forked from PulseFocusPlatform/PulseFocusPlatform
1591 lines
69 KiB
Python
1591 lines
69 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn.functional as F
|
||
|
import paddle.nn as nn
|
||
|
from paddle import ParamAttr
|
||
|
from paddle.regularizer import L2Decay
|
||
|
|
||
|
from paddle.fluid.framework import Variable, in_dygraph_mode
|
||
|
from paddle.fluid import core
|
||
|
from paddle.fluid.layer_helper import LayerHelper
|
||
|
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
|
||
|
|
||
|
__all__ = [
|
||
|
'roi_pool',
|
||
|
'roi_align',
|
||
|
'prior_box',
|
||
|
'generate_proposals',
|
||
|
'iou_similarity',
|
||
|
'box_coder',
|
||
|
'yolo_box',
|
||
|
'multiclass_nms',
|
||
|
'distribute_fpn_proposals',
|
||
|
'collect_fpn_proposals',
|
||
|
'matrix_nms',
|
||
|
'batch_norm',
|
||
|
'mish',
|
||
|
]
|
||
|
|
||
|
|
||
|
def mish(x):
|
||
|
return x * paddle.tanh(F.softplus(x))
|
||
|
|
||
|
|
||
|
def batch_norm(ch,
|
||
|
norm_type='bn',
|
||
|
norm_decay=0.,
|
||
|
freeze_norm=False,
|
||
|
initializer=None,
|
||
|
data_format='NCHW'):
|
||
|
if norm_type == 'sync_bn':
|
||
|
batch_norm = nn.SyncBatchNorm
|
||
|
else:
|
||
|
batch_norm = nn.BatchNorm2D
|
||
|
|
||
|
norm_lr = 0. if freeze_norm else 1.
|
||
|
weight_attr = ParamAttr(
|
||
|
initializer=initializer,
|
||
|
learning_rate=norm_lr,
|
||
|
regularizer=L2Decay(norm_decay),
|
||
|
trainable=False if freeze_norm else True)
|
||
|
bias_attr = ParamAttr(
|
||
|
learning_rate=norm_lr,
|
||
|
regularizer=L2Decay(norm_decay),
|
||
|
trainable=False if freeze_norm else True)
|
||
|
|
||
|
norm_layer = batch_norm(
|
||
|
ch,
|
||
|
weight_attr=weight_attr,
|
||
|
bias_attr=bias_attr,
|
||
|
data_format=data_format)
|
||
|
|
||
|
norm_params = norm_layer.parameters()
|
||
|
if freeze_norm:
|
||
|
for param in norm_params:
|
||
|
param.stop_gradient = True
|
||
|
|
||
|
return norm_layer
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def roi_pool(input,
|
||
|
rois,
|
||
|
output_size,
|
||
|
spatial_scale=1.0,
|
||
|
rois_num=None,
|
||
|
name=None):
|
||
|
"""
|
||
|
|
||
|
This operator implements the roi_pooling layer.
|
||
|
Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
|
||
|
|
||
|
The operator has three steps:
|
||
|
|
||
|
1. Dividing each region proposal into equal-sized sections with output_size(h, w);
|
||
|
2. Finding the largest value in each section;
|
||
|
3. Copying these max values to the output buffer.
|
||
|
|
||
|
For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
|
||
|
where N is the batch size, C is the input channel, H is Height, W is weight.
|
||
|
The data type is float32 or float64.
|
||
|
rois (Tensor): ROIs (Regions of Interest) to pool over.
|
||
|
2D-Tensor or 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1.
|
||
|
Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
|
||
|
and (x2, y2) is the bottom right coordinates.
|
||
|
output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
|
||
|
spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
|
||
|
rois_num (Tensor): The number of RoIs in each image. Default: None
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The pooled feature, 4D-Tensor with the shape of [num_rois, C, output_size[0], output_size[1]].
|
||
|
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
paddle.enable_static()
|
||
|
|
||
|
x = paddle.static.data(
|
||
|
name='data', shape=[None, 256, 32, 32], dtype='float32')
|
||
|
rois = paddle.static.data(
|
||
|
name='rois', shape=[None, 4], dtype='float32')
|
||
|
rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
|
||
|
|
||
|
pool_out = ops.roi_pool(
|
||
|
input=x,
|
||
|
rois=rois,
|
||
|
output_size=(1, 1),
|
||
|
spatial_scale=1.0,
|
||
|
rois_num=rois_num)
|
||
|
"""
|
||
|
check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
|
||
|
if isinstance(output_size, int):
|
||
|
output_size = (output_size, output_size)
|
||
|
|
||
|
pooled_height, pooled_width = output_size
|
||
|
if in_dygraph_mode():
|
||
|
assert rois_num is not None, "rois_num should not be None in dygraph mode."
|
||
|
pool_out, argmaxes = core.ops.roi_pool(
|
||
|
input, rois, rois_num, "pooled_height", pooled_height,
|
||
|
"pooled_width", pooled_width, "spatial_scale", spatial_scale)
|
||
|
return pool_out, argmaxes
|
||
|
|
||
|
else:
|
||
|
check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool')
|
||
|
check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool')
|
||
|
helper = LayerHelper('roi_pool', **locals())
|
||
|
dtype = helper.input_dtype()
|
||
|
pool_out = helper.create_variable_for_type_inference(dtype)
|
||
|
argmaxes = helper.create_variable_for_type_inference(dtype='int32')
|
||
|
|
||
|
inputs = {
|
||
|
"X": input,
|
||
|
"ROIs": rois,
|
||
|
}
|
||
|
if rois_num is not None:
|
||
|
inputs['RoisNum'] = rois_num
|
||
|
helper.append_op(
|
||
|
type="roi_pool",
|
||
|
inputs=inputs,
|
||
|
outputs={"Out": pool_out,
|
||
|
"Argmax": argmaxes},
|
||
|
attrs={
|
||
|
"pooled_height": pooled_height,
|
||
|
"pooled_width": pooled_width,
|
||
|
"spatial_scale": spatial_scale
|
||
|
})
|
||
|
return pool_out, argmaxes
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def roi_align(input,
|
||
|
rois,
|
||
|
output_size,
|
||
|
spatial_scale=1.0,
|
||
|
sampling_ratio=-1,
|
||
|
rois_num=None,
|
||
|
aligned=True,
|
||
|
name=None):
|
||
|
"""
|
||
|
|
||
|
Region of interest align (also known as RoI align) is to perform
|
||
|
bilinear interpolation on inputs of nonuniform sizes to obtain
|
||
|
fixed-size feature maps (e.g. 7*7)
|
||
|
|
||
|
Dividing each region proposal into equal-sized sections with
|
||
|
the pooled_width and pooled_height. Location remains the origin
|
||
|
result.
|
||
|
|
||
|
In each ROI bin, the value of the four regularly sampled locations
|
||
|
are computed directly through bilinear interpolation. The output is
|
||
|
the mean of four locations.
|
||
|
Thus avoid the misaligned problem.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
|
||
|
where N is the batch size, C is the input channel, H is Height, W is weight.
|
||
|
The data type is float32 or float64.
|
||
|
rois (Tensor): ROIs (Regions of Interest) to pool over.It should be
|
||
|
a 2-D Tensor or 2-D LoDTensor of shape (num_rois, 4), the lod level is 1.
|
||
|
The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...],
|
||
|
(x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
|
||
|
output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
|
||
|
spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords
|
||
|
from their input scale to the scale used when pooling. Default: 1.0
|
||
|
sampling_ratio(int32, optional): number of sampling points in the interpolation grid.
|
||
|
If <=0, then grid points are adaptive to roi_width and pooled_w, likewise for height. Default: -1
|
||
|
rois_num (Tensor): The number of RoIs in each image. Default: None
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
Returns:
|
||
|
Tensor:
|
||
|
|
||
|
Output: The output of ROIAlignOp is a 4-D tensor with shape (num_rois, channels, pooled_h, pooled_w). The data type is float32 or float64.
