|
||
|
|
||
|
import time
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import math
|
||
|
import paddle
|
||
|
from paddle.inference import Config
|
||
|
from paddle.inference import create_predictor
|
||
|
|
||
|
from benchmark_utils import PaddleInferBenchmark
|
||
|
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
|
||
|
from visualize import visualize_box_mask
|
||
|
from utils import argsparser, Timer, get_current_memory_mb
|
||
|
|
||
|
# Global dictionary
|
||
|
SUPPORT_MODELS = {
|
||
|
'YOLO',
|
||
|
'RCNN',
|
||
|
'SSD',
|
||
|
'Face',
|
||
|
'FCOS',
|
||
|
'SOLOv2',
|
||
|
'TTFNet',
|
||
|
'S2ANet',
|
||
|
}
|
||
|
|
||
|
|
||
|
class Detector(object):
|
||
|
"""
|
||
|
Args:
|
||
|
config (object): config of model, defined by `Config(model_dir)`
|
||
|
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
||
|
use_gpu (bool): whether use gpu
|
||
|
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
|
||
|
batch_size (int): size of pre batch in inference
|
||
|
use_dynamic_shape (bool): use dynamic shape or not
|
||
|
trt_min_shape (int): min shape for dynamic shape in trt
|
||
|
trt_max_shape (int): max shape for dynamic shape in trt
|
||
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
||
|
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
|
||
|
threshold (float): threshold to reserve the result for output.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pred_config,
|
||
|
model_dir,
|
||
|
use_gpu=False,
|
||
|
run_mode='fluid',
|
||
|
batch_size=1,
|
||
|
use_dynamic_shape=False,
|
||
|
trt_min_shape=1,
|
||
|
trt_max_shape=1280,
|
||
|
trt_opt_shape=640,
|
||
|
trt_calib_mode=False,
|
||
|
cpu_threads=1,
|
||
|
enable_mkldnn=False):
|
||
|
self.pred_config = pred_config
|
||
|
self.predictor, self.config = load_predictor(
|
||
|
model_dir,
|
||
|
run_mode=run_mode,
|
||
|
batch_size=batch_size,
|
||
|
min_subgraph_size=self.pred_config.min_subgraph_size,
|
||
|
use_gpu=use_gpu,
|
||
|
use_dynamic_shape=use_dynamic_shape,
|
||
|
trt_min_shape=trt_min_shape,
|
||
|
trt_max_shape=trt_max_shape,
|
||
|
trt_opt_shape=trt_opt_shape,
|
||
|
trt_calib_mode=trt_calib_mode,
|
||
|
cpu_threads=cpu_threads,
|
||
|
enable_mkldnn=enable_mkldnn)
|
||
|
self.det_times = Timer()
|
||
|
self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
|
||
|
|
||
|
def preprocess(self, image_list):
|
||
|
preprocess_ops = []
|
||
|
for op_info in self.pred_config.preprocess_infos:
|
||
|
new_op_info = op_info.copy()
|
||
|
op_type = new_op_info.pop('type')
|
||
|
preprocess_ops.append(eval(op_type)(**new_op_info))
|
||
|
|
||
|
input_im_lst = []
|
||
|
input_im_info_lst = []
|
||
|
for im_path in image_list:
|
||
|
im, im_info = preprocess(im_path, preprocess_ops)
|
||
|
input_im_lst.append(im)
|
||
|
input_im_info_lst.append(im_info)
|
||
|
inputs = create_inputs(input_im_lst, input_im_info_lst)
|
||
|
return inputs
|
||
|
|
||
|
def postprocess(self,
|
||
|
np_boxes,
|
||
|
np_masks,
|
||
|
inputs,
|
||
|
np_boxes_num,
|
||
|
threshold=0.5):
|
||
|
# postprocess output of predictor
|
||
|
results = {}
|
||
|
results['boxes'] = np_boxes
|
||
|
results['boxes_num'] = np_boxes_num
|
||
|
if np_masks is not None:
|
||
|
results['masks'] = np_masks
|
||
|
return results
|
||
|
|
||
|
def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
|
||
|
'''
|
||
|
Args:
|
||
|
image_list (list): ,list of image
|
||
|
