第一次提交

This commit is contained in:
p73692015 2022-06-01 11:18:00 +08:00
parent e753eb708c
commit 0cab1d8282
1246 changed files with 187079 additions and 1 deletions

View File

@ -1,2 +1,38 @@
# PulseFocusPlatform
# Pulse Focus Platform脉冲聚焦
## 0. 软件介绍
Pulse Focus Platform脉冲聚焦是面向水底物体图像识别的实时检测软件。软件以面向对象的设计理念采用Python语言编程基于pyqt、paddle、pyyaml以及ppdet等技术开发支持多批量图像、长视频等多种本地数据源预置多种物体识别模型并提供扩展接口方便新模型的集成与验证。平台安装简单运行方便可选参数丰富扩展性高非常适用于相关研究领域的工程技术人员和学生掌握学习侧扫或光学数据等形成的水底图像中关注物体的识别方法。
脉冲聚焦软件设计了图片和视频两种数据输入下的多物体识别功能。针对图片数据,调用模型进行单张图片预测,随后在前端可视化输出多物体识别结果;针对视频流动态图像数据,首先对视频流数据进行分帧采样,获取采样图片,再针对采样图片进行多物体识别,将采样识别结果进行视频合成,然后在前端可视化输出视频流数据识别结果。为了视频流数据处理的高效性,设计了采样-识别-展示的多线程处理方式,可加快视频流数据处理。
软件界面简单,易学易用,包含参数的输入选择,程序的运行,算法结果的展示等,源代码公开,算法可修改。
开发人员K. Wang、H.P. Yu、J. Li、H.T. Li、Z.Q. Wang、Z.Y. Zhao、L.F. Zhang、G. Chen
## 1. 开发环境配置
运行以下命令:
```bash
conda env create -f create_env.yaml
```
该命令会创建一个名为`Focus`的conda虚拟环境用`conda activate Focus`即可激活该虚拟环境。
## 2. 软件运行
运行以下命令运行软件:
```python
python main.py
```
## 3. 一些说明
1. 使用GPU版本
参考百度飞桨paddle官方网站安装
[安装链接](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/windows-pip.html)
2. 模型文件连接
由于软件包含已训练好的三个模型,模型参数较大,放在百度网盘自行下载,并放在根目录。
链接https://pan.baidu.com/s/1Wf4gjmccgqQYeknm9pX2jQ
提取码2gs7