|
||
|
|
||
|
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
paddle.enable_static()
|
||
|
|
||
|
x = paddle.static.data(
|
||
|
name='data', shape=[None, 256, 32, 32], dtype='float32')
|
||
|
rois = paddle.static.data(
|
||
|
name='rois', shape=[None, 4], dtype='float32')
|
||
|
rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
|
||
|
align_out = ops.roi_align(input=x,
|
||
|
rois=rois,
|
||
|
ouput_size=(7, 7),
|
||
|
spatial_scale=0.5,
|
||
|
sampling_ratio=-1,
|
||
|
rois_num=rois_num)
|
||
|
"""
|
||
|
check_type(output_size, 'output_size', (int, tuple), 'roi_align')
|
||
|
if isinstance(output_size, int):
|
||
|
output_size = (output_size, output_size)
|
||
|
|
||
|
pooled_height, pooled_width = output_size
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
assert rois_num is not None, "rois_num should not be None in dygraph mode."
|
||
|
align_out = core.ops.roi_align(
|
||
|
input, rois, rois_num, "pooled_height", pooled_height,
|
||
|
"pooled_width", pooled_width, "spatial_scale", spatial_scale,
|
||
|
"sampling_ratio", sampling_ratio, "aligned", aligned)
|
||
|
return align_out
|
||
|
|
||
|
else:
|
||
|
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
|
||
|
'roi_align')
|
||
|
check_variable_and_dtype(rois, 'rois', ['float32', 'float64'],
|
||
|
'roi_align')
|
||
|
helper = LayerHelper('roi_align', **locals())
|
||
|
dtype = helper.input_dtype()
|
||
|
align_out = helper.create_variable_for_type_inference(dtype)
|
||
|
inputs = {
|
||
|
"X": input,
|
||
|
"ROIs": rois,
|
||
|
}
|
||
|
if rois_num is not None:
|
||
|
inputs['RoisNum'] = rois_num
|
||
|
helper.append_op(
|
||
|
type="roi_align",
|
||
|
inputs=inputs,
|
||
|
outputs={"Out": align_out},
|
||
|
attrs={
|
||
|
"pooled_height": pooled_height,
|
||
|
"pooled_width": pooled_width,
|
||
|
"spatial_scale": spatial_scale,
|
||
|
"sampling_ratio": sampling_ratio,
|
||
|
"aligned": aligned,
|
||
|
})
|
||
|
return align_out
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def iou_similarity(x, y, box_normalized=True, name=None):
|
||
|
"""
|
||
|
Computes intersection-over-union (IOU) between two box lists.
|
||
|
Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
|
||
|
boxes in 'Y' are shared by all instance of the batched inputs of X.
|
||
|
Given two boxes A and B, the calculation of IOU is as follows:
|
||
|
|
||
|
$$
|
||
|
IOU(A, B) =
|
||
|
\\frac{area(A\\cap B)}{area(A)+area(B)-area(A\\cap B)}
|
||
|
$$
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): Box list X is a 2-D Tensor with shape [N, 4] holds N
|
||
|
boxes, each box is represented as [xmin, ymin, xmax, ymax],
|
||
|
the shape of X is [N, 4]. [xmin, ymin] is the left top
|
||
|
coordinate of the box if the input is image feature map, they
|
||
|
are close to the origin of the coordinate system.
|
||
|
[xmax, ymax] is the right bottom coordinate of the box.
|
||
|
The data type is float32 or float64.
|
||
|
y (Tensor): Box list Y holds M boxes, each box is represented as
|
||
|
[xmin, ymin, xmax, ymax], the shape of X is [N, 4].
|
||
|
[xmin, ymin] is the left top coordinate of the box if the
|
||
|
input is image feature map, and [xmax, ymax] is the right
|
||
|
bottom coordinate of the box. The data type is float32 or float64.
|
||
|
box_normalized(bool): Whether treat the priorbox as a normalized box.
|
||
|
Set true by default.
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The output of iou_similarity op, a tensor with shape [N, M]
|
||
|
representing pairwise iou scores. The data type is same with x.
|
||
|
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
paddle.enable_static()
|
||
|
|
||
|
x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
|
||
|
y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
|
||
|
iou = ops.iou_similarity(x=x, y=y)
|
||
|
"""
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
out = core.ops.iou_similarity(x, y, 'box_normalized', box_normalized)
|
||
|
return out
|
||
|
else:
|
||
|
helper = LayerHelper("iou_similarity", **locals())
|
||
|
out = helper.create_variable_for_type_inference(dtype=x.dtype)
|
||
|
|
||
|
helper.append_op(
|
||
|
type="iou_similarity",
|
||
|
inputs={"X": x,
|
||
|
"Y": y},
|
||
|
attrs={"box_normalized": box_normalized},
|
||
|
outputs={"Out": out})
|
||
|
return out
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def collect_fpn_proposals(multi_rois,
|
||
|
multi_scores,
|
||
|
min_level,
|
||
|
max_level,
|
||
|
post_nms_top_n,
|
||
|
rois_num_per_level=None,
|
||
|
name=None):
|
||
|
"""
|
||
|
|
||
|
**This OP only supports LoDTensor as input**. Concat multi-level RoIs
|
||
|
(Region of Interest) and select N RoIs with respect to multi_scores.
|
||
|
This operation performs the following steps:
|
||
|
|
||
|
1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
|
||
|
2. Concat multi-level RoIs and scores
|
||
|
3. Sort scores and select post_nms_top_n scores
|
||
|
4. Gather RoIs by selected indices from scores
|
||
|
5. Re-sort RoIs by corresponding batch_id
|
||
|
|
||
|
Args:
|
||
|
multi_rois(list): List of RoIs to collect. Element in list is 2-D
|
||
|
LoDTensor with shape [N, 4] and data type is float32 or float64,
|
||
|
N is the number of RoIs.
|
||
|
multi_scores(list): List of scores of RoIs to collect. Element in list
|
||
|
is 2-D LoDTensor with shape [N, 1] and data type is float32 or
|
||
|
float64, N is the number of RoIs.
|
||
|
min_level(int): The lowest level of FPN layer to collect
|
||
|
max_level(int): The highest level of FPN layer to collect
|
||
|
post_nms_top_n(int): The number of selected RoIs
|
||
|
rois_num_per_level(list, optional): The List of RoIs' numbers.
|
||
|
Each element is 1-D Tensor which contains the RoIs' number of each
|
||
|
image on each level and the shape is [B] and data type is
|
||
|
int32, B is the number of images. If it is not None then return
|
||
|
a 1-D Tensor contains the output RoIs' number of each image and
|
||
|
the shape is [B]. Default: None
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
Returns:
|
||
|
Variable:
|
||
|
|
||
|
fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
|
||
|
float32 or float64. Selected RoIs.
|
||
|
|
||
|
rois_num(Tensor): 1-D Tensor contains the RoIs's number of each
|
||
|
image. The shape is [B] and data type is int32. B is the number of
|
||
|
images.
|
||
|
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
paddle.enable_static()
|
||
|
multi_rois = []
|
||
|
multi_scores = []
|
||
|
for i in range(4):
|
||
|
multi_rois.append(paddle.static.data(
|
||
|
name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
|
||
|
for i in range(4):
|
||
|
multi_scores.append(paddle.static.data(
|
||
|
name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
|
||
|
|
||
|
fpn_rois = ops.collect_fpn_proposals(
|
||
|
multi_rois=multi_rois,
|
||
|
multi_scores=multi_scores,
|
||
|
min_level=2,
|
||
|
max_level=5,
|
||
|
post_nms_top_n=2000)
|
||
|
"""
|
||
|
check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
|
||
|
check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
|
||
|
num_lvl = max_level - min_level + 1
|
||
|
input_rois = multi_rois[:num_lvl]
|
||
|
input_scores = multi_scores[:num_lvl]
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
|
||
|
attrs = ('post_nms_topN', post_nms_top_n)
|
||
|
output_rois, rois_num = core.ops.collect_fpn_proposals(
|
||
|
input_rois, input_scores, rois_num_per_level, *attrs)
|
||
|
return output_rois, rois_num
|
||
|
|
||
|
else:
|
||
|
helper = LayerHelper('collect_fpn_proposals', **locals())
|
||
|
dtype = helper.input_dtype('multi_rois')
|
||
|
check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
|
||
|
'collect_fpn_proposals')
|
||
|
output_rois = helper.create_variable_for_type_inference(dtype)
|
||
|
output_rois.stop_gradient = True
|
||
|
|
||
|
inputs = {
|
||
|
'MultiLevelRois': input_rois,
|
||
|
'MultiLevelScores': input_scores,
|
||
|
}
|
||
|
outputs = {'FpnRois': output_rois}
|
||
|
if rois_num_per_level is not None:
|
||
|
inputs['MultiLevelRoIsNum'] = rois_num_per_level
|
||
|
rois_num = helper.create_variable_for_type_inference(dtype='int32')
|
||
|
rois_num.stop_gradient = True
|
||
|
outputs['RoisNum'] = rois_num
|
||
|
helper.append_op(
|
||
|
type='collect_fpn_proposals',
|
||
|
inputs=inputs,
|
||
|
outputs=outputs,
|
||
|
attrs={'post_nms_topN': post_nms_top_n})
|
||
|
return output_rois, rois_num
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def distribute_fpn_proposals(fpn_rois,
|
||
|
min_level,
|
||
|
max_level,
|
||
|
refer_level,
|
||
|
refer_scale,
|
||
|
pixel_offset=False,
|
||
|
rois_num=None,
|
||
|
name=None):
|
||
|
"""
|
||
|
|
||
|
**This op only takes LoDTensor as input.** In Feature Pyramid Networks
|
||
|
(FPN) models, it is needed to distribute all proposals into different FPN
|
||
|
level, with respect to scale of the proposals, the referring scale and the
|
||
|
referring level. Besides, to restore the order of proposals, we return an
|
||
|
array which indicates the original index of rois in current proposals.