threshold (float): threshold of predicted box' score
|
||
|
Returns:
|
||
|
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
||
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
||
|
MaskRCNN's results include 'masks': np.ndarray:
|
||
|
shape: [N, im_h, im_w]
|
||
|
'''
|
||
|
self.det_times.preprocess_time_s.start()
|
||
|
inputs = self.preprocess(image_list)
|
||
|
self.det_times.preprocess_time_s.end()
|
||
|
np_boxes, np_masks = None, None
|
||
|
input_names = self.predictor.get_input_names()
|
||
|
for i in range(len(input_names)):
|
||
|
input_tensor = self.predictor.get_input_handle(input_names[i])
|
||
|
input_tensor.copy_from_cpu(inputs[input_names[i]])
|
||
|
for i in range(warmup):
|
||
|
self.predictor.run()
|
||
|
output_names = self.predictor.get_output_names()
|
||
|
boxes_tensor = self.predictor.get_output_handle(output_names[0])
|
||
|
np_boxes = boxes_tensor.copy_to_cpu()
|
||
|
if self.pred_config.mask:
|
||
|
masks_tensor = self.predictor.get_output_handle(output_names[2])
|
||
|
np_masks = masks_tensor.copy_to_cpu()
|
||
|
|
||
|
self.det_times.inference_time_s.start()
|
||
|
for i in range(repeats):
|
||
|
self.predictor.run()
|
||
|
output_names = self.predictor.get_output_names()
|
||
|
boxes_tensor = self.predictor.get_output_handle(output_names[0])
|
||
|
np_boxes = boxes_tensor.copy_to_cpu()
|
||
|
boxes_num = self.predictor.get_output_handle(output_names[1])
|
||
|
np_boxes_num = boxes_num.copy_to_cpu()
|
||
|
if self.pred_config.mask:
|
||
|
masks_tensor = self.predictor.get_output_handle(output_names[2])
|
||
|
np_masks = masks_tensor.copy_to_cpu()
|
||
|
self.det_times.inference_time_s.end(repeats=repeats)
|
||
|
|
||
|
self.det_times.postprocess_time_s.start()
|
||
|
results = []
|
||
|
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
|
||
|
print('[WARNNING] No object detected.')
|
||
|
results = {'boxes': np.array([]), 'boxes_num': [0]}
|
||
|
else:
|
||
|
results = self.postprocess(
|
||
|
np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold)
|
||
|
self.det_times.postprocess_time_s.end()
|
||
|
self.det_times.img_num += len(image_list)
|
||
|
return results
|
||
|
|
||
|
|
||
|
class DetectorSOLOv2(Detector):
|
||
|
"""
|
||
|
Args:
|
||
|
config (object): config of model, defined by `Config(model_dir)`
|
||
|
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
||
|
use_gpu (bool): whether use gpu
|
||
|
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
|
||
|
batch_size (int): size of pre batch in inference
|
||
|
use_dynamic_shape (bool): use dynamic shape or not
|
||
|
trt_min_shape (int): min shape for dynamic shape in trt
|
||
|
trt_max_shape (int): max shape for dynamic shape in trt
|
||
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
||
|
threshold (float): threshold to reserve the result for output.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pred_config,
|
||
|
model_dir,
|
||
|
use_gpu=False,
|
||
|
run_mode='fluid',
|
||
|
batch_size=1,
|
||
|
use_dynamic_shape=False,
|
||
|
trt_min_shape=1,
|
||
|
trt_max_shape=1280,
|
||
|
trt_opt_shape=640,
|
||
|
trt_calib_mode=False,
|
||
|
cpu_threads=1,
|
||
|
enable_mkldnn=False):
|
||
|
self.pred_config = pred_config
|
||
|
self.predictor, self.config = load_predictor(
|
||
|
model_dir,
|
||
|
run_mode=run_mode,
|
||
|
batch_size=batch_size,
|
||
|
min_subgraph_size=self.pred_config.min_subgraph_size,
|
||
|
use_gpu=use_gpu,
|
||
|