188
SSS_win.py Normal file
View File

@ -0,0 +1,188 @@
# -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'SSS_win.ui'
#
# Created by: PyQt5 UI code generator 5.15.4
#
# WARNING: Any manual changes made to this file will be lost when pyuic5 is
# run again. Do not edit this file unless you know what you are doing.
from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(1353, 1007)
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.centralwidget)
self.verticalLayout_5.setObjectName("verticalLayout_5")
self.verticalLayout = QtWidgets.QVBoxLayout()
self.verticalLayout.setObjectName("verticalLayout")
self.horizontalLayout = QtWidgets.QHBoxLayout()
self.horizontalLayout.setObjectName("horizontalLayout")
self.verticalLayout_2 = QtWidgets.QVBoxLayout()
self.verticalLayout_2.setObjectName("verticalLayout_2")
self.tupiandiaoru = QtWidgets.QPushButton(self.centralwidget)
self.tupiandiaoru.setObjectName("tupiandiaoru")
self.verticalLayout_2.addWidget(self.tupiandiaoru)
self.shipindaoru = QtWidgets.QPushButton(self.centralwidget)
self.shipindaoru.setObjectName("shipindaoru")
self.verticalLayout_2.addWidget(self.shipindaoru)
self.pushButton_xxdaochu = QtWidgets.QPushButton(self.centralwidget)
self.pushButton_xxdaochu.setObjectName("pushButton_xxdaochu")
self.verticalLayout_2.addWidget(self.pushButton_xxdaochu)
self.horizontalLayout.addLayout(self.verticalLayout_2)
self.formLayout = QtWidgets.QFormLayout()
self.formLayout.setObjectName("formLayout")
self.comboBox_tzxuanze = QtWidgets.QComboBox(self.centralwidget)
self.comboBox_tzxuanze.setEditable(True)
self.comboBox_tzxuanze.setObjectName("comboBox_tzxuanze")
self.comboBox_tzxuanze.addItem("")
self.formLayout.setWidget(0, QtWidgets.QFormLayout.FieldRole, self.comboBox_tzxuanze)
self.label_2 = QtWidgets.QLabel(self.centralwidget)
self.label_2.setObjectName("label_2")
self.formLayout.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label_2)
self.comboBox_yclfangfa = QtWidgets.QComboBox(self.centralwidget)
self.comboBox_yclfangfa.setEditable(True)
self.comboBox_yclfangfa.setObjectName("comboBox_yclfangfa")
self.comboBox_yclfangfa.addItem("")
self.comboBox_yclfangfa.addItem("")
self.comboBox_yclfangfa.addItem("")
self.formLayout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.comboBox_yclfangfa)
self.label_3 = QtWidgets.QLabel(self.centralwidget)
self.label_3.setObjectName("label_3")
self.formLayout.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_3)
self.comboBox_sbsuanfa = QtWidgets.QComboBox(self.centralwidget)
self.comboBox_sbsuanfa.setEditable(True)
self.comboBox_sbsuanfa.setObjectName("comboBox_sbsuanfa")
self.comboBox_sbsuanfa.addItem("")
self.comboBox_sbsuanfa.addItem("")
self.comboBox_sbsuanfa.addItem("")
self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.comboBox_sbsuanfa)
self.label_4 = QtWidgets.QLabel(self.centralwidget)
self.label_4.setObjectName("label_4")
self.formLayout.setWidget(3, QtWidgets.QFormLayout.LabelRole, self.label_4)
self.comboBox_GPU = QtWidgets.QComboBox(self.centralwidget)
self.comboBox_GPU.setEditable(True)
self.comboBox_GPU.setObjectName("comboBox_GPU")
self.comboBox_GPU.addItem("")
self.comboBox_GPU.addItem("")
self.formLayout.setWidget(3, QtWidgets.QFormLayout.FieldRole, self.comboBox_GPU)
self.label = QtWidgets.QLabel(self.centralwidget)
self.label.setObjectName("label")
self.formLayout.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.label)
self.horizontalLayout.addLayout(self.formLayout)
self.verticalLayout_4 = QtWidgets.QVBoxLayout()
self.verticalLayout_4.setObjectName("verticalLayout_4")
self.shibie = QtWidgets.QPushButton(self.centralwidget)
self.shibie.setObjectName("shibie")
self.verticalLayout_4.addWidget(self.shibie)
self.xunlian = QtWidgets.QPushButton(self.centralwidget)
self.xunlian.setObjectName("xunlian")
self.verticalLayout_4.addWidget(self.xunlian)
self.horizontalLayout.addLayout(self.verticalLayout_4)
self.verticalLayout_3 = QtWidgets.QVBoxLayout()
self.verticalLayout_3.setObjectName("verticalLayout_3")
self.pushButton_jswendang = QtWidgets.QPushButton(self.centralwidget)
self.pushButton_jswendang.setObjectName("pushButton_jswendang")
self.verticalLayout_3.addWidget(self.pushButton_jswendang)
self.pushButton_rjwendang = QtWidgets.QPushButton(self.centralwidget)
self.pushButton_rjwendang.setObjectName("pushButton_rjwendang")
self.verticalLayout_3.addWidget(self.pushButton_rjwendang)
self.pushButton_tuichu = QtWidgets.QPushButton(self.centralwidget)
self.pushButton_tuichu.setObjectName("pushButton_tuichu")
self.verticalLayout_3.addWidget(self.pushButton_tuichu)
self.horizontalLayout.addLayout(self.verticalLayout_3)
self.verticalLayout.addLayout(self.horizontalLayout)