|
||
|
To compute FPN level for each roi, the formula is given as follows:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
|
||
|
|
||
|
level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
|
||
|
|
||
|
where BBoxArea is a function to compute the area of each roi.
|
||
|
|
||
|
Args:
|
||
|
|
||
|
fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is
|
||
|
float32 or float64. The input fpn_rois.
|
||
|
min_level(int32): The lowest level of FPN layer where the proposals come
|
||
|
from.
|
||
|
max_level(int32): The highest level of FPN layer where the proposals
|
||
|
come from.
|
||
|
refer_level(int32): The referring level of FPN layer with specified scale.
|
||
|
refer_scale(int32): The referring scale of FPN layer with specified level.
|
||
|
rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
|
||
|
The shape is [B] and data type is int32. B is the number of images.
|
||
|
If it is not None then return a list of 1-D Tensor. Each element
|
||
|
is the output RoIs' number of each image on the corresponding level
|
||
|
and the shape is [B]. None by default.
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
Returns:
|
||
|
Tuple:
|
||
|
|
||
|
multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4]
|
||
|
and data type of float32 and float64. The length is
|
||
|
max_level-min_level+1. The proposals in each FPN level.
|
||
|
|
||
|
restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is
|
||
|
the number of total rois. The data type is int32. It is
|
||
|
used to restore the order of fpn_rois.
|
||
|
|
||
|
rois_num_per_level(List): A list of 1-D Tensor and each Tensor is
|
||
|
the RoIs' number in each image on the corresponding level. The shape
|
||
|
is [B] and data type of int32. B is the number of images
|
||
|
|
||
|
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
paddle.enable_static()
|
||
|
fpn_rois = paddle.static.data(
|
||
|
name='data', shape=[None, 4], dtype='float32', lod_level=1)
|
||
|
multi_rois, restore_ind = ops.distribute_fpn_proposals(
|
||
|
fpn_rois=fpn_rois,
|
||
|
min_level=2,
|
||
|
max_level=5,
|
||
|
refer_level=4,
|
||
|
refer_scale=224)
|
||
|
"""
|
||
|
num_lvl = max_level - min_level + 1
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
assert rois_num is not None, "rois_num should not be None in dygraph mode."
|
||
|
attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
|
||
|
refer_level, 'refer_scale', refer_scale, 'pixel_offset',
|
||
|
pixel_offset)
|
||
|
multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals(
|
||
|
fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
|
||
|
return multi_rois, restore_ind, rois_num_per_level
|
||
|
|
||
|
else:
|
||
|
check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
|
||
|
'distribute_fpn_proposals')
|
||
|
helper = LayerHelper('distribute_fpn_proposals', **locals())
|
||
|
dtype = helper.input_dtype('fpn_rois')
|
||
|
multi_rois = [
|
||
|
helper.create_variable_for_type_inference(dtype)
|
||
|
for i in range(num_lvl)
|
||
|
]
|
||
|
|
||
|
restore_ind = helper.create_variable_for_type_inference(dtype='int32')
|
||
|
|
||
|
inputs = {'FpnRois': fpn_rois}
|
||
|
outputs = {
|
||
|
'MultiFpnRois': multi_rois,
|
||
|
'RestoreIndex': restore_ind,
|
||
|
}
|
||
|
|
||
|
if rois_num is not None:
|
||
|
inputs['RoisNum'] = rois_num
|
||
|
rois_num_per_level = [
|
||
|
helper.create_variable_for_type_inference(dtype='int32')
|
||
|
for i in range(num_lvl)
|
||
|
]
|
||
|
outputs['MultiLevelRoIsNum'] = rois_num_per_level
|
||
|
|
||
|
helper.append_op(
|
||
|
type='distribute_fpn_proposals',
|
||
|
inputs=inputs,
|
||
|
outputs=outputs,
|
||
|
attrs={
|
||
|
'min_level': min_level,
|
||
|
'max_level': max_level,
|
||
|
'refer_level': refer_level,
|
||
|
'refer_scale': refer_scale,
|
||
|
'pixel_offset': pixel_offset
|
||
|
})
|
||
|
return multi_rois, restore_ind, rois_num_per_level
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def yolo_box(
|
||
|
x,
|
||
|
origin_shape,
|
||
|
anchors,
|
||
|
class_num,
|
||
|
conf_thresh,
|
||
|
downsample_ratio,
|
||
|
clip_bbox=True,
|
||
|
scale_x_y=1.,
|
||
|
name=None, ):
|
||
|
"""
|
||
|
|
||
|
This operator generates YOLO detection boxes from output of YOLOv3 network.
|
||
|
|
||
|
The output of previous network is in shape [N, C, H, W], while H and W
|
||
|
should be the same, H and W specify the grid size, each grid point predict
|
||
|
given number boxes, this given number, which following will be represented as S,
|
||
|
is specified by the number of anchors. In the second dimension(the channel
|
||
|
dimension), C should be equal to S * (5 + class_num), class_num is the object
|
||
|
category number of source dataset(such as 80 in coco dataset), so the
|
||
|
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
|
||
|
also includes confidence score of the box and class one-hot key of each anchor
|
||
|
box.
|
||
|
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
|
||
|
predictions should be as follows:
|
||
|
$$
|
||
|
b_x = \\sigma(t_x) + c_x
|
||
|
$$
|
||
|
$$
|
||
|
b_y = \\sigma(t_y) + c_y
|
||
|
$$
|
||
|
$$
|
||
|
b_w = p_w e^{t_w}
|
||
|
$$
|
||
|
$$
|
||
|
b_h = p_h e^{t_h}
|
||
|
$$
|
||
|
in the equation above, :math:`c_x, c_y` is the left top corner of current grid
|
||
|
and :math:`p_w, p_h` is specified by anchors.
|
||
|
The logistic regression value of the 5th channel of each anchor prediction boxes
|
||
|
represents the confidence score of each prediction box, and the logistic
|
||
|
regression value of the last :attr:`class_num` channels of each anchor prediction
|
||
|
boxes represents the classifcation scores. Boxes with confidence scores less than
|
||
|
:attr:`conf_thresh` should be ignored, and box final scores is the product of
|
||
|
confidence scores and classification scores.
|
||
|
$$
|
||
|
score_{pred} = score_{conf} * score_{class}
|
||
|
$$
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with shape of [N, C, H, W].
|
||
|
The second dimension(C) stores box locations, confidence score and
|
||
|
classification one-hot keys of each anchor box. Generally, X should be the output of YOLOv3 network.
|
||
|
The data type is float32 or float64.
|
||
|
origin_shape (Tensor): The image size tensor of YoloBox operator, This is a 2-D tensor with shape of [N, 2].
|
||
|
This tensor holds height and width of each input image used for resizing output box in input image
|
||
|
scale. The data type is int32.
|
||
|
anchors (list|tuple): The anchor width and height, it will be parsed pair by pair.
|
||
|
class_num (int): The number of classes to predict.
|
||
|
conf_thresh (float): The confidence scores threshold of detection boxes. Boxes with confidence scores
|
||
|
under threshold should be ignored.
|
||
|
downsample_ratio (int): The downsample ratio from network input to YoloBox operator input,
|
||
|
so 32, 16, 8 should be set for the first, second, and thrid YoloBox operators.
|
||
|
clip_bbox (bool): Whether clip output bonding box in Input(ImgSize) boundary. Default true.