use_dynamic_shape=use_dynamic_shape,
|
||
|
trt_min_shape=trt_min_shape,
|
||
|
trt_max_shape=trt_max_shape,
|
||
|
trt_opt_shape=trt_opt_shape,
|
||
|
trt_calib_mode=trt_calib_mode,
|
||
|
cpu_threads=cpu_threads,
|
||
|
enable_mkldnn=enable_mkldnn)
|
||
|
self.det_times = Timer()
|
||
|
|
||
|
def predict(self, image, threshold=0.5, warmup=0, repeats=1):
|
||
|
'''
|
||
|
Args:
|
||
|
image (str/np.ndarray): path of image/ np.ndarray read by cv2
|
||
|
threshold (float): threshold of predicted box' score
|
||
|
Returns:
|
||
|
results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
|
||
|
'cate_label': label of segm, shape:[N]
|
||
|
'cate_score': confidence score of segm, shape:[N]
|
||
|
'''
|
||
|
self.det_times.preprocess_time_s.start()
|
||
|
inputs = self.preprocess(image)
|
||
|
self.det_times.preprocess_time_s.end()
|
||
|
np_label, np_score, np_segms = None, None, None
|
||
|
input_names = self.predictor.get_input_names()
|
||
|
for i in range(len(input_names)):
|
||
|
input_tensor = self.predictor.get_input_handle(input_names[i])
|
||
|
input_tensor.copy_from_cpu(inputs[input_names[i]])
|
||
|
for i in range(warmup):
|
||
|
self.predictor.run()
|
||
|
output_names = self.predictor.get_output_names()
|
||
|
np_label = self.predictor.get_output_handle(output_names[
|
||
|
1]).copy_to_cpu()
|
||
|
np_score = self.predictor.get_output_handle(output_names[
|
||
|
2]).copy_to_cpu()
|
||
|
np_segms = self.predictor.get_output_handle(output_names[
|
||
|
3]).copy_to_cpu()
|
||
|
|
||
|
self.det_times.inference_time_s.start()
|
||
|
for i in range(repeats):
|
||
|
self.predictor.run()
|
||
|
output_names = self.predictor.get_output_names()
|
||
|
np_label = self.predictor.get_output_handle(output_names[
|
||
|
1]).copy_to_cpu()
|
||
|
np_score = self.predictor.get_output_handle(output_names[
|
||
|
2]).copy_to_cpu()
|
||
|
np_segms = self.predictor.get_output_handle(output_names[
|
||
|
3]).copy_to_cpu()
|
||
|
self.det_times.inference_time_s.end(repeats=repeats)
|
||
|
self.det_times.img_num += 1
|
||
|
|
||
|
return dict(segm=np_segms, label=np_label, score=np_score)
|
||
|
|
||
|
|
||
|
def create_inputs(imgs, im_info):
|
||
|
"""generate input for different model type
|
||
|
Args:
|
||
|
im (np.ndarray): image (np.ndarray)
|
||
|
im_info (dict): info of image
|
||
|
Returns:
|
||
|
inputs (dict): input of model
|
||
|
"""
|
||
|
inputs = {}
|
||
|
|
||
|
im_shape = []
|
||
|
scale_factor = []
|
||
|
for e in im_info:
|
||
|
im_shape.append(np.array((e['im_shape'], )).astype('float32'))
|
||
|
scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))
|
||
|
|
||
|
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
|
||
|
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
|
||
|
|
||
|
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
|
||
|
max_shape_h = max([e[0] for e in imgs_shape])
|
||
|
max_shape_w = max([e[1] for e in imgs_shape])
|
||
|
padding_imgs = []
|
||
|
for img in imgs:
|
||
|
im_c, im_h, im_w = img.shape[:]
|
||
|
padding_im = np.zeros(
|
||
|
(im_c, max_shape_h, max_shape_w), dtype=np.float32)
|
||
|
padding_im[:, :im_h, :im_w] = img
|
||
|
padding_imgs.append(padding_im)
|
||
|
inputs['image'] = np.stack(padding_imgs, axis=0)
|
||
|
return inputs
|
||
|
|
||
|
|
||
|
class PredictConfig():
|
||
|
"""set config of preprocess, postprocess and visualize
|
||
|
Args:
|
||
|
model_dir (str): root path of model.yml