self.horizontalLayout_2 = QtWidgets.QHBoxLayout()
self.horizontalLayout_2.setObjectName("horizontalLayout_2")
self.label_movie = QtWidgets.QLabel(self.centralwidget)
self.label_movie.setMinimumSize(QtCore.QSize(1200, 800))
self.label_movie.setText("")
self.label_movie.setObjectName("label_movie")
self.horizontalLayout_2.addWidget(self.label_movie)
self.formLayout_2 = QtWidgets.QFormLayout()
self.formLayout_2.setObjectName("formLayout_2")
self.label_mb1 = QtWidgets.QLabel(self.centralwidget)
self.label_mb1.setObjectName("label_mb1")
self.formLayout_2.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.label_mb1)
self.flv = QtWidgets.QLabel(self.centralwidget)
self.flv.setObjectName("flv")
self.formLayout_2.setWidget(0, QtWidgets.QFormLayout.FieldRole, self.flv)
self.label_mb2 = QtWidgets.QLabel(self.centralwidget)
self.label_mb2.setObjectName("label_mb2")
self.formLayout_2.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label_mb2)
self.gx = QtWidgets.QLabel(self.centralwidget)
self.gx.setObjectName("gx")
self.formLayout_2.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.gx)
self.label_mb3 = QtWidgets.QLabel(self.centralwidget)
self.label_mb3.setObjectName("label_mb3")
self.formLayout_2.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_mb3)
self.mbw = QtWidgets.QLabel(self.centralwidget)
self.mbw.setObjectName("mbw")
self.formLayout_2.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.mbw)
self.label_5 = QtWidgets.QLabel(self.centralwidget)
self.label_5.setObjectName("label_5")
self.formLayout_2.setWidget(3, QtWidgets.QFormLayout.LabelRole, self.label_5)
self.label_object = QtWidgets.QLabel(self.centralwidget)
self.label_object.setObjectName("label_object")
self.formLayout_2.setWidget(3, QtWidgets.QFormLayout.FieldRole, self.label_object)
self.horizontalLayout_2.addLayout(self.formLayout_2)
self.verticalLayout.addLayout(self.horizontalLayout_2)
self.label_10 = QtWidgets.QLabel(self.centralwidget)
self.label_10.setObjectName("label_10")
self.verticalLayout.addWidget(self.label_10)
self.verticalLayout_5.addLayout(self.verticalLayout)
MainWindow.setCentralWidget(self.centralwidget)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.retranslateUi(MainWindow)
self.tupiandiaoru.clicked.connect(MainWindow.import_pic)
self.shibie.clicked.connect(MainWindow.press_shibie)
self.xunlian.clicked.connect(MainWindow.press_xunlian)
self.pushButton_tuichu.clicked.connect(MainWindow.exit)
self.shipindaoru.clicked.connect(MainWindow.press_movie)
self.comboBox_sbsuanfa.activated.connect(MainWindow.moxingxuanze)
self.comboBox_GPU.activated.connect(MainWindow.gpu_use)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "脉冲聚焦"))
self.tupiandiaoru.setText(_translate("MainWindow", "静态图像导入"))
self.shipindaoru.setText(_translate("MainWindow", "动态图像导入"))
self.pushButton_xxdaochu.setText(_translate("MainWindow", "信息导出"))
self.comboBox_tzxuanze.setItemText(0, _translate("MainWindow", ""))
self.label_2.setText(_translate("MainWindow", "预处理方法"))
self.comboBox_yclfangfa.setItemText(0, _translate("MainWindow", "多尺度融合"))
self.comboBox_yclfangfa.setItemText(1, _translate("MainWindow", "图像增广"))
self.comboBox_yclfangfa.setItemText(2, _translate("MainWindow", "图像重塑"))
self.label_3.setText(_translate("MainWindow", "聚焦算法"))
self.comboBox_sbsuanfa.setCurrentText(_translate("MainWindow", "PPYOLO-BOT"))
self.comboBox_sbsuanfa.setItemText(0, _translate("MainWindow", "PPYOLO-BOT"))
self.comboBox_sbsuanfa.setItemText(1, _translate("MainWindow", "YOLOV3"))
self.comboBox_sbsuanfa.setItemText(2, _translate("MainWindow", "RCNN"))
self.label_4.setText(_translate("MainWindow", "GPU加速"))
self.comboBox_GPU.setCurrentText(_translate("MainWindow", "YES"))
self.comboBox_GPU.setItemText(0, _translate("MainWindow", "YES"))
self.comboBox_GPU.setItemText(1, _translate("MainWindow", "NO"))
self.label.setText(_translate("MainWindow", "特征选择"))
self.shibie.setText(_translate("MainWindow", "聚焦"))
self.xunlian.setText(_translate("MainWindow", "训练"))
self.pushButton_jswendang.setText(_translate("MainWindow", "技术文档"))
self.pushButton_rjwendang.setText(_translate("MainWindow", "软件说明文档"))
self.pushButton_tuichu.setText(_translate("MainWindow", "退出"))
self.label_mb1.setText(_translate("MainWindow", "flv"))
self.flv.setText(_translate("MainWindow", "0"))
self.label_mb2.setText(_translate("MainWindow", "gx"))
self.gx.setText(_translate("MainWindow", "0"))
self.label_mb3.setText(_translate("MainWindow", "mbw"))
self.mbw.setText(_translate("MainWindow", "0"))
self.label_5.setText(_translate("MainWindow", "object"))
self.label_object.setText(_translate("MainWindow", "0"))
self.label_10.setText(_translate("MainWindow", "TextLabel"))