|
||
|
scale_x_y (float): Scale the center point of decoded bounding box. Default 1.0.
|
||
|
name (string): The default value is None. Normally there is no need
|
||
|
for user to set this property. For more information,
|
||
|
please refer to :ref:`api_guide_Name`
|
||
|
|
||
|
Returns:
|
||
|
boxes Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes, N is the batch num,
|
||
|
M is output box number, and the 3rd dimension stores [xmin, ymin, xmax, ymax] coordinates of boxes.
|
||
|
scores Tensor: A 3-D tensor with shape [N, M, :attr:`class_num`], the coordinates of boxes, N is the batch num,
|
||
|
M is output box number.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: Attr anchors of yolo box must be list or tuple
|
||
|
TypeError: Attr class_num of yolo box must be an integer
|
||
|
TypeError: Attr conf_thresh of yolo box must be a float number
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
|
||
|
paddle.enable_static()
|
||
|
x = paddle.static.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
|
||
|
img_size = paddle.static.data(name='img_size',shape=[None, 2],dtype='int64')
|
||
|
anchors = [10, 13, 16, 30, 33, 23]
|
||
|
boxes,scores = ops.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors,
|
||
|
conf_thresh=0.01, downsample_ratio=32)
|
||
|
"""
|
||
|
helper = LayerHelper('yolo_box', **locals())
|
||
|
|
||
|
if not isinstance(anchors, list) and not isinstance(anchors, tuple):
|
||
|
raise TypeError("Attr anchors of yolo_box must be list or tuple")
|
||
|
if not isinstance(class_num, int):
|
||
|
raise TypeError("Attr class_num of yolo_box must be an integer")
|
||
|
if not isinstance(conf_thresh, float):
|
||
|
raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
attrs = ('anchors', anchors, 'class_num', class_num, 'conf_thresh',
|
||
|
conf_thresh, 'downsample_ratio', downsample_ratio, 'clip_bbox',
|
||
|
clip_bbox, 'scale_x_y', scale_x_y)
|
||
|
boxes, scores = core.ops.yolo_box(x, origin_shape, *attrs)
|
||
|
return boxes, scores
|
||
|
else:
|
||
|
boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
|
||
|
scores = helper.create_variable_for_type_inference(dtype=x.dtype)
|
||
|
|
||
|
attrs = {
|
||
|
"anchors": anchors,
|
||
|
"class_num": class_num,
|
||
|
"conf_thresh": conf_thresh,
|
||
|
"downsample_ratio": downsample_ratio,
|
||
|
"clip_bbox": clip_bbox,
|
||
|
"scale_x_y": scale_x_y,
|
||
|
}
|
||
|
|
||
|
helper.append_op(
|
||
|
type='yolo_box',
|
||
|
inputs={
|
||
|
"X": x,
|
||
|
"ImgSize": origin_shape,
|
||
|
},
|
||
|
outputs={
|
||
|
'Boxes': boxes,
|
||
|
'Scores': scores,
|
||
|
},
|
||
|
attrs=attrs)
|
||
|
return boxes, scores
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def prior_box(input,
|
||
|
image,
|
||
|
min_sizes,
|
||
|
max_sizes=None,
|
||
|
aspect_ratios=[1.],
|
||
|
variance=[0.1, 0.1, 0.2, 0.2],
|
||
|
flip=False,
|
||
|
clip=False,
|
||
|
steps=[0.0, 0.0],
|
||
|
offset=0.5,
|
||
|
min_max_aspect_ratios_order=False,
|
||
|
name=None):
|
||
|
"""
|
||
|
|
||
|
This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
|
||
|
Each position of the input produce N prior boxes, N is determined by
|
||
|
the count of min_sizes, max_sizes and aspect_ratios, The size of the
|
||
|
box is in range(min_size, max_size) interval, which is generated in
|
||
|
sequence according to the aspect_ratios.
|
||
|
|
||
|
Parameters:
|
||
|
input(Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
|
||
|
image(Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
|
||
|
the data type should be float32 or float64.
|
||
|
min_sizes(list|tuple|float): the min sizes of generated prior boxes.
|
||
|
max_sizes(list|tuple|None): the max sizes of generated prior boxes.
|
||
|
Default: None.
|
||
|
aspect_ratios(list|tuple|float): the aspect ratios of generated
|
||
|
prior boxes. Default: [1.].
|
||
|
variance(list|tuple): the variances to be encoded in prior boxes.
|
||
|
Default:[0.1, 0.1, 0.2, 0.2].
|
||
|
flip(bool): Whether to flip aspect ratios. Default:False.
|
||
|
clip(bool): Whether to clip out-of-boundary boxes. Default: False.
|
||
|
step(list|tuple): Prior boxes step across width and height, If
|
||
|
step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
|
||
|
height or weight of the input will be automatically calculated.
|
||
|
Default: [0., 0.]
|
||
|
offset(float): Prior boxes center offset. Default: 0.5
|
||
|
min_max_aspect_ratios_order(bool): If set True, the output prior box is
|
||
|
in order of [min, max, aspect_ratios], which is consistent with
|
||
|
Caffe. Please note, this order affects the weights order of
|
||
|
convolution layer followed by and does not affect the final
|
||
|
detection results. Default: False.
|
||
|
name(str, optional): The default value is None. Normally there is no need for
|
||
|
user to set this property. For more information, please refer to :ref:`api_guide_Name`
|
||
|
|
||
|
Returns:
|
||
|
Tuple: A tuple with two Variable (boxes, variances)
|
||
|
|
||
|
boxes(Tensor): the output prior boxes of PriorBox.
|
||
|
4-D tensor, the layout is [H, W, num_priors, 4].
|
||
|
H is the height of input, W is the width of input,
|
||
|
num_priors is the total box count of each position of input.
|
||
|
|
||
|
variances(Tensor): the expanded variances of PriorBox.
|
||
|
4-D tensor, the layput is [H, W, num_priors, 4].
|
||
|
H is the height of input, W is the width of input
|
||
|
num_priors is the total box count of each position of input
|
||
|
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
|
||
|
paddle.enable_static()
|
||
|
input = paddle.static.data(name="input", shape=[None,3,6,9])
|
||
|
image = paddle.static.data(name="image", shape=[None,3,9,12])
|
||
|
box, var = ops.prior_box(
|
||
|
input=input,
|
||
|
image=image,
|
||
|
min_sizes=[100.],
|
||
|
clip=True,
|
||
|
flip=True)
|
||
|
"""
|
||
|
helper = LayerHelper("prior_box", **locals())
|
||
|
dtype = helper.input_dtype()
|
||
|
check_variable_and_dtype(
|
||
|
input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
|
||
|
|
||
|
def _is_list_or_tuple_(data):
|
||
|
return (isinstance(data, list) or isinstance(data, tuple))
|
||
|
|
||
|
if not _is_list_or_tuple_(min_sizes):
|
||
|
min_sizes = [min_sizes]
|
||
|
if not _is_list_or_tuple_(aspect_ratios):
|
||
|
aspect_ratios = [aspect_ratios]
|
||
|
if not (_is_list_or_tuple_(steps) and len(steps) == 2):
|
||
|
raise ValueError('steps should be a list or tuple ',
|
||
|
'with length 2, (step_width, step_height).')
