forked from PulseFocusPlatform/PulseFocusPlatform
179 lines
5.3 KiB
Python
179 lines
5.3 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class EvalAffine(object):
|
||
|
def __init__(self, size, stride=64):
|
||
|
super(EvalAffine, self).__init__()
|
||
|
self.size = size
|
||
|
self.stride = stride
|
||
|
|
||
|
def __call__(self, image, im_info):
|
||
|
s = self.size
|
||
|
h, w, _ = image.shape
|
||
|
trans, size_resized = get_affine_mat_kernel(h, w, s, inv=False)
|
||
|
image_resized = cv2.warpAffine(image, trans, size_resized)
|
||
|
return image_resized, im_info
|
||
|
|
||
|
|
||
|
def get_affine_mat_kernel(h, w, s, inv=False):
|
||
|
if w < h:
|
||
|
w_ = s
|
||
|
h_ = int(np.ceil((s / w * h) / 64.) * 64)
|
||
|
scale_w = w
|
||
|
scale_h = h_ / w_ * w
|
||
|
|
||
|
else:
|
||
|
h_ = s
|
||
|
w_ = int(np.ceil((s / h * w) / 64.) * 64)
|
||
|
scale_h = h
|
||
|
scale_w = w_ / h_ * h
|
||
|
|
||
|
center = np.array([np.round(w / 2.), np.round(h / 2.)])
|
||
|
|
||
|
size_resized = (w_, h_)
|
||
|
trans = get_affine_transform(
|
||
|
center, np.array([scale_w, scale_h]), 0, size_resized, inv=inv)
|
||
|
|
||
|
return trans, size_resized
|
||
|
|
||
|
|
||
|
def get_affine_transform(center,
|
||
|
input_size,
|
||
|
rot,
|
||
|
output_size,
|
||
|
shift=(0., 0.),
|
||
|
inv=False):
|
||
|
"""Get the affine transform matrix, given the center/scale/rot/output_size.
|
||
|
|
||
|
Args:
|
||
|
center (np.ndarray[2, ]): Center of the bounding box (x, y).
|
||
|
scale (np.ndarray[2, ]): Scale of the bounding box
|
||
|
wrt [width, height].
|
||
|
rot (float): Rotation angle (degree).
|
||
|
output_size (np.ndarray[2, ]): Size of the destination heatmaps.
|
||
|
shift (0-100%): Shift translation ratio wrt the width/height.
|
||
|
Default (0., 0.).
|
||
|
inv (bool): Option to inverse the affine transform direction.
|
||
|
(inv=False: src->dst or inv=True: dst->src)
|
||
|
|
||
|
Returns:
|
||
|
np.ndarray: The transform matrix.
|
||
|
"""
|
||
|
assert len(center) == 2
|
||
|
assert len(input_size) == 2
|
||
|
assert len(output_size) == 2
|
||
|
assert len(shift) == 2
|
||
|
|
||
|
scale_tmp = input_size
|
||
|
|
||
|
shift = np.array(shift)
|
||
|
src_w = scale_tmp[0]
|
||
|
dst_w = output_size[0]
|
||
|
dst_h = output_size[1]
|
||
|
|
||
|
rot_rad = np.pi * rot / 180
|
||
|
src_dir = rotate_point([0., src_w * -0.5], rot_rad)
|
||
|
dst_dir = np.array([0., dst_w * -0.5])
|
||
|
|
||
|
src = np.zeros((3, 2), dtype=np.float32)
|
||
|
src[0, :] = center + scale_tmp * shift
|
||
|
src[1, :] = center + src_dir + scale_tmp * shift
|
||
|
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
|
||
|
|
||
|
dst = np.zeros((3, 2), dtype=np.float32)
|
||
|
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
||
|
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
||
|
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
|
||
|
|
||
|
if inv:
|
||
|
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
||
|
else:
|
||
|
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
||
|
|
||
|
return trans
|
||
|
|
||
|
|
||
|
def rotate_point(pt, angle_rad):
|
||
|
"""Rotate a point by an angle.
|
||
|
|
||
|
Args:
|
||
|
pt (list[float]): 2 dimensional point to be rotated
|
||
|
angle_rad (float): rotation angle by radian
|
||
|
|
||
|
Returns:
|
||
|
list[float]: Rotated point.
|
||
|
"""
|
||
|
assert len(pt) == 2
|
||
|
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
|
||
|
new_x = pt[0] * cs - pt[1] * sn
|
||
|
new_y = pt[0] * sn + pt[1] * cs
|
||
|
rotated_pt = [new_x, new_y]
|
||
|
|
||
|
return rotated_pt
|
||
|
|
||
|
|
||
|
def _get_3rd_point(a, b):
|
||
|
"""To calculate the affine matrix, three pairs of points are required. This
|
||
|
function is used to get the 3rd point, given 2D points a & b.
|
||
|
|
||
|
The 3rd point is defined by rotating vector `a - b` by 90 degrees
|
||
|
anticlockwise, using b as the rotation center.
|
||
|
|
||
|
Args:
|
||
|
a (np.ndarray): point(x,y)
|
||
|
b (np.ndarray): point(x,y)
|
||
|
|
||
|
Returns:
|
||
|
np.ndarray: The 3rd point.
|
||
|
"""
|
||
|
assert len(a) == 2
|
||
|
assert len(b) == 2
|
||
|
direction = a - b
|
||
|
third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)
|
||
|
|
||
|
return third_pt
|
||
|
|
||
|
|
||
|
class TopDownEvalAffine(object):
|
||
|
"""apply affine transform to image and coords
|
||
|
|
||
|
Args:
|
||
|
trainsize (list): [w, h], the standard size used to train
|
||
|
records(dict): the dict contained the image and coords
|
||
|
|
||
|
Returns:
|
||
|
records (dict): contain the image and coords after tranformed
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, trainsize):
|
||
|
self.trainsize = trainsize
|
||
|
|
||
|
def __call__(self, image, im_info):
|
||
|
rot = 0
|
||
|
imshape = im_info['im_shape'][::-1]
|
||
|
center = im_info['center'] if 'center' in im_info else imshape / 2.
|
||
|
scale = im_info['scale'] if 'scale' in im_info else imshape
|
||
|
trans = get_affine_transform(center, scale, rot, self.trainsize)
|
||
|
image = cv2.warpAffine(
|
||
|
image,
|
||
|
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
|
||
|
flags=cv2.INTER_LINEAR)
|
||
|
|
||
|
return image, im_info
|