417
SSS_win.ui Normal file
View File

@ -0,0 +1,417 @@
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
<class>MainWindow</class>
<widget class="QMainWindow" name="MainWindow">
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>1353</width>
<height>1007</height>
</rect>
</property>
<property name="windowTitle">
<string>MainWindow</string>
</property>
<widget class="QWidget" name="centralwidget">
<layout class="QVBoxLayout" name="verticalLayout_5">
<item>
<layout class="QVBoxLayout" name="verticalLayout">
<item>
<layout class="QHBoxLayout" name="horizontalLayout">
<item>
<layout class="QVBoxLayout" name="verticalLayout_2">
<item>
<widget class="QPushButton" name="tupiandiaoru">
<property name="text">
<string>静态图像导入</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="shipindaoru">
<property name="text">
<string>动态图像导入</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="pushButton_xxdaochu">
<property name="text">
<string>信息导出</string>
</property>
</widget>
</item>
</layout>
</item>
<item>
<layout class="QFormLayout" name="formLayout">
<item row="0" column="1">
<widget class="QComboBox" name="comboBox_tzxuanze">
<property name="editable">
<bool>true</bool>
</property>
<item>
<property name="text">
<string>无</string>
</property>
</item>
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="label_2">
<property name="text">
<string>预处理方法</string>
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QComboBox" name="comboBox_yclfangfa">
<property name="editable">
<bool>true</bool>
</property>
<item>
<property name="text">
<string>多尺度融合</string>
</property>
</item>
<item>
<property name="text">
<string>图像增广</string>
</property>
</item>
<item>
<property name="text">
<string>图像重塑</string>
</property>
</item>
</widget>
</item>
<item row="2" column="0">
<widget class="QLabel" name="label_3">
<property name="text">
<string>识别算法</string>
</property>
</widget>
</item>
<item row="2" column="1">
<widget class="QComboBox" name="comboBox_sbsuanfa">
<property name="editable">
<bool>true</bool>
</property>
<property name="currentText">
<string>PPYOLO-BOT</string>
</property>
<item>
<property name="text">
<string>PPYOLO-BOT</string>
</property>
</item>
<item>
<property name="text">
<string>YOLOV3</string>
</property>
</item>
<item>
<property name="text">
<string>RCNN</string>
</property>
</item>
</widget>
</item>
<item row="3" column="0">
<widget class="QLabel" name="label_4">
<property name="text">
<string>GPU加速</string>
</property>
</widget>
</item>
<item row="3" column="1">
<widget class="QComboBox" name="comboBox_GPU">
<property name="editable">
<bool>true</bool>
</property>
<property name="currentText">
<string>YES</string>
</property>
<item>
<property name="text">
<string>YES</string>
</property>
</item>
<item>
<property name="text">
<string>NO</string>
</property>
</item>
</widget>
</item>
<item row="0" column="0">
<widget class="QLabel" name="label">
<property name="text">
<string>特征选择</string>
</property>
</widget>
</item>
</layout>
</item>
<item>
<layout class="QVBoxLayout" name="verticalLayout_4">
<item>
<widget class="QPushButton" name="shibie">
<property name="text">
<string>识别</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="xunlian">
<property name="text">
<string>训练</string>
</property>
</widget>
</item>
</layout>
</item>
<item>
<layout class="QVBoxLayout" name="verticalLayout_3">
<item>
<widget class="QPushButton" name="pushButton_jswendang">
<property name="text">
<string>技术文档</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="pushButton_rjwendang">
<property name="text">
<string>软件说明文档</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="pushButton_tuichu">
<property name="text">
<string>退出</string>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</item>
<item>