|
||
|
|
||
|
min_sizes = list(map(float, min_sizes))
|
||
|
aspect_ratios = list(map(float, aspect_ratios))
|
||
|
steps = list(map(float, steps))
|
||
|
|
||
|
cur_max_sizes = None
|
||
|
if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
|
||
|
if not _is_list_or_tuple_(max_sizes):
|
||
|
max_sizes = [max_sizes]
|
||
|
cur_max_sizes = max_sizes
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
attrs = ('min_sizes', min_sizes, 'aspect_ratios', aspect_ratios,
|
||
|
'variances', variance, 'flip', flip, 'clip', clip, 'step_w',
|
||
|
steps[0], 'step_h', steps[1], 'offset', offset,
|
||
|
'min_max_aspect_ratios_order', min_max_aspect_ratios_order)
|
||
|
if cur_max_sizes is not None:
|
||
|
attrs += ('max_sizes', cur_max_sizes)
|
||
|
box, var = core.ops.prior_box(input, image, *attrs)
|
||
|
return box, var
|
||
|
else:
|
||
|
attrs = {
|
||
|
'min_sizes': min_sizes,
|
||
|
'aspect_ratios': aspect_ratios,
|
||
|
'variances': variance,
|
||
|
'flip': flip,
|
||
|
'clip': clip,
|
||
|
'step_w': steps[0],
|
||
|
'step_h': steps[1],
|
||
|
'offset': offset,
|
||
|
'min_max_aspect_ratios_order': min_max_aspect_ratios_order
|
||
|
}
|
||
|
|
||
|
if cur_max_sizes is not None:
|
||
|
attrs['max_sizes'] = cur_max_sizes
|
||
|
|
||
|
box = helper.create_variable_for_type_inference(dtype)
|
||
|
var = helper.create_variable_for_type_inference(dtype)
|
||
|
helper.append_op(
|
||
|
type="prior_box",
|
||
|
inputs={"Input": input,
|
||
|
"Image": image},
|
||
|
outputs={"Boxes": box,
|
||
|
"Variances": var},
|
||
|
attrs=attrs, )
|
||
|
box.stop_gradient = True
|
||
|
var.stop_gradient = True
|
||
|
return box, var
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def multiclass_nms(bboxes,
|
||
|
scores,
|
||
|
score_threshold,
|
||
|
nms_top_k,
|
||
|
keep_top_k,
|
||
|
nms_threshold=0.3,
|
||
|
normalized=True,
|
||
|
nms_eta=1.,
|
||
|
background_label=-1,
|
||
|
return_index=False,
|
||
|
return_rois_num=True,
|
||
|
rois_num=None,
|
||
|
name=None):
|
||
|
"""
|
||
|
This operator is to do multi-class non maximum suppression (NMS) on
|
||
|
boxes and scores.
|
||
|
In the NMS step, this operator greedily selects a subset of detection bounding
|
||
|
boxes that have high scores larger than score_threshold, if providing this
|
||
|
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
|
||
|
is larger than -1. Then this operator pruns away boxes that have high IOU
|
||
|
(intersection over union) overlap with already selected boxes by adaptive
|
||
|
threshold NMS based on parameters of nms_threshold and nms_eta.
|
||
|
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
|
||
|
per image if keep_top_k is larger than -1.
|
||
|
Args:
|
||
|
bboxes (Tensor): Two types of bboxes are supported:
|
||
|
1. (Tensor) A 3-D Tensor with shape
|
||
|
[N, M, 4 or 8 16 24 32] represents the
|
||
|
predicted locations of M bounding bboxes,
|
||
|
N is the batch size. Each bounding box has four
|
||
|
coordinate values and the layout is
|
||
|
[xmin, ymin, xmax, ymax], when box size equals to 4.
|
||
|
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
|
||
|
M is the number of bounding boxes, C is the
|
||
|
class number
|
||
|
scores (Tensor): Two types of scores are supported:
|
||
|
1. (Tensor) A 3-D Tensor with shape [N, C, M]
|
||
|
represents the predicted confidence predictions.
|
||
|
N is the batch size, C is the class number, M is
|
||
|
number of bounding boxes. For each category there
|
||
|
are total M scores which corresponding M bounding
|
||
|
boxes. Please note, M is equal to the 2nd dimension
|
||
|
of BBoxes.
|
||
|
2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
|
||
|
M is the number of bbox, C is the class number.
|
||
|
In this case, input BBoxes should be the second
|
||
|
case with shape [M, C, 4].
|
||
|
background_label (int): The index of background label, the background
|
||
|
label will be ignored. If set to -1, then all
|
||
|
categories will be considered. Default: 0
|
||
|
score_threshold (float): Threshold to filter out bounding boxes with
|
||
|
low confidence score. If not provided,
|
||
|
consider all boxes.
|
||
|
nms_top_k (int): Maximum number of detections to be kept according to
|
||
|
the confidences after the filtering detections based
|
||
|
on score_threshold.
|
||
|
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
|
||
|
nms_eta (float): The threshold to be used in NMS. Default: 1.0
|
||
|
keep_top_k (int): Number of total bboxes to be kept per image after NMS
|
||
|
step. -1 means keeping all bboxes after NMS step.
|
||
|
normalized (bool): Whether detections are normalized. Default: True
|
||
|
return_index(bool): Whether return selected index. Default: False
|
||
|
rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
|
||
|
The shape is [B] and data type is int32. B is the number of images.
|
||
|
If it is not None then return a list of 1-D Tensor. Each element
|
||
|
is the output RoIs' number of each image on the corresponding level
|
||
|
and the shape is [B]. None by default.
|
||
|
name(str): Name of the multiclass nms op. Default: None.
|
||
|
Returns:
|
||
|
A tuple with two Variables: (Out, Index) if return_index is True,
|
||
|
otherwise, a tuple with one Variable(Out) is returned.
|
||
|
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
|
||
|
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
|
||
|
or A 2-D LoDTensor with shape [No, 10] represents the detections.
|
||
|
Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
|
||
|
x4, y4]. No is the total number of detections.
|
||
|
If all images have not detected results, all elements in LoD will be
|
||
|
0, and output tensor is empty (None).
|
||
|
Index: Only return when return_index is True. A 2-D LoDTensor with
|
||
|
shape [No, 1] represents the selected index which type is Integer.
|
||
|
The index is the absolute value cross batches. No is the same number
|
||
|
as Out. If the index is used to gather other attribute such as age,
|
||
|
one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
|
||
|
N is the batch size and M is the number of boxes.
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
boxes = paddle.static.data(name='bboxes', shape=[81, 4],
|
||
|
dtype='float32', lod_level=1)
|
||
|
scores = paddle.static.data(name='scores', shape=[81],
|
||
|
dtype='float32', lod_level=1)
|
||
|
out, index = ops.multiclass_nms(bboxes=boxes,
|
||
|
scores=scores,
|
||
|
background_label=0,
|
||
|
score_threshold=0.5,
|
||
|
nms_top_k=400,
|
||
|
nms_threshold=0.3,
|
||
|
keep_top_k=200,
|
||
|
normalized=False,
|
||
|
return_index=True)
|
||
|
"""
|
||
|
helper = LayerHelper('multiclass_nms3', **locals())
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
attrs = ('background_label', background_label, 'score_threshold',
|
||
|
score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
|
||
|
nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
|
||
|
'normalized', normalized)
|
||
|
output, index, nms_rois_num = core.ops.multiclass_nms3(bboxes, scores,
|
||
|
rois_num, *attrs)
|
||
|
if not return_index:
|
||
|
index = None
|
||
|
return output, nms_rois_num, index
|
||
|
|
||
|
else:
|
||
|
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
|
||
|
index = helper.create_variable_for_type_inference(dtype='int')
|
||
|
|
||
|
inputs = {'BBoxes': bboxes, 'Scores': scores}
|
||
|
outputs = {'Out': output, 'Index': index}
|
||
|
|
||
|
if rois_num is not None:
|
||
|
inputs['RoisNum'] = rois_num
|
||
|
|
||
|
if return_rois_num:
|
||
|
nms_rois_num = helper.create_variable_for_type_inference(
|
||
|
dtype='int32')
|
||
|
outputs['NmsRoisNum'] = nms_rois_num
|
||
|
|
||
|
helper.append_op(
|
||
|
type="multiclass_nms3",
|
||
|
inputs=inputs,
|
||
|
attrs={
|
||
|
'background_label': background_label,
|
||
|
'score_threshold': score_threshold,
|
||
|
'nms_top_k': nms_top_k,
|
||
|
'nms_threshold': nms_threshold,
|
||
|
'keep_top_k': keep_top_k,
|
||
|
'nms_eta': nms_eta,
|
||
|
'normalized': normalized
|
||
|
},
|
||
|
outputs=outputs)
|
||
|
output.stop_gradient = True
|
||
|
index.stop_gradient = True
|
||
|
if not return_index:
|
||
|
index = None
|
||
|
if not return_rois_num:
|
||
|
nms_rois_num = None
|
||
|
|
||
|
return output, nms_rois_num, index
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def matrix_nms(bboxes,
|
||
|
scores,
|
||
|
score_threshold,
|
||
|
post_threshold,
|
||
|
nms_top_k,
|
||
|
keep_top_k,
|
||
|
use_gaussian=False,
|
||
|
gaussian_sigma=2.,
|
||
|
background_label=0,
|
||
|
normalized=True,
|
||
|
return_index=False,
|
||
|
return_rois_num=True,
|
||
|
name=None):
|
||
|
"""
|
||
|
**Matrix NMS**
|
||
|
This operator does matrix non maximum suppression (NMS).