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model_dir):
|
||
|
# parsing Yaml config for Preprocess
|
||
|
deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
|
||
|
with open(deploy_file) as f:
|
||
|
yml_conf = yaml.safe_load(f)
|
||
|
self.check_model(yml_conf)
|
||
|
self.arch = yml_conf['arch']
|
||
|
self.preprocess_infos = yml_conf['Preprocess']
|
||
|
self.min_subgraph_size = yml_conf['min_subgraph_size']
|
||
|
self.labels = yml_conf['label_list']
|
||
|
self.mask = False
|
||
|
if 'mask' in yml_conf:
|
||
|
self.mask = yml_conf['mask']
|
||
|
self.print_config()
|
||
|
|
||
|
def check_model(self, yml_conf):
|
||
|
"""
|
||
|
Raises:
|
||
|
ValueError: loaded model not in supported model type
|
||
|
"""
|
||
|
for support_model in SUPPORT_MODELS:
|
||
|
if support_model in yml_conf['arch']:
|
||
|
return True
|
||
|
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
|
||
|
'arch'], SUPPORT_MODELS))
|
||
|
|
||
|
def print_config(self):
|
||
|
print('----------- Model Configuration -----------')
|
||
|
print('%s: %s' % ('Model Arch', self.arch))
|
||
|
print('%s: ' % ('Transform Order'))
|
||
|
for op_info in self.preprocess_infos:
|
||
|
print('--%s: %s' % ('transform op', op_info['type']))
|
||
|
print('--------------------------------------------')
|
||
|
|
||
|
|
||
|
def load_predictor(model_dir,
|
||
|
run_mode='fluid',
|
||
|
batch_size=1,
|
||
|
use_gpu=False,
|
||
|
min_subgraph_size=3,
|
||
|
use_dynamic_shape=False,
|
||
|
trt_min_shape=1,
|
||
|
trt_max_shape=1280,
|
||
|
trt_opt_shape=640,
|
||
|
trt_calib_mode=False,
|
||
|
cpu_threads=1,
|
||
|
enable_mkldnn=False):
|
||
|
"""set AnalysisConfig, generate AnalysisPredictor
|
||
|
Args:
|
||
|
model_dir (str): root path of __model__ and __params__
|
||
|
use_gpu (bool): whether use gpu
|
||
|
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
|
||
|
use_dynamic_shape (bool): use dynamic shape or not
|
||
|
trt_min_shape (int): min shape for dynamic shape in trt
|
||
|
trt_max_shape (int): max shape for dynamic shape in trt
|
||
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
||
|
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
||
|
calibration, trt_calib_mode need to set True
|
||
|
Returns:
|
||
|
predictor (PaddlePredictor): AnalysisPredictor
|
||
|
Raises:
|
||
|
ValueError: predict by TensorRT need use_gpu == True.
|
||
|
"""
|
||
|
if not use_gpu and not run_mode == 'fluid':
|
||
|
raise ValueError(
|
||
|
"Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
|
||
|
.format(run_mode, use_gpu))
|
||
|
config = Config(
|
||
|
os.path.join(model_dir, 'model.pdmodel'),
|
||
|
os.path.join(model_dir, 'model.pdiparams'))
|
||
|
precision_map = {
|
||
|
'trt_int8': Config.Precision.Int8,
|
||
|
'trt_fp32': Config.Precision.Float32,
|
||
|
'trt_fp16': Config.Precision.Half
|
||
|
}
|
||
|
if use_gpu:
|
||
|
# initial GPU memory(M), device ID
|
||
|
config.enable_use_gpu(200, 0)
|
||
|
# optimize graph and fuse op
|
||
|
config.switch_ir_optim(True)
|
||
|
else:
|
||
|
config.disable_gpu()
|
||
|
config.set_cpu_math_library_num_threads(cpu_threads)
|
||
|
if enable_mkldnn:
|
||
|
try:
|
||
|
# cache 10 different shapes for mkldnn to avoid memory leak
|
||
|
config.set_mkldnn_cache_capacity(10)
|
||
|
config.enable_mkldnn()
|
||
|
except Exception as e:
|
||
|
print(
|
||
|
"The current environment does not support `mkldnn`, so disable mkldnn."
