forked from PulseFocusPlatform/PulseFocusPlatform
146 lines
5.3 KiB
Python
146 lines
5.3 KiB
Python
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
import paddle.fluid as fluid
|
||
|
|
||
|
from ppdet.experimental import mixed_precision_global_state
|
||
|
from ppdet.core.workspace import register
|
||
|
from ppdet.modeling.ops import SSDOutputDecoder
|
||
|
|
||
|
__all__ = ['SSD']
|
||
|
|
||
|
|
||
|
@register
|
||
|
class SSD(object):
|
||
|
"""
|
||
|
Single Shot MultiBox Detector, see https://arxiv.org/abs/1512.02325
|
||
|
|
||
|
Args:
|
||
|
backbone (object): backbone instance
|
||
|
multi_box_head (object): `MultiBoxHead` instance
|
||
|
output_decoder (object): `SSDOutputDecoder` instance
|
||
|
num_classes (int): number of output classes
|
||
|
"""
|
||
|
|
||
|
__category__ = 'architecture'
|
||
|
__inject__ = ['backbone', 'multi_box_head', 'output_decoder', 'fpn']
|
||
|
__shared__ = ['num_classes']
|
||
|
|
||
|
def __init__(self,
|
||
|
backbone,
|
||
|
fpn=None,
|
||
|
multi_box_head='MultiBoxHead',
|
||
|
output_decoder=SSDOutputDecoder().__dict__,
|
||
|
num_classes=21):
|
||
|
super(SSD, self).__init__()
|
||
|
self.backbone = backbone
|
||
|
self.fpn = fpn
|
||
|
self.multi_box_head = multi_box_head
|
||
|
self.num_classes = num_classes
|
||
|
self.output_decoder = output_decoder
|
||
|
if isinstance(output_decoder, dict):
|
||
|
self.output_decoder = SSDOutputDecoder(**output_decoder)
|
||
|
|
||
|
def build(self, feed_vars, mode='train'):
|
||
|
im = feed_vars['image']
|
||
|
if mode == 'train' or mode == 'eval':
|
||
|
gt_bbox = feed_vars['gt_bbox']
|
||
|
gt_class = feed_vars['gt_class']
|
||
|
|
||
|
mixed_precision_enabled = mixed_precision_global_state() is not None
|
||
|
# cast inputs to FP16
|
||
|
if mixed_precision_enabled:
|
||
|
im = fluid.layers.cast(im, 'float16')
|
||
|
|
||
|
# backbone
|
||
|
body_feats = self.backbone(im)
|
||
|
|
||
|
if self.fpn is not None:
|
||
|
body_feats, spatial_scale = self.fpn.get_output(body_feats)
|
||
|
|
||
|
if isinstance(body_feats, OrderedDict):
|
||
|
body_feat_names = list(body_feats.keys())
|
||
|
body_feats = [body_feats[name] for name in body_feat_names]
|
||
|
|
||
|
# cast features back to FP32
|
||
|
if mixed_precision_enabled:
|
||
|
body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]
|
||
|
|
||
|
locs, confs, box, box_var = self.multi_box_head(
|
||
|
inputs=body_feats, image=im, num_classes=self.num_classes)
|
||
|
|
||
|
if mode == 'train':
|
||
|
loss = fluid.layers.ssd_loss(locs, confs, gt_bbox, gt_class, box,
|
||
|
box_var)
|
||
|
loss = fluid.layers.reduce_sum(loss)
|
||
|
return {'loss': loss}
|
||
|
else:
|
||
|
pred = self.output_decoder(locs, confs, box, box_var)
|
||
|
return {'bbox': pred}
|
||
|
|
||
|
def _inputs_def(self, image_shape):
|
||
|
im_shape = [None] + image_shape
|
||
|
# yapf: disable
|
||
|
inputs_def = {
|
||
|
'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
|
||
|
'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
|
||
|
'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
|
||
|
'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
|
||
|
'im_shape': {'shape': [None, 3], 'dtype': 'int32', 'lod_level': 0},
|
||
|
'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
|
||
|
}
|
||
|
# yapf: enable
|
||
|
return inputs_def
|
||
|
|
||
|
def build_inputs(
|
||
|
self,
|
||
|
image_shape=[3, None, None],
|
||
|
fields=['image', 'im_id', 'gt_bbox', 'gt_class'], # for train
|
||
|
use_dataloader=True,
|
||
|
iterable=False):
|
||
|
inputs_def = self._inputs_def(image_shape)
|
||
|
feed_vars = OrderedDict([(key, fluid.data(
|
||
|
name=key,
|
||
|
shape=inputs_def[key]['shape'],
|
||
|
dtype=inputs_def[key]['dtype'],
|
||
|
lod_level=inputs_def[key]['lod_level'])) for key in fields])
|
||
|
loader = fluid.io.DataLoader.from_generator(
|
||
|
feed_list=list(feed_vars.values()),
|
||
|
capacity=16,
|
||
|
use_double_buffer=True,
|
||
|
iterable=iterable) if use_dataloader else None
|
||
|
return feed_vars, loader
|
||
|
|
||
|
def train(self, feed_vars):
|
||
|
return self.build(feed_vars, 'train')
|
||
|
|
||
|
def eval(self, feed_vars):
|
||
|
return self.build(feed_vars, 'eval')
|
||
|
|
||
|
def test(self, feed_vars, exclude_nms=False):
|
||
|
assert not exclude_nms, "exclude_nms for {} is not support currently".format(
|
||
|
self.__class__.__name__)
|
||
|
return self.build(feed_vars, 'test')
|
||
|
|
||
|
def is_bbox_normalized(self):
|
||
|
# SSD use output_decoder in output layers, bbox is normalized
|
||
|
# to range [0, 1], is_bbox_normalized is used in eval.py and infer.py
|
||
|
return True
|