|
||
|
First selects a subset of candidate bounding boxes that have higher scores
|
||
|
than score_threshold (if provided), then the top k candidate is selected if
|
||
|
nms_top_k is larger than -1. Score of the remaining candidate are then
|
||
|
decayed according to the Matrix NMS scheme.
|
||
|
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
|
||
|
per image if keep_top_k is larger than -1.
|
||
|
Args:
|
||
|
bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
|
||
|
predicted locations of M bounding bboxes,
|
||
|
N is the batch size. Each bounding box has four
|
||
|
coordinate values and the layout is
|
||
|
[xmin, ymin, xmax, ymax], when box size equals to 4.
|
||
|
The data type is float32 or float64.
|
||
|
scores (Tensor): A 3-D Tensor with shape [N, C, M]
|
||
|
represents the predicted confidence predictions.
|
||
|
N is the batch size, C is the class number, M is
|
||
|
number of bounding boxes. For each category there
|
||
|
are total M scores which corresponding M bounding
|
||
|
boxes. Please note, M is equal to the 2nd dimension
|
||
|
of BBoxes. The data type is float32 or float64.
|
||
|
score_threshold (float): Threshold to filter out bounding boxes with
|
||
|
low confidence score.
|
||
|
post_threshold (float): Threshold to filter out bounding boxes with
|
||
|
low confidence score AFTER decaying.
|
||
|
nms_top_k (int): Maximum number of detections to be kept according to
|
||
|
the confidences after the filtering detections based
|
||
|
on score_threshold.
|
||
|
keep_top_k (int): Number of total bboxes to be kept per image after NMS
|
||
|
step. -1 means keeping all bboxes after NMS step.
|
||
|
use_gaussian (bool): Use Gaussian as the decay function. Default: False
|
||
|
gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
|
||
|
background_label (int): The index of background label, the background
|
||
|
label will be ignored. If set to -1, then all
|
||
|
categories will be considered. Default: 0
|
||
|
normalized (bool): Whether detections are normalized. Default: True
|
||
|
return_index(bool): Whether return selected index. Default: False
|
||
|
return_rois_num(bool): whether return rois_num. Default: True
|
||
|
name(str): Name of the matrix nms op. Default: None.
|
||
|
Returns:
|
||
|
A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
|
||
|
otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
|
||
|
Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
|
||
|
detection results.
|
||
|
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
|
||
|
(After version 1.3, when no boxes detected, the lod is changed
|
||
|
from {0} to {1})
|
||
|
Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
|
||
|
selected indices, which are absolute values cross batches.
|
||
|
rois_num (Tensor): A 1-D Tensor with shape [N] containing
|
||
|
the number of detected boxes in each image.
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
boxes = paddle.static.data(name='bboxes', shape=[None,81, 4],
|
||
|
dtype='float32', lod_level=1)
|
||
|
scores = paddle.static.data(name='scores', shape=[None,81],
|
||
|
dtype='float32', lod_level=1)
|
||
|
out = ops.matrix_nms(bboxes=boxes, scores=scores, background_label=0,
|
||
|
score_threshold=0.5, post_threshold=0.1,
|
||
|
nms_top_k=400, keep_top_k=200, normalized=False)
|
||
|
"""
|
||
|
check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
|
||
|
'matrix_nms')
|
||
|
check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
|
||
|
'matrix_nms')
|
||
|
check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
|
||
|
check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
|
||
|
check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
|
||
|
check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
|
||
|
check_type(normalized, 'normalized', bool, 'matrix_nms')
|
||
|
check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
|
||
|
check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
|
||
|
check_type(background_label, 'background_label', int, 'matrix_nms')
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
attrs = ('background_label', background_label, 'score_threshold',
|
||
|
score_threshold, 'post_threshold', post_threshold, 'nms_top_k',
|
||
|
nms_top_k, 'gaussian_sigma', gaussian_sigma, 'use_gaussian',
|
||
|
use_gaussian, 'keep_top_k', keep_top_k, 'normalized',
|
||
|
normalized)
|
||
|
out, index, rois_num = core.ops.matrix_nms(bboxes, scores, *attrs)
|
||
|
if not return_index:
|
||
|
index = None
|
||
|
if not return_rois_num:
|
||
|
rois_num = None
|
||
|
return out, rois_num, index
|
||
|
else:
|
||
|
helper = LayerHelper('matrix_nms', **locals())
|
||
|
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
|
||
|
index = helper.create_variable_for_type_inference(dtype='int')
|
||
|
outputs = {'Out': output, 'Index': index}
|
||
|
if return_rois_num:
|
||
|
rois_num = helper.create_variable_for_type_inference(dtype='int32')
|
||
|
outputs['RoisNum'] = rois_num
|
||
|
|
||
|
helper.append_op(
|
||
|
type="matrix_nms",
|
||
|
inputs={'BBoxes': bboxes,
|
||
|
'Scores': scores},
|
||
|
attrs={
|
||
|
'background_label': background_label,
|
||
|
'score_threshold': score_threshold,
|
||
|
'post_threshold': post_threshold,
|
||
|
'nms_top_k': nms_top_k,
|
||
|
'gaussian_sigma': gaussian_sigma,
|
||
|
'use_gaussian': use_gaussian,
|
||
|
'keep_top_k': keep_top_k,
|
||
|
'normalized': normalized
|
||
|
},
|
||
|
outputs=outputs)
|
||
|
output.stop_gradient = True
|
||
|
|
||
|
if not return_index:
|
||
|
index = None
|
||
|
if not return_rois_num:
|
||
|
rois_num = None
|
||
|
return output, rois_num, index
|
||
|
|
||
|
|
||
|
def bipartite_match(dist_matrix,
|
||
|
match_type=None,
|
||
|
dist_threshold=None,
|
||
|
name=None):
|
||
|
"""
|
||
|
|
||
|
This operator implements a greedy bipartite matching algorithm, which is
|
||
|
used to obtain the matching with the maximum distance based on the input
|
||
|
distance matrix. For input 2D matrix, the bipartite matching algorithm can
|
||
|
find the matched column for each row (matched means the largest distance),
|
||
|
also can find the matched row for each column. And this operator only
|
||
|
calculate matched indices from column to row. For each instance,
|
||
|
the number of matched indices is the column number of the input distance
|
||
|
matrix. **The OP only supports CPU**.
|
||
|
|
||
|
There are two outputs, matched indices and distance.
|
||
|
A simple description, this algorithm matched the best (maximum distance)
|
||
|
row entity to the column entity and the matched indices are not duplicated
|
||
|
in each row of ColToRowMatchIndices. If the column entity is not matched
|
||
|
any row entity, set -1 in ColToRowMatchIndices.
|
||
|
|
||
|
NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
|
||
|
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
|
||
|
If Tensor, the height of ColToRowMatchIndices is 1.
|
||
|
|
||
|
NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
|
||
|
layer. Please consider to use :code:`ssd_loss` instead.
|
||
|
|
||
|
Args:
|
||
|
dist_matrix(Tensor): This input is a 2-D LoDTensor with shape
|
||
|
[K, M]. The data type is float32 or float64. It is pair-wise
|
||
|
distance matrix between the entities represented by each row and
|
||
|
each column. For example, assumed one entity is A with shape [K],
|
||
|
another entity is B with shape [M]. The dist_matrix[i][j] is the
|
||
|
distance between A[i] and B[j]. The bigger the distance is, the
|
||
|
better matching the pairs are. NOTE: This tensor can contain LoD
|
||
|
information to represent a batch of inputs. One instance of this
|
||
|
batch can contain different numbers of entities.
|
||
|
match_type(str, optional): The type of matching method, should be
|
||
|
'bipartite' or 'per_prediction'. None ('bipartite') by default.
|
||
|
dist_threshold(float32, optional): If `match_type` is 'per_prediction',
|
||
|
this threshold is to determine the extra matching bboxes based
|
||
|
on the maximum distance, 0.5 by default.