|
||
|
)
|
||
|
pass
|
||
|
|
||
|
if run_mode in precision_map.keys():
|
||
|
config.enable_tensorrt_engine(
|
||
|
workspace_size=1 << 10,
|
||
|
max_batch_size=batch_size,
|
||
|
min_subgraph_size=min_subgraph_size,
|
||
|
precision_mode=precision_map[run_mode],
|
||
|
use_static=False,
|
||
|
use_calib_mode=trt_calib_mode)
|
||
|
|
||
|
if use_dynamic_shape:
|
||
|
min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
|
||
|
max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
|
||
|
opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
|
||
|
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
|
||
|
opt_input_shape)
|
||
|
print('trt set dynamic shape done!')
|
||
|
|
||
|
# disable print log when predict
|
||
|
config.disable_glog_info()
|
||
|
# enable shared memory
|
||
|
config.enable_memory_optim()
|
||
|
# disable feed, fetch OP, needed by zero_copy_run
|
||
|
config.switch_use_feed_fetch_ops(False)
|
||
|
predictor = create_predictor(config)
|
||
|
return predictor, config
|
||
|
|
||
|
|
||
|
def get_test_images(infer_dir, infer_img):
|
||
|
"""
|
||
|
Get image path list in TEST mode
|
||
|
"""
|
||
|
assert infer_img is not None or infer_dir is not None, \
|
||
|
"--infer_img or --infer_dir should be set"
|
||
|
assert infer_img is None or os.path.isfile(infer_img), \
|
||
|
"{} is not a file".format(infer_img)
|
||
|
assert infer_dir is None or os.path.isdir(infer_dir), \
|
||
|
"{} is not a directory".format(infer_dir)
|
||
|
|
||
|
# infer_img has a higher priority
|
||
|
if infer_img and os.path.isfile(infer_img):
|
||
|
return [infer_img]
|
||
|
|
||
|
images = set()
|
||
|
infer_dir = os.path.abspath(infer_dir)
|
||
|
assert os.path.isdir(infer_dir), \
|
||
|
"infer_dir {} is not a directory".format(infer_dir)
|
||
|
exts = ['jpg', 'jpeg', 'png', 'bmp']
|
||
|
exts += [ext.upper() for ext in exts]
|
||
|
for ext in exts:
|
||
|
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
|
||
|
images = list(images)
|
||
|
|
||
|
assert len(images) > 0, "no image found in {}".format(infer_dir)
|
||
|
print("Found {} inference images in total.".format(len(images)))
|
||
|
|
||
|
return images
|
||
|
|
||
|
|
||
|
def visualize(image_list, results, labels, output_dir='output/', threshold=0.5):
|
||
|
# visualize the predict result
|
||
|
start_idx = 0
|
||
|
for idx, image_file in enumerate(image_list):
|
||
|
im_bboxes_num = results['boxes_num'][idx]
|
||
|
im_results = {}
|
||
|
if 'boxes' in results:
|
||
|
try:
|
||
|
im_results['boxes'] = results['boxes'][start_idx:start_idx +
|
||
|
im_bboxes_num, :]
|
||
|
except:
|
||
|
pass
|
||
|
if 'masks' in results:
|
||
|
im_results['masks'] = results['masks'][start_idx:start_idx +
|
||
|
im_bboxes_num, :]
|
||
|
if 'segm' in results:
|
||
|
im_results['segm'] = results['segm'][start_idx:start_idx +
|
||
|
im_bboxes_num, :]
|
||
|
start_idx += im_bboxes_num
|
||
|
im = visualize_box_mask(
|
||
|
image_file, im_results, labels, threshold=threshold)
|
||
|
try:
|
||
|
txt = [list(i) for i in im_results['boxes'] if i[1]>=0.3]
|
||
|
except:
|
||
|
