PulseFocusPlatform/static/ppdet/modeling/backbones/faceboxnet.py

360 lines
9.6 KiB
Python
Raw Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from ppdet.core.workspace import register
__all__ = ['FaceBoxNet']
@register
class FaceBoxNet(object):
"""
FaceBoxes, see https://https://arxiv.org/abs/1708.05234
Args:
with_extra_blocks (bool): whether or not extra blocks should be added
lite_edition (bool): whether or not is FaceBoxes-lite
"""
def __init__(self, with_extra_blocks=True, lite_edition=False):
super(FaceBoxNet, self).__init__()
self.with_extra_blocks = with_extra_blocks
self.lite_edition = lite_edition
def __call__(self, input):
if self.lite_edition:
return self._simplified_edition(input)
else:
return self._original_edition(input)
def _simplified_edition(self, input):
conv_1_1 = self._conv_norm_crelu(
input=input,
num_filters=8,
filter_size=3,
stride=2,
padding=1,
act='relu',
name="conv_1_1")
conv_1_2 = self._conv_norm_crelu(
input=conv_1_1,
num_filters=24,
filter_size=3,
stride=2,
padding=1,
act='relu',
name="conv_1_2")
pool1 = fluid.layers.pool2d(
input=conv_1_2,
pool_size=3,
pool_padding=1,
pool_type='avg',
name="pool_1")
conv_2_1 = self._conv_norm(
input=pool1,
num_filters=48,
filter_size=3,
stride=2,
padding=1,
act='relu',
name="conv_2_1")
conv_2_2 = self._conv_norm(
input=conv_2_1,
num_filters=64,
filter_size=1,
stride=1,
padding=0,
act='relu',
name="conv_2_2")
conv_inception = conv_2_2
for i in range(3):
conv_inception = self._inceptionA(conv_inception, i)
layers = []
layers.append(conv_inception)
conv_3_1 = self._conv_norm(
input=conv_inception,
num_filters=128,
filter_size=1,
stride=1,
padding=0,
act='relu',
name="conv_3_1")
conv_3_2 = self._conv_norm(
input=conv_3_1,
num_filters=256,
filter_size=3,
stride=2,
padding=1,
act='relu',
name="conv_3_2")
layers.append(conv_3_2)
if not self.with_extra_blocks:
return layers[-1]
return layers[-2], layers[-1]
def _original_edition(self, input):
conv_1 = self._conv_norm_crelu(
input=input,
num_filters=24,
filter_size=7,
stride=4,
padding=3,
act='relu',
name="conv_1")
pool_1 = fluid.layers.pool2d(
input=conv_1,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max',
name="pool_1")
conv_2 = self._conv_norm_crelu(
input=pool_1,
num_filters=64,
filter_size=5,
stride=2,
padding=2,
act='relu',
name="conv_2")
pool_2 = fluid.layers.pool2d(
input=conv_1,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max',
name="pool_2")
conv_inception = pool_2
for i in range(3):
conv_inception = self._inceptionA(conv_inception, i)
layers = []
layers.append(conv_inception)
conv_3_1 = self._conv_norm(
input=conv_inception,
num_filters=128,
filter_size=1,
stride=1,
padding=0,
act='relu',
name="conv_3_1")
conv_3_2 = self._conv_norm(
input=conv_3_1,
num_filters=256,
filter_size=3,
stride=2,
padding=1,
act='relu',
name="conv_3_2")
layers.append(conv_3_2)
conv_4_1 = self._conv_norm(
input=conv_3_2,
num_filters=128,
filter_size=1,
stride=1,
padding=0,
act='relu',
name="conv_4_1")
conv_4_2 = self._conv_norm(
input=conv_4_1,
num_filters=256,
filter_size=3,
stride=2,
padding=1,
act='relu',
name="conv_4_2")
layers.append(conv_4_2)
if not self.with_extra_blocks:
return layers[-1]
return layers[-3], layers[-2], layers[-1]
def _conv_norm(self,
input,
filter_size,
num_filters,
stride,
padding,
num_groups=1,
act='relu',
use_cudnn=True,
name=None):
parameter_attr = ParamAttr(
learning_rate=0.1,
initializer=fluid.initializer.MSRA(),
name=name + "_weights")
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=parameter_attr,
bias_attr=False)
return fluid.layers.batch_norm(input=conv, act=act)
def _conv_norm_crelu(self,
input,
filter_size,
num_filters,
stride,
padding,
num_groups=1,
act='relu',
use_cudnn=True,
name=None):
parameter_attr = ParamAttr(
learning_rate=0.1,
initializer=fluid.initializer.MSRA(),
name=name + "_weights")
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=parameter_attr,
bias_attr=False)
conv_a = fluid.layers.batch_norm(input=conv, act=act)
conv_b = fluid.layers.scale(conv_a, -1)
concat = fluid.layers.concat([conv_a, conv_b], axis=1)
return concat
def _pooling_block(self,
conv,
pool_size,
pool_stride,
pool_padding=0,
ceil_mode=True):
pool = fluid.layers.pool2d(
input=conv,
pool_size=pool_size,
pool_type='max',
pool_stride=pool_stride,
pool_padding=pool_padding,
ceil_mode=ceil_mode)
return pool
def _inceptionA(self, data, idx):
idx = str(idx)
pool1 = fluid.layers.pool2d(
input=data,
pool_size=3,
pool_padding=1,
pool_type='avg',
name='inceptionA_' + idx + '_pool1')
conv1 = self._conv_norm(
input=pool1,
filter_size=1,
num_filters=32,
stride=1,
padding=0,
act='relu',
name='inceptionA_' + idx + '_conv1')
conv2 = self._conv_norm(
input=data,
filter_size=1,
num_filters=32,
stride=1,
padding=0,
act='relu',
name='inceptionA_' + idx + '_conv2')
conv3 = self._conv_norm(
input=data,
filter_size=1,
num_filters=24,
stride=1,
padding=0,
act='relu',
name='inceptionA_' + idx + '_conv3_1')
conv3 = self._conv_norm(
input=conv3,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act='relu',
name='inceptionA_' + idx + '_conv3_2')
conv4 = self._conv_norm(
input=data,
filter_size=1,
num_filters=24,
stride=1,
padding=0,
act='relu',
name='inceptionA_' + idx + '_conv4_1')
conv4 = self._conv_norm(
input=conv4,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act='relu',
name='inceptionA_' + idx + '_conv4_2')
conv4 = self._conv_norm(
input=conv4,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act='relu',
name='inceptionA_' + idx + '_conv4_3')
concat = fluid.layers.concat([conv1, conv2, conv3, conv4], axis=1)
return concat