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
Returns:
|
||
|
Tuple:
|
||
|
|
||
|
matched_indices(Tensor): A 2-D Tensor with shape [N, M]. The data
|
||
|
type is int32. N is the batch size. If match_indices[i][j] is -1, it
|
||
|
means B[j] does not match any entity in i-th instance.
|
||
|
Otherwise, it means B[j] is matched to row
|
||
|
match_indices[i][j] in i-th instance. The row number of
|
||
|
i-th instance is saved in match_indices[i][j].
|
||
|
|
||
|
matched_distance(Tensor): A 2-D Tensor with shape [N, M]. The data
|
||
|
type is float32. N is batch size. If match_indices[i][j] is -1,
|
||
|
match_distance[i][j] is also -1.0. Otherwise, assumed
|
||
|
match_distance[i][j] = d, and the row offsets of each instance
|
||
|
are called LoD. Then match_distance[i][j] =
|
||
|
dist_matrix[d+LoD[i]][j].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
.. code-block:: python
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
from ppdet.modeling.utils import iou_similarity
|
||
|
|
||
|
paddle.enable_static()
|
||
|
|
||
|
x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
|
||
|
y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
|
||
|
iou = iou_similarity(x=x, y=y)
|
||
|
matched_indices, matched_dist = ops.bipartite_match(iou)
|
||
|
"""
|
||
|
check_variable_and_dtype(dist_matrix, 'dist_matrix',
|
||
|
['float32', 'float64'], 'bipartite_match')
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
match_indices, match_distance = core.ops.bipartite_match(
|
||
|
dist_matrix, "match_type", match_type, "dist_threshold",
|
||
|
dist_threshold)
|
||
|
return match_indices, match_distance
|
||
|
|
||
|
helper = LayerHelper('bipartite_match', **locals())
|
||
|
match_indices = helper.create_variable_for_type_inference(dtype='int32')
|
||
|
match_distance = helper.create_variable_for_type_inference(
|
||
|
dtype=dist_matrix.dtype)
|
||
|
helper.append_op(
|
||
|
type='bipartite_match',
|
||
|
inputs={'DistMat': dist_matrix},
|
||
|
attrs={
|
||
|
'match_type': match_type,
|
||
|
'dist_threshold': dist_threshold,
|
||
|
},
|
||
|
outputs={
|
||
|
'ColToRowMatchIndices': match_indices,
|
||
|
'ColToRowMatchDist': match_distance
|
||
|
})
|
||
|
return match_indices, match_distance
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def box_coder(prior_box,
|
||
|
prior_box_var,
|
||
|
target_box,
|
||
|
code_type="encode_center_size",
|
||
|
box_normalized=True,
|
||
|
axis=0,
|
||
|
name=None):
|
||
|
"""
|
||
|
**Box Coder Layer**
|
||
|
Encode/Decode the target bounding box with the priorbox information.
|
||
|
|
||
|
The Encoding schema described below:
|
||
|
.. math::
|
||
|
ox = (tx - px) / pw / pxv
|
||
|
oy = (ty - py) / ph / pyv
|
||
|
ow = \log(\abs(tw / pw)) / pwv
|
||
|
oh = \log(\abs(th / ph)) / phv
|
||
|
The Decoding schema described below:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
ox = (pw * pxv * tx * + px) - tw / 2
|
||
|
oy = (ph * pyv * ty * + py) - th / 2
|
||
|
ow = \exp(pwv * tw) * pw + tw / 2
|
||
|
oh = \exp(phv * th) * ph + th / 2
|
||
|
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
|
||
|
width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
|
||
|
the priorbox's (anchor) center coordinates, width and height. `pxv`,
|
||
|
`pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
|
||
|
`ow`, `oh` denote the encoded/decoded coordinates, width and height.
|
||
|
During Box Decoding, two modes for broadcast are supported. Say target
|
||
|
box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
|
||
|
[M, 4]. Then prior box will broadcast to target box along the
|
||
|
assigned axis.
|
||
|
|
||
|
Args:
|
||
|
prior_box(Tensor): Box list prior_box is a 2-D Tensor with shape
|
||
|
[M, 4] holds M boxes and data type is float32 or float64. Each box
|
||
|
is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
|
||
|
left top coordinate of the anchor box, if the input is image feature
|
||
|
map, they are close to the origin of the coordinate system.
|
||
|
[xmax, ymax] is the right bottom coordinate of the anchor box.
|
||
|
prior_box_var(List|Tensor|None): prior_box_var supports three types
|
||
|
of input. One is Tensor with shape [M, 4] which holds M group and
|
||
|
data type is float32 or float64. The second is list consist of
|
||
|
4 elements shared by all boxes and data type is float32 or float64.
|
||
|
Other is None and not involved in calculation.
|
||
|
target_box(Tensor): This input can be a 2-D LoDTensor with shape
|
||
|
[N, 4] when code_type is 'encode_center_size'. This input also can
|
||
|
be a 3-D Tensor with shape [N, M, 4] when code_type is
|
||
|
'decode_center_size'. Each box is represented as
|
||
|
[xmin, ymin, xmax, ymax]. The data type is float32 or float64.
|
||
|
code_type(str): The code type used with the target box. It can be
|
||
|
`encode_center_size` or `decode_center_size`. `encode_center_size`
|
||
|
by default.
|
||
|
box_normalized(bool): Whether treat the priorbox as a normalized box.
|
||
|
Set true by default.
|
||
|
axis(int): Which axis in PriorBox to broadcast for box decode,
|
||
|
for example, if axis is 0 and TargetBox has shape [N, M, 4] and
|
||
|
PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
|
||
|
for decoding. It is only valid when code type is
|
||
|
`decode_center_size`. Set 0 by default.
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
Returns:
|
||
|
Tensor:
|
||
|
output_box(Tensor): When code_type is 'encode_center_size', the
|
||
|
output tensor of box_coder_op with shape [N, M, 4] representing the
|
||
|
result of N target boxes encoded with M Prior boxes and variances.
|
||
|
When code_type is 'decode_center_size', N represents the batch size
|
||
|
and M represents the number of decoded boxes.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
paddle.enable_static()
|
||
|
# For encode
|
||
|
prior_box_encode = paddle.static.data(name='prior_box_encode',
|
||
|
shape=[512, 4],
|
||
|
dtype='float32')
|
||
|
target_box_encode = paddle.static.data(name='target_box_encode',
|
||
|
shape=[81, 4],
|
||
|
dtype='float32')
|
||
|
output_encode = ops.box_coder(prior_box=prior_box_encode,
|
||
|
prior_box_var=[0.1,0.1,0.2,0.2],
|
||
|
target_box=target_box_encode,
|
||
|
code_type="encode_center_size")
|
||
|
# For decode
|
||
|
prior_box_decode = paddle.static.data(name='prior_box_decode',
|
||
|
shape=[512, 4],
|
||
|
dtype='float32')
|
||
|
target_box_decode = paddle.static.data(name='target_box_decode',
|
||
|
shape=[512, 81, 4],
|
||
|
dtype='float32')
|
||
|
output_decode = ops.box_coder(prior_box=prior_box_decode,
|
||
|
prior_box_var=[0.1,0.1,0.2,0.2],
|
||
|
target_box=target_box_decode,
|
||
|
code_type="decode_center_size",
|
||
|
box_normalized=False,
|
||
|
axis=1)
|
||
|
"""
|
||
|
check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
|
||
|
'box_coder')
|
||
|
check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
|
||
|
'box_coder')
|
||
|
|
||
|
if in_dygraph_mode():
|
||
|
if isinstance(prior_box_var, Variable):
|
||
|
output_box = core.ops.box_coder(
|
||
|
prior_box, prior_box_var, target_box, "code_type", code_type,
|
||
|
"box_normalized", box_normalized, "axis", axis)
|
||
|
|
||
|
elif isinstance(prior_box_var, list):
|
||
|
output_box = core.ops.box_coder(
|
||
|
prior_box, None, target_box, "code_type", code_type,
|
||
|
"box_normalized", box_normalized, "axis", axis, "variance",
|
||
|
prior_box_var)
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
"Input variance of box_coder must be Variable or list")
|
||
|
return output_box
|
||
|
else:
|
||
|
helper = LayerHelper("box_coder", **locals())
|
||
|
|
||
|
output_box = helper.create_variable_for_type_inference(
|
||
|
dtype=prior_box.dtype)
|
||
|
|
||
|
inputs = {"PriorBox": prior_box, "TargetBox": target_box}
|
||
|
attrs = {
|
||
|
"code_type": code_type,
|
||
|
"box_normalized": box_normalized,
|
||
|
"axis": axis
|
||
|
}
|
||
|
if isinstance(prior_box_var, Variable):
|
||
|
inputs['PriorBoxVar'] = prior_box_var
|
||
|
elif isinstance(prior_box_var, list):
|
||
|
attrs['variance'] = prior_box_var
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
"Input variance of box_coder must be Variable or list")
|
||
|
helper.append_op(
|
||
|
type="box_coder",
|
||
|
inputs=inputs,
|
||
|
attrs=attrs,
|
||
|
outputs={"OutputBox": output_box})
|
||
|
return output_box
|
||
|
|
||
|
|
||
|
@paddle.jit.not_to_static
|
||
|
def generate_proposals(scores,
|
||
|
bbox_deltas,
|
||
|
im_shape,
|
||
|
anchors,
|
||
|
variances,
|
||
|
pre_nms_top_n=6000,
|
||
|
post_nms_top_n=1000,
|
||
|
nms_thresh=0.5,
|
||
|
min_size=0.1,
|
||
|
eta=1.0,
|
||
|
pixel_offset=False,
|
||
|
return_rois_num=False,
|
||
|
name=None):
|
||
|
"""
|
||
|
**Generate proposal Faster-RCNN**
|
||
|
This operation proposes RoIs according to each box with their
|
||
|
probability to be a foreground object and
|
||
|
the box can be calculated by anchors. Bbox_deltais and scores
|
||
|
to be an object are the output of RPN. Final proposals
|
||
|
could be used to train detection net.
