forked from PulseFocusPlatform/PulseFocusPlatform
360 lines
9.6 KiB
Python
360 lines
9.6 KiB
Python
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle import fluid
|
||
|
from paddle.fluid.param_attr import ParamAttr
|
||
|
|
||
|
from ppdet.core.workspace import register
|
||
|
|
||
|
__all__ = ['FaceBoxNet']
|
||
|
|
||
|
|
||
|
@register
|
||
|
class FaceBoxNet(object):
|
||
|
"""
|
||
|
FaceBoxes, see https://https://arxiv.org/abs/1708.05234
|
||
|
|
||
|
Args:
|
||
|
with_extra_blocks (bool): whether or not extra blocks should be added
|
||
|
lite_edition (bool): whether or not is FaceBoxes-lite
|
||
|
"""
|
||
|
|
||
|
def __init__(self, with_extra_blocks=True, lite_edition=False):
|
||
|
super(FaceBoxNet, self).__init__()
|
||
|
|
||
|
self.with_extra_blocks = with_extra_blocks
|
||
|
self.lite_edition = lite_edition
|
||
|
|
||
|
def __call__(self, input):
|
||
|
if self.lite_edition:
|
||
|
return self._simplified_edition(input)
|
||
|
else:
|
||
|
return self._original_edition(input)
|
||
|
|
||
|
def _simplified_edition(self, input):
|
||
|
conv_1_1 = self._conv_norm_crelu(
|
||
|
input=input,
|
||
|
num_filters=8,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name="conv_1_1")
|
||
|
|
||
|
conv_1_2 = self._conv_norm_crelu(
|
||
|
input=conv_1_1,
|
||
|
num_filters=24,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name="conv_1_2")
|
||
|
|
||
|
pool1 = fluid.layers.pool2d(
|
||
|
input=conv_1_2,
|
||
|
pool_size=3,
|
||
|
pool_padding=1,
|
||
|
pool_type='avg',
|
||
|
name="pool_1")
|
||
|
|
||
|
conv_2_1 = self._conv_norm(
|
||
|
input=pool1,
|
||
|
num_filters=48,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name="conv_2_1")
|
||
|
|
||
|
conv_2_2 = self._conv_norm(
|
||
|
input=conv_2_1,
|
||
|
num_filters=64,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name="conv_2_2")
|
||
|
|
||
|
conv_inception = conv_2_2
|
||
|
|
||
|
for i in range(3):
|
||
|
conv_inception = self._inceptionA(conv_inception, i)
|
||
|
|
||
|
layers = []
|
||
|
layers.append(conv_inception)
|
||
|
|
||
|
conv_3_1 = self._conv_norm(
|
||
|
input=conv_inception,
|
||
|
num_filters=128,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name="conv_3_1")
|
||
|
|
||
|
conv_3_2 = self._conv_norm(
|
||
|
input=conv_3_1,
|
||
|
num_filters=256,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name="conv_3_2")
|
||
|
|
||
|
layers.append(conv_3_2)
|
||
|
|
||
|
if not self.with_extra_blocks:
|
||
|
return layers[-1]
|
||
|
return layers[-2], layers[-1]
|
||
|
|
||
|
def _original_edition(self, input):
|
||
|
conv_1 = self._conv_norm_crelu(
|
||
|
input=input,
|
||
|
num_filters=24,
|
||
|
filter_size=7,
|
||
|
stride=4,
|
||
|
padding=3,
|
||
|
act='relu',
|
||
|
name="conv_1")
|
||
|
|
||
|
pool_1 = fluid.layers.pool2d(
|
||
|
input=conv_1,
|
||
|
pool_size=3,
|
||
|
pool_stride=2,
|
||
|
pool_padding=1,
|
||
|
pool_type='max',
|
||
|
name="pool_1")
|
||
|
|
||
|
conv_2 = self._conv_norm_crelu(
|
||
|
input=pool_1,
|
||
|
num_filters=64,
|
||
|
filter_size=5,
|
||
|
stride=2,
|
||
|
padding=2,
|
||
|
act='relu',
|
||
|
name="conv_2")
|
||
|
|
||
|
pool_2 = fluid.layers.pool2d(
|
||
|
input=conv_1,
|
||
|
pool_size=3,
|
||
|
pool_stride=2,
|
||
|
pool_padding=1,
|
||
|
pool_type='max',
|
||
|
name="pool_2")
|
||
|
|
||
|
conv_inception = pool_2
|
||
|
|
||
|
for i in range(3):
|
||
|
conv_inception = self._inceptionA(conv_inception, i)
|
||
|
|
||
|
layers = []
|
||
|
layers.append(conv_inception)
|
||
|
|
||
|
conv_3_1 = self._conv_norm(
|
||
|
input=conv_inception,
|
||
|
num_filters=128,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name="conv_3_1")
|
||
|
|
||
|
conv_3_2 = self._conv_norm(
|
||
|
input=conv_3_1,
|
||
|
num_filters=256,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name="conv_3_2")
|
||
|
|
||
|
layers.append(conv_3_2)
|
||
|
|
||
|
conv_4_1 = self._conv_norm(
|
||
|
input=conv_3_2,
|
||
|
num_filters=128,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name="conv_4_1")