<layout class="QHBoxLayout" name="horizontalLayout_2">
<item>
<widget class="QLabel" name="label_movie">
<property name="minimumSize">
<size>
<width>1200</width>
<height>800</height>
</size>
</property>
<property name="text">
<string/>
</property>
</widget>
</item>
<item>
<layout class="QFormLayout" name="formLayout_2">
<item row="0" column="0">
<widget class="QLabel" name="label_mb1">
<property name="text">
<string>flv</string>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QLabel" name="flv">
<property name="text">
<string>0</string>
</property>
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="label_mb2">
<property name="text">
<string>gx</string>
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QLabel" name="gx">
<property name="text">
<string>0</string>
</property>
</widget>
</item>
<item row="2" column="0">
<widget class="QLabel" name="label_mb3">
<property name="text">
<string>mbw</string>
</property>
</widget>
</item>
<item row="2" column="1">
<widget class="QLabel" name="mbw">
<property name="text">
<string>0</string>
</property>
</widget>
</item>
<item row="3" column="0">
<widget class="QLabel" name="label_5">
<property name="text">
<string>object</string>
</property>
</widget>
</item>
<item row="3" column="1">
<widget class="QLabel" name="label_object">
<property name="text">
<string>0</string>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</item>
<item>
<widget class="QLabel" name="label_10">
<property name="text">
<string>TextLabel</string>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</widget>
<widget class="QStatusBar" name="statusbar"/>
</widget>
<resources/>
<connections>
<connection>
<sender>tupiandiaoru</sender>
<signal>clicked()</signal>
<receiver>MainWindow</receiver>
<slot>import_pic()</slot>
<hints>
<hint type="sourcelabel">
<x>255</x>
<y>42</y>
</hint>
<hint type="destinationlabel">
<x>414</x>
<y>8</y>
</hint>
</hints>
</connection>
<connection>
<sender>shibie</sender>
<signal>clicked()</signal>
<receiver>MainWindow</receiver>
<slot>press_shibie()</slot>
<hints>
<hint type="sourcelabel">
<x>983</x>
<y>48</y>
</hint>
<hint type="destinationlabel">
<x>1021</x>
<y>0</y>
</hint>
</hints>
</connection>
<connection>
<sender>xunlian</sender>
<signal>clicked()</signal>
<receiver>MainWindow</receiver>
<slot>press_xunlian()</slot>
<hints>
<hint type="sourcelabel">
<x>1101</x>
<y>115</y>
</hint>
<hint type="destinationlabel">
<x>823</x>
<y>0</y>
</hint>
</hints>
</connection>
<connection>
<sender>pushButton_tuichu</sender>
<signal>clicked()</signal>
<receiver>MainWindow</receiver>
<slot>exit()</slot>
<hints>
<hint type="sourcelabel">
<x>1467</x>
<y>128</y>
</hint>
<hint type="destinationlabel">
<x>1481</x>
<y>381</y>
</hint>
</hints>
</connection>
<connection>
<sender>shipindaoru</sender>
<signal>clicked()</signal>
<receiver>MainWindow</receiver>
<slot>press_movie()</slot>
<hints>
<hint type="sourcelabel">
<x>362</x>
<y>89</y>
</hint>
<hint type="destinationlabel">
<x>379</x>
<y>0</y>
</hint>
</hints>
</connection>
<connection>
<sender>comboBox_sbsuanfa</sender>
<signal>activated(QString)</signal>
<receiver>MainWindow</receiver>
<slot>moxingxuanze()</slot>
<hints>
<hint type="sourcelabel">
<x>621</x>
<y>91</y>
</hint>
<hint type="destinationlabel">
<x>686</x>
<y>85</y>
</hint>
</hints>
</connection>
<connection>
<sender>comboBox_GPU</sender>
<signal>activated(QString)</signal>
<receiver>MainWindow</receiver>
<slot>gpu_use()</slot>
<hints>
<hint type="sourcelabel">
<x>597</x>
<y>122</y>
</hint>
<hint type="destinationlabel">
<x>656</x>
<y>122</y>
</hint>
</hints>
</connection>
</connections>
<slots>
<slot>import_pic()</slot>
<slot>press_shibie()</slot>
<slot>press_xunlian()</slot>
<slot>exit()</slot>
<slot>press_movie()</slot>
<slot>moxingxuanze()</slot>
<slot>gpu_use()</slot>
</slots>
</ui>