pass
|
||
|
img_name = os.path.split(image_file)[-1]
|
||
|
try:
|
||
|
if len(txt) >=1:
|
||
|
img_name = img_name.strip('.jpg')
|
||
|
for i in txt:
|
||
|
img_name = img_name+'_'+str(int(i[0]))
|
||
|
img_name = img_name+'.jpg'
|
||
|
except:
|
||
|
pass
|
||
|
if not os.path.exists(output_dir):
|
||
|
os.makedirs(output_dir)
|
||
|
out_path = os.path.join(output_dir, img_name)
|
||
|
print(out_path)
|
||
|
try:
|
||
|
im.save(out_path, quality=95)
|
||
|
except Exception as e:
|
||
|
print(out_path)
|
||
|
print('7'*100)
|
||
|
print("save result to: " + out_path)
|
||
|
|
||
|
|
||
|
def print_arguments(args):
|
||
|
print('----------- Running Arguments -----------')
|
||
|
for arg, value in sorted(vars(args).items()):
|
||
|
print('%s: %s' % (arg, value))
|
||
|
print('------------------------------------------')
|
||
|
|
||
|
|
||
|
def predict_image(detector, image_list, batch_size=1):
|
||
|
batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size)
|
||
|
for i in range(batch_loop_cnt):
|
||
|
start_index = i * batch_size
|
||
|
end_index = min((i + 1) * batch_size, len(image_list))
|
||
|
batch_image_list = image_list[start_index:end_index]
|
||
|
if FLAGS.run_benchmark:
|
||
|
detector.predict(
|
||
|
batch_image_list, FLAGS.threshold, warmup=10, repeats=10)
|
||
|
cm, gm, gu = get_current_memory_mb()
|
||
|
detector.cpu_mem += cm
|
||
|
detector.gpu_mem += gm
|
||
|
detector.gpu_util += gu
|
||
|
print('Test iter {}'.format(i))
|
||
|
else:
|
||
|
results = detector.predict(batch_image_list, FLAGS.threshold)
|
||
|
visualize(
|
||
|
batch_image_list,
|
||
|
results,
|
||
|
detector.pred_config.labels,
|
||
|
output_dir=FLAGS.output_dir,
|
||
|
threshold=FLAGS.threshold)
|
||
|
|
||
|
|
||
|
def predict_video(detector, camera_id):
|
||
|
if camera_id != -1:
|
||
|
capture = cv2.VideoCapture(camera_id)
|
||
|
video_name = 'output.mp4'
|
||
|
else:
|
||
|
capture = cv2.VideoCapture(FLAGS.video_file)
|
||
|
video_name = os.path.split(FLAGS.video_file)[-1]
|
||
|
fps = 5
|
||
|
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
||
|
print('frame_count', frame_count)
|
||
|
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||
|
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||
|
# yapf: disable
|
||
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||
|
# yapf: enable
|
||
|
if not os.path.exists(FLAGS.output_dir):
|
||
|
os.makedirs(FLAGS.output_dir)
|
||
|
out_path = os.path.join(FLAGS.output_dir, video_name)
|
||
|
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
|
||
|
index = 0.2
|
||
|
while (1):
|
||
|
capture.set(cv2.CAP_PROP_POS_MSEC, 1 * 1000 * index)
|
||
|
ret, frame = capture.read()
|
||
|
if not ret:
|
||
|
break
|
||
|
print('detect frame:%d' % (index))
|
||
|
index += 1
|
||
|
results = detector.predict([frame], FLAGS.threshold)
|
||
|
#print(results)
|
||
|
im = visualize_box_mask(
|
||
|
frame,
|
||
|
results,
|
||
|
detector.pred_config.labels,
|
||
|
threshold=FLAGS.threshold)
|
||
|
im = np.array(im)
|
||
|
writer.write(im)
|
||
|
if camera_id != -1:
|
||
|