|
||
|
|
||
|
conv_4_2 = self._conv_norm(
|
||
|
input=conv_4_1,
|
||
|
num_filters=256,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name="conv_4_2")
|
||
|
|
||
|
layers.append(conv_4_2)
|
||
|
|
||
|
if not self.with_extra_blocks:
|
||
|
return layers[-1]
|
||
|
|
||
|
return layers[-3], layers[-2], layers[-1]
|
||
|
|
||
|
def _conv_norm(self,
|
||
|
input,
|
||
|
filter_size,
|
||
|
num_filters,
|
||
|
stride,
|
||
|
padding,
|
||
|
num_groups=1,
|
||
|
act='relu',
|
||
|
use_cudnn=True,
|
||
|
name=None):
|
||
|
parameter_attr = ParamAttr(
|
||
|
learning_rate=0.1,
|
||
|
initializer=fluid.initializer.MSRA(),
|
||
|
name=name + "_weights")
|
||
|
conv = fluid.layers.conv2d(
|
||
|
input=input,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=filter_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
groups=num_groups,
|
||
|
act=None,
|
||
|
use_cudnn=use_cudnn,
|
||
|
param_attr=parameter_attr,
|
||
|
bias_attr=False)
|
||
|
return fluid.layers.batch_norm(input=conv, act=act)
|
||
|
|
||
|
def _conv_norm_crelu(self,
|
||
|
input,
|
||
|
filter_size,
|
||
|
num_filters,
|
||
|
stride,
|
||
|
padding,
|
||
|
num_groups=1,
|
||
|
act='relu',
|
||
|
use_cudnn=True,
|
||
|
name=None):
|
||
|
parameter_attr = ParamAttr(
|
||
|
learning_rate=0.1,
|
||
|
initializer=fluid.initializer.MSRA(),
|
||
|
name=name + "_weights")
|
||
|
conv = fluid.layers.conv2d(
|
||
|
input=input,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=filter_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
groups=num_groups,
|
||
|
act=None,
|
||
|
use_cudnn=use_cudnn,
|
||
|
param_attr=parameter_attr,
|
||
|
bias_attr=False)
|
||
|
|
||
|
conv_a = fluid.layers.batch_norm(input=conv, act=act)
|
||
|
conv_b = fluid.layers.scale(conv_a, -1)
|
||
|
|
||
|
concat = fluid.layers.concat([conv_a, conv_b], axis=1)
|
||
|
|
||
|
return concat
|
||
|
|
||
|
def _pooling_block(self,
|
||
|
conv,
|
||
|
pool_size,
|
||
|
pool_stride,
|
||
|
pool_padding=0,
|
||
|
ceil_mode=True):
|
||
|
pool = fluid.layers.pool2d(
|
||
|
input=conv,
|
||
|
pool_size=pool_size,
|
||
|
pool_type='max',
|
||
|
pool_stride=pool_stride,
|
||
|
pool_padding=pool_padding,
|
||
|
ceil_mode=ceil_mode)
|
||
|
return pool
|
||
|
|
||
|
def _inceptionA(self, data, idx):
|
||
|
idx = str(idx)
|
||
|
|
||
|
pool1 = fluid.layers.pool2d(
|
||
|
input=data,
|
||
|
pool_size=3,
|
||
|
pool_padding=1,
|
||
|
pool_type='avg',
|
||
|
name='inceptionA_' + idx + '_pool1')
|
||
|
conv1 = self._conv_norm(
|
||
|
input=pool1,
|
||
|
filter_size=1,
|
||
|
num_filters=32,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name='inceptionA_' + idx + '_conv1')
|
||
|
|
||
|
conv2 = self._conv_norm(
|
||
|
input=data,
|
||
|
filter_size=1,
|
||
|
num_filters=32,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name='inceptionA_' + idx + '_conv2')
|
||
|
|
||
|
conv3 = self._conv_norm(
|
||
|
input=data,
|
||
|
filter_size=1,
|
||
|
num_filters=24,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name='inceptionA_' + idx + '_conv3_1')
|
||
|
conv3 = self._conv_norm(
|
||
|
input=conv3,
|
||
|
filter_size=3,
|
||
|
num_filters=32,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name='inceptionA_' + idx + '_conv3_2')
|
||
|
|
||
|
conv4 = self._conv_norm(
|
||
|
input=data,
|
||
|
filter_size=1,
|
||
|
num_filters=24,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
act='relu',
|
||
|
name='inceptionA_' + idx + '_conv4_1')
|
||
|
conv4 = self._conv_norm(
|
||
|
input=conv4,
|
||
|
filter_size=3,
|
||
|
num_filters=32,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name='inceptionA_' + idx + '_conv4_2')
|
||
|
conv4 = self._conv_norm(
|
||
|
input=conv4,
|
||
|
filter_size=3,
|
||
|
num_filters=32,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
name='inceptionA_' + idx + '_conv4_3')
|
||
|
|
||
|
concat = fluid.layers.concat([conv1, conv2, conv3, conv4], axis=1)
|
||
|
|
||
|
return concat
|