BIN
build/.DS_Store vendored Normal file

Binary file not shown.

View File

@ -0,0 +1,16 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import (core, data, engine, modeling, model_zoo, optimizer, metrics,
utils, slim)

View File

@ -0,0 +1,15 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import config

View File

@ -0,0 +1,13 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -0,0 +1,248 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import inspect
import importlib
import re
try:
from docstring_parser import parse as doc_parse
except Exception:
def doc_parse(*args):
pass
try:
from typeguard import check_type
except Exception:
def check_type(*args):
pass
__all__ = ['SchemaValue', 'SchemaDict', 'SharedConfig', 'extract_schema']
class SchemaValue(object):
def __init__(self, name, doc='', type=None):
super(SchemaValue, self).__init__()
self.name = name
self.doc = doc
self.type = type
def set_default(self, value):
self.default = value
def has_default(self):
return hasattr(self, 'default')
class SchemaDict(dict):
def __init__(self, **kwargs):
super(SchemaDict, self).__init__()
self.schema = {}
self.strict = False
self.doc = ""
self.update(kwargs)
def __setitem__(self, key, value):
# XXX also update regular dict to SchemaDict??
if isinstance(value, dict) and key in self and isinstance(self[key],
SchemaDict):
self[key].update(value)
else:
super(SchemaDict, self).__setitem__(key, value)
def __missing__(self, key):
if self.has_default(key):
return self.schema[key].default
elif key in self.schema:
return self.schema[key]
else:
raise KeyError(key)
def copy(self):
newone = SchemaDict()
newone.__dict__.update(self.__dict__)
newone.update(self)
return newone
def set_schema(self, key, value):
assert isinstance(value, SchemaValue)
self.schema[key] = value
def set_strict(self, strict):
self.strict = strict
def has_default(self, key):
return key in self.schema and self.schema[key].has_default()
def is_default(self, key):
if not self.has_default(key):
return False
if hasattr(self[key], '__dict__'):
return True
else:
return key not in self or self[key] == self.schema[key].default
def find_default_keys(self):
return [
k for k in list(self.keys()) + list(self.schema.keys())
if self.is_default(k)
]
def mandatory(self):
return any([k for k in self.schema.keys() if not self.has_default(k)])
def find_missing_keys(self):
missing = [
k for k in self.schema.keys()
if k not in self and not self.has_default(k)
]
placeholders = [k for k in self if self[k] in ('<missing>', '<value>')]
return missing + placeholders
def find_extra_keys(self):
return list(set(self.keys()) - set(self.schema.keys()))
def find_mismatch_keys(self):
mismatch_keys = []
for arg in self.schema.values():
if arg.type is not None:
try:
check_type("{}.{}".format(self.name, arg.name),
self[arg.name], arg.type)
except Exception:
mismatch_keys.append(arg.name)
return mismatch_keys
def validate(self):
missing_keys = self.find_missing_keys()
if missing_keys:
raise ValueError("Missing param for class<{}>: {}".format(
self.name, ", ".join(missing_keys)))
extra_keys = self.find_extra_keys()
if extra_keys and self.strict:
raise ValueError("Extraneous param for class<{}>: {}".format(
self.name, ", ".join(extra_keys)))
mismatch_keys = self.find_mismatch_keys()
if mismatch_keys:
raise TypeError("Wrong param type for class<{}>: {}".format(
self.name, ", ".join(mismatch_keys)))
class SharedConfig(object):
"""
Representation class for `__shared__` annotations, which work as follows:
- if `key` is set for the module in config file, its value will take
precedence
- if `key` is not set for the module but present in the config file, its
value will be used
- otherwise, use the provided `default_value` as fallback
Args:
key: config[key] will be injected
default_value: fallback value
"""
def __init__(self, key, default_value=None):
super(SharedConfig, self).__init__()
self.key = key
self.default_value = default_value
def extract_schema(cls):
"""
Extract schema from a given class
Args:
cls (type): Class from which to extract.
Returns:
schema (SchemaDict): Extracted schema.
"""
ctor = cls.__init__
# python 2 compatibility
if hasattr(inspect, 'getfullargspec'):
argspec = inspect.getfullargspec(ctor)
annotations = argspec.annotations
has_kwargs = argspec.varkw is not None
else:
argspec = inspect.getfullargspec(ctor)
# python 2 type hinting workaround, see pep-3107
# however, since `typeguard` does not support python 2, type checking
# is still python 3 only for now
annotations = getattr(ctor, '__annotations__', {})
has_kwargs = argspec.varkw is not None
names = [arg for arg in argspec.args if arg != 'self']
defaults = argspec.defaults
num_defaults = argspec.defaults is not None and len(argspec.defaults) or 0
num_required = len(names) - num_defaults
docs = cls.__doc__
if docs is None and getattr(cls, '__category__', None) == 'op':
docs = cls.__call__.__doc__
try:
docstring = doc_parse(docs)
except Exception:
docstring = None
if docstring is None:
comments = {}
else:
comments = {}
for p in docstring.params:
match_obj = re.match('^([a-zA-Z_]+[a-zA-Z_0-9]*).*', p.arg_name)
if match_obj is not None:
comments[match_obj.group(1)] = p.description
schema = SchemaDict()
schema.name = cls.__name__
schema.doc = ""
if docs is not None:
start_pos = docs[0] == '\n' and 1 or 0
schema.doc = docs[start_pos:].split("\n")[0].strip()
# XXX handle paddle's weird doc convention
if '**' == schema.doc[:2] and '**' == schema.doc[-2:]:
schema.doc = schema.doc[2:-2].strip()
schema.category = hasattr(cls, '__category__') and getattr(
cls, '__category__') or 'module'
schema.strict = not has_kwargs
schema.pymodule = importlib.import_module(cls.__module__)
schema.inject = getattr(cls, '__inject__', [])
schema.shared = getattr(cls, '__shared__', [])
for idx, name in enumerate(names):
comment = name in comments and comments[name] or name
if name in schema.inject:
type_ = None
else:
type_ = name in annotations and annotations[name] or None
value_schema = SchemaValue(name, comment, type_)
if name in schema.shared:
assert idx >= num_required, "shared config must have default value"
default = defaults[idx - num_required]
value_schema.set_default(SharedConfig(name, default))
elif idx >= num_required:
default = defaults[idx - num_required]
value_schema.set_default(default)
schema.set_schema(name, value_schema)
return schema