cv2.imshow('Mask Detection', im)
|
||
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||
|
break
|
||
|
writer.release()
|
||
|
|
||
|
|
||
|
def main():
|
||
|
pred_config = PredictConfig(FLAGS.model_dir)
|
||
|
detector = Detector(
|
||
|
pred_config,
|
||
|
FLAGS.model_dir,
|
||
|
use_gpu=FLAGS.use_gpu,
|
||
|
run_mode=FLAGS.run_mode,
|
||
|
batch_size=FLAGS.batch_size,
|
||
|
use_dynamic_shape=FLAGS.use_dynamic_shape,
|
||
|
trt_min_shape=FLAGS.trt_min_shape,
|
||
|
trt_max_shape=FLAGS.trt_max_shape,
|
||
|
trt_opt_shape=FLAGS.trt_opt_shape,
|
||
|
trt_calib_mode=FLAGS.trt_calib_mode,
|
||
|
cpu_threads=FLAGS.cpu_threads,
|
||
|
enable_mkldnn=FLAGS.enable_mkldnn)
|
||
|
if pred_config.arch == 'SOLOv2':
|
||
|
detector = DetectorSOLOv2(
|
||
|
pred_config,
|
||
|
FLAGS.model_dir,
|
||
|
use_gpu=FLAGS.use_gpu,
|
||
|
run_mode=FLAGS.run_mode,
|
||
|
batch_size=FLAGS.batch_size,
|
||
|
use_dynamic_shape=FLAGS.use_dynamic_shape,
|
||
|
trt_min_shape=FLAGS.trt_min_shape,
|
||
|
trt_max_shape=FLAGS.trt_max_shape,
|
||
|
trt_opt_shape=FLAGS.trt_opt_shape,
|
||
|
trt_calib_mode=FLAGS.trt_calib_mode,
|
||
|
cpu_threads=FLAGS.cpu_threads,
|
||
|
enable_mkldnn=FLAGS.enable_mkldnn)
|
||
|
|
||
|
# predict from video file or camera video stream
|
||
|
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
|
||
|
predict_video(detector, FLAGS.camera_id)
|
||
|
else:
|
||
|
# predict from image
|
||
|
if FLAGS.image_dir is None and FLAGS.image_file is not None:
|
||
|
assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
|
||
|
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
|
||
|
if len(img_list)>1:
|
||
|
img_path = ''
|
||
|
print('8'*100,img_path)
|
||
|
print(img_path)
|
||
|
img_list = [i.replace(img_path,'') for i in img_list]
|
||
|
print(img_list)
|
||
|
img_list = [i.split('/')[-1] for i in img_list]
|
||
|
img_list = [i.strip('.jpg') for i in img_list]
|
||
|
img_list.sort()
|
||
|
img_list=[img_path+str(i)+'.jpg' for i in img_list]
|
||
|
print(img_list)
|
||
|
predict_image(detector, img_list, FLAGS.batch_size)
|
||
|
if not FLAGS.run_benchmark:
|
||
|
detector.det_times.info(average=True)
|
||
|
else:
|
||
|
mems = {
|
||
|
'cpu_rss_mb': detector.cpu_mem / len(img_list),
|
||
|
'gpu_rss_mb': detector.gpu_mem / len(img_list),
|
||
|
'gpu_util': detector.gpu_util * 100 / len(img_list)
|
||
|
}
|
||
|
|
||
|
perf_info = detector.det_times.report(average=True)
|
||
|
model_dir = FLAGS.model_dir
|
||
|
mode = FLAGS.run_mode
|
||
|
model_info = {
|
||
|
'model_name': model_dir.strip('/').split('/')[-1],
|
||
|
'precision': mode.split('_')[-1]
|
||
|
}
|
||
|
data_info = {
|
||
|
'batch_size': FLAGS.batch_size,
|
||
|
'shape': "dynamic_shape",
|
||
|
'data_num': perf_info['img_num']
|
||
|
}
|
||
|
det_log = PaddleInferBenchmark(detector.config, model_info,
|
||
|
data_info, perf_info, mems)
|
||
|
det_log('Det')
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
paddle.enable_static()
|
||
|
parser = argsparser()
|
||
|
FLAGS = parser.parse_args()
|
||
|
print(FLAGS)
|
||
|
print_arguments(FLAGS)
|
||
|
main()
|