|
||
|
For generating proposals, this operation performs following steps:
|
||
|
1. Transposes and resizes scores and bbox_deltas in size of
|
||
|
(H*W*A, 1) and (H*W*A, 4)
|
||
|
2. Calculate box locations as proposals candidates.
|
||
|
3. Clip boxes to image
|
||
|
4. Remove predicted boxes with small area.
|
||
|
5. Apply NMS to get final proposals as output.
|
||
|
Args:
|
||
|
scores(Tensor): A 4-D Tensor with shape [N, A, H, W] represents
|
||
|
the probability for each box to be an object.
|
||
|
N is batch size, A is number of anchors, H and W are height and
|
||
|
width of the feature map. The data type must be float32.
|
||
|
bbox_deltas(Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
|
||
|
represents the difference between predicted box location and
|
||
|
anchor location. The data type must be float32.
|
||
|
im_shape(Tensor): A 2-D Tensor with shape [N, 2] represents H, W, the
|
||
|
origin image size or input size. The data type can be float32 or
|
||
|
float64.
|
||
|
anchors(Tensor): A 4-D Tensor represents the anchors with a layout
|
||
|
of [H, W, A, 4]. H and W are height and width of the feature map,
|
||
|
num_anchors is the box count of each position. Each anchor is
|
||
|
in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
|
||
|
variances(Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
|
||
|
[H, W, num_priors, 4]. Each variance is in
|
||
|
(xcenter, ycenter, w, h) format. The data type must be float32.
|
||
|
pre_nms_top_n(float): Number of total bboxes to be kept per
|
||
|
image before NMS. The data type must be float32. `6000` by default.
|
||
|
post_nms_top_n(float): Number of total bboxes to be kept per
|
||
|
image after NMS. The data type must be float32. `1000` by default.
|
||
|
nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
|
||
|
min_size(float): Remove predicted boxes with either height or
|
||
|
width < min_size. The data type must be float32. `0.1` by default.
|
||
|
eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
|
||
|
`adaptive_threshold = adaptive_threshold * eta` in each iteration.
|
||
|
return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
|
||
|
num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
|
||
|
the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model.
|
||
|
'False' by default.
|
||
|
name(str, optional): For detailed information, please refer
|
||
|
to :ref:`api_guide_Name`. Usually name is no need to set and
|
||
|
None by default.
|
||
|
|
||
|
Returns:
|
||
|
tuple:
|
||
|
A tuple with format ``(rpn_rois, rpn_roi_probs)``.
|
||
|
- **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
|
||
|
- **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
|
||
|
|
||
|
Examples:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import paddle
|
||
|
from ppdet.modeling import ops
|
||
|
paddle.enable_static()
|
||
|
scores = paddle.static.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
|
||
|
bbox_deltas = paddle.static.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
|
||
|
im_shape = paddle.static.data(name='im_shape', shape=[None, 2], dtype='float32')
|
||
|
anchors = paddle.static.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
|
||
|
variances = paddle.static.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
|
||
|
rois, roi_probs = ops.generate_proposals(scores, bbox_deltas,
|
||
|
im_shape, anchors, variances)
|
||
|
"""
|
||
|
if in_dygraph_mode():
|
||
|
assert return_rois_num, "return_rois_num should be True in dygraph mode."
|
||
|
attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
|
||
|
'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta,
|
||
|
'pixel_offset', pixel_offset)
|
||
|
rpn_rois, rpn_roi_probs, rpn_rois_num = core.ops.generate_proposals_v2(
|
||
|
scores, bbox_deltas, im_shape, anchors, variances, *attrs)
|
||
|
return rpn_rois, rpn_roi_probs, rpn_rois_num
|
||
|
|
||
|
else:
|
||
|
helper = LayerHelper('generate_proposals_v2', **locals())
|
||
|
|
||
|
check_variable_and_dtype(scores, 'scores', ['float32'],
|
||
|
'generate_proposals_v2')
|
||
|
check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
|
||
|
'generate_proposals_v2')
|
||
|
check_variable_and_dtype(im_shape, 'im_shape', ['float32', 'float64'],
|
||
|
'generate_proposals_v2')
|
||
|
check_variable_and_dtype(anchors, 'anchors', ['float32'],
|
||
|
'generate_proposals_v2')
|
||
|
check_variable_and_dtype(variances, 'variances', ['float32'],
|
||
|
'generate_proposals_v2')
|
||
|
|
||
|
rpn_rois = helper.create_variable_for_type_inference(
|
||
|
dtype=bbox_deltas.dtype)
|
||
|
rpn_roi_probs = helper.create_variable_for_type_inference(
|
||
|
dtype=scores.dtype)
|
||
|
outputs = {
|
||
|
'RpnRois': rpn_rois,
|
||
|
'RpnRoiProbs': rpn_roi_probs,
|
||
|
}
|
||
|
if return_rois_num:
|
||
|
rpn_rois_num = helper.create_variable_for_type_inference(
|
||
|
dtype='int32')
|
||
|
rpn_rois_num.stop_gradient = True
|
||
|
outputs['RpnRoisNum'] = rpn_rois_num
|
||
|
|
||
|
helper.append_op(
|
||
|
type="generate_proposals_v2",
|
||
|
inputs={
|
||
|
'Scores': scores,
|
||
|
'BboxDeltas': bbox_deltas,
|
||
|
'ImShape': im_shape,
|
||
|
'Anchors': anchors,
|
||
|
'Variances': variances
|
||
|
},
|
||
|
attrs={
|
||
|
'pre_nms_topN': pre_nms_top_n,
|
||
|
'post_nms_topN': post_nms_top_n,
|
||
|
'nms_thresh': nms_thresh,
|
||
|
'min_size': min_size,
|
||
|
'eta': eta,
|
||
|
'pixel_offset': pixel_offset
|
||
|
},
|
||
|
outputs=outputs)
|
||
|
rpn_rois.stop_gradient = True
|
||
|
rpn_roi_probs.stop_gradient = True
|
||
|
|
||
|
return rpn_rois, rpn_roi_probs, rpn_rois_num
|
||
|
|
||
|
|
||
|
def sigmoid_cross_entropy_with_logits(input,
|
||
|
label,
|
||
|
ignore_index=-100,
|
||
|
normalize=False):
|
||
|
output = F.binary_cross_entropy_with_logits(input, label, reduction='none')
|
||
|
mask_tensor = paddle.cast(label != ignore_index, 'float32')
|
||
|
output = paddle.multiply(output, mask_tensor)
|
||
|
if normalize:
|
||
|
sum_valid_mask = paddle.sum(mask_tensor)
|
||
|
output = output / sum_valid_mask
|
||
|
return output
|
||
|
|
||
|
|
||
|
def smooth_l1(input, label, inside_weight=None, outside_weight=None,
|
||
|
sigma=None):
|
||
|
input_new = paddle.multiply(input, inside_weight)
|
||
|
label_new = paddle.multiply(label, inside_weight)
|
||
|
delta = 1 / (sigma * sigma)
|
||
|
out = F.smooth_l1_loss(input_new, label_new, reduction='none', delta=delta)
|
||
|
out = paddle.multiply(out, outside_weight)
|
||
|
out = out / delta
|
||
|
out = paddle.reshape(out, shape=[out.shape[0], -1])
|
||
|
out = paddle.sum(out, axis=1)
|
||
|
return out
|