View File

@ -0,0 +1,118 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import yaml
from .schema import SharedConfig
__all__ = ['serializable', 'Callable']
def represent_dictionary_order(self, dict_data):
return self.represent_mapping('tag:yaml.org,2002:map', dict_data.items())
def setup_orderdict():
from collections import OrderedDict
yaml.add_representer(OrderedDict, represent_dictionary_order)
def _make_python_constructor(cls):
def python_constructor(loader, node):
if isinstance(node, yaml.SequenceNode):
args = loader.construct_sequence(node, deep=True)
return cls(*args)
else:
kwargs = loader.construct_mapping(node, deep=True)
try:
return cls(**kwargs)
except Exception as ex:
print("Error when construct {} instance from yaml config".
format(cls.__name__))
raise ex
return python_constructor
def _make_python_representer(cls):
# python 2 compatibility
if hasattr(inspect, 'getfullargspec'):
argspec = inspect.getfullargspec(cls)
else:
argspec = inspect.getfullargspec(cls.__init__)
argnames = [arg for arg in argspec.args if arg != 'self']
def python_representer(dumper, obj):
if argnames:
data = {name: getattr(obj, name) for name in argnames}
else:
data = obj.__dict__
if '_id' in data:
del data['_id']
return dumper.represent_mapping(u'!{}'.format(cls.__name__), data)
return python_representer
def serializable(cls):
"""
Add loader and dumper for given class, which must be
"trivially serializable"
Args:
cls: class to be serialized
Returns: cls
"""
yaml.add_constructor(u'!{}'.format(cls.__name__),
_make_python_constructor(cls))
yaml.add_representer(cls, _make_python_representer(cls))
return cls
yaml.add_representer(SharedConfig,
lambda d, o: d.represent_data(o.default_value))
@serializable
class Callable(object):
"""
Helper to be used in Yaml for creating arbitrary class objects
Args:
full_type (str): the full module path to target function
"""
def __init__(self, full_type, args=[], kwargs={}):
super(Callable, self).__init__()
self.full_type = full_type
self.args = args
self.kwargs = kwargs
def __call__(self):
if '.' in self.full_type:
idx = self.full_type.rfind('.')
module = importlib.import_module(self.full_type[:idx])
func_name = self.full_type[idx + 1:]
else:
try:
module = importlib.import_module('builtins')
except Exception:
module = importlib.import_module('__builtin__')
func_name = self.full_type
func = getattr(module, func_name)
return func(*self.args, **self.kwargs)

View File

@ -0,0 +1,275 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import importlib
import os
import sys
import yaml
import collections
try:
collectionsAbc = collections.abc
except AttributeError:
collectionsAbc = collections
from .config.schema import SchemaDict, SharedConfig, extract_schema
from .config.yaml_helpers import serializable
__all__ = [
'global_config',
'load_config',
'merge_config',
'get_registered_modules',
'create',
'register',
'serializable',
'dump_value',
]
def dump_value(value):
# XXX this is hackish, but collections.abc is not available in python 2
if hasattr(value, '__dict__') or isinstance(value, (dict, tuple, list)):
value = yaml.dump(value, default_flow_style=True)
value = value.replace('\n', '')
value = value.replace('...', '')
return "'{}'".format(value)
else:
# primitive types
return str(value)
class AttrDict(dict):
"""Single level attribute dict, NOT recursive"""
def __init__(self, **kwargs):
super(AttrDict, self).__init__()
super(AttrDict, self).update(kwargs)
def __getattr__(self, key):
if key in self:
return self[key]
raise AttributeError("object has no attribute '{}'".format(key))
global_config = AttrDict()
BASE_KEY = '_BASE_'
# parse and load _BASE_ recursively
def _load_config_with_base(file_path):
with open(file_path) as f:
file_cfg = yaml.load(f, Loader=yaml.Loader)
# NOTE: cfgs outside have higher priority than cfgs in _BASE_
if BASE_KEY in file_cfg:
all_base_cfg = AttrDict()
base_ymls = list(file_cfg[BASE_KEY])
for base_yml in base_ymls:
if base_yml.startswith("~"):
base_yml = os.path.expanduser(base_yml)
if not base_yml.startswith('/'):
base_yml = os.path.join(os.path.dirname(file_path), base_yml)
with open(base_yml) as f:
base_cfg = _load_config_with_base(base_yml)
all_base_cfg = merge_config(base_cfg, all_base_cfg)
del file_cfg[BASE_KEY]
return merge_config(file_cfg, all_base_cfg)
return file_cfg
def load_config(file_path):
"""
Load config from file.
Args:
file_path (str): Path of the config file to be loaded.
Returns: global config
"""
_, ext = os.path.splitext(file_path)
assert ext in ['.yml', '.yaml'], "only support yaml files for now"
# load config from file and merge into global config
cfg = _load_config_with_base(file_path)
cfg['filename'] = os.path.splitext(os.path.split(file_path)[-1])[0]
merge_config(cfg)
return global_config
def dict_merge(dct, merge_dct):
""" Recursive dict merge. Inspired by :meth:``dict.update()``, instead of
updating only top-level keys, dict_merge recurses down into dicts nested
to an arbitrary depth, updating keys. The ``merge_dct`` is merged into
``dct``.
Args:
dct: dict onto which the merge is executed
merge_dct: dct merged into dct
Returns: dct
"""
for k, v in merge_dct.items():
if (k in dct and isinstance(dct[k], dict) and
isinstance(merge_dct[k], collectionsAbc.Mapping)):
dict_merge(dct[k], merge_dct[k])
else:
dct[k] = merge_dct[k]
return dct
def merge_config(config, another_cfg=None):
"""
Merge config into global config or another_cfg.
Args:
config (dict): Config to be merged.
Returns: global config
"""
global global_config
dct = another_cfg or global_config
return dict_merge(dct, config)
def get_registered_modules():
return {k: v for k, v in global_config.items() if isinstance(v, SchemaDict)}
def make_partial(cls):
op_module = importlib.import_module(cls.__op__.__module__)
op = getattr(op_module, cls.__op__.__name__)
cls.__category__ = getattr(cls, '__category__', None) or 'op'
def partial_apply(self, *args, **kwargs):
kwargs_ = self.__dict__.copy()
kwargs_.update(kwargs)
return op(*args, **kwargs_)
if getattr(cls, '__append_doc__', True): # XXX should default to True?
if sys.version_info[0] > 2:
cls.__doc__ = "Wrapper for `{}` OP".format(op.__name__)
cls.__init__.__doc__ = op.__doc__
cls.__call__ = partial_apply
cls.__call__.__doc__ = op.__doc__
else:
# XXX work around for python 2
partial_apply.__doc__ = op.__doc__
cls.__call__ = partial_apply
return cls
def register(cls):
"""
Register a given module class.
Args:
cls (type): Module class to be registered.
Returns: cls
"""
if cls.__name__ in global_config:
raise ValueError("Module class already registered: {}".format(
cls.__name__))
if hasattr(cls, '__op__'):
cls = make_partial(cls)
global_config[cls.__name__] = extract_schema(cls)
return cls
def create(cls_or_name, **kwargs):
"""
Create an instance of given module class.
Args:
cls_or_name (type or str): Class of which to create instance.
Returns: instance of type `cls_or_name`
"""
assert type(cls_or_name) in [type, str
], "should be a class or name of a class"
name = type(cls_or_name) == str and cls_or_name or cls_or_name.__name__
assert name in global_config and \
isinstance(global_config[name], SchemaDict), \
"the module {} is not registered".format(name)
config = global_config[name]
cls = getattr(config.pymodule, name)
cls_kwargs = {}
cls_kwargs.update(global_config[name])
# parse `shared` annoation of registered modules
if getattr(config, 'shared', None):
for k in config.shared:
target_key = config[k]
shared_conf = config.schema[k].default
assert isinstance(shared_conf, SharedConfig)
if target_key is not None and not isinstance(target_key,
SharedConfig):
continue # value is given for the module
elif shared_conf.key in global_config:
# `key` is present in config
cls_kwargs[k] = global_config[shared_conf.key]
else:
cls_kwargs[k] = shared_conf.default_value
# parse `inject` annoation of registered modules
if getattr(cls, 'from_config', None):
cls_kwargs.update(cls.from_config(config, **kwargs))
if getattr(config, 'inject', None):
for k in config.inject:
target_key = config[k]
# optional dependency
if target_key is None:
continue
if isinstance(target_key, dict) or hasattr(target_key, '__dict__'):
if 'name' not in target_key.keys():
continue
inject_name = str(target_key['name'])
if inject_name not in global_config:
raise ValueError(
"Missing injection name {} and check it's name in cfg file".
format(k))
target = global_config[inject_name]
for i, v in target_key.items():
if i == 'name':
continue
target[i] = v
if isinstance(target, SchemaDict):
cls_kwargs[k] = create(inject_name)
elif isinstance(target_key, str):
if target_key not in global_config:
raise ValueError("Missing injection config:", target_key)
target = global_config[target_key]
if isinstance(target, SchemaDict):
cls_kwargs[k] = create(target_key)
elif hasattr(target, '__dict__'): # serialized object
cls_kwargs[k] = target
else:
raise ValueError("Unsupported injection type:", target_key)
# prevent modification of global config values of reference types
# (e.g., list, dict) from within the created module instances
#kwargs = copy.deepcopy(kwargs)
return cls(**cls_kwargs)

View File

@ -0,0 +1,21 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import source
from . import transform
from . import reader
from .source import *
from .transform import *
from .reader import *

View File

@ -0,0 +1,303 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import traceback
import six
import sys
if sys.version_info >= (3, 0):
pass
else:
pass
import numpy as np
from paddle.io import DataLoader, DistributedBatchSampler
from paddle.fluid.dataloader.collate import default_collate_fn
from ppdet.core.workspace import register
from . import transform
from .shm_utils import _get_shared_memory_size_in_M
from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')
MAIN_PID = os.getpid()
class Compose(object):
def __init__(self, transforms, num_classes=80):
self.transforms = transforms
self.transforms_cls = []
for t in self.transforms:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.transforms_cls.append(f)
def __call__(self, data):
for f in self.transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map sample transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
return data
class BatchCompose(Compose):
def __init__(self, transforms, num_classes=80, collate_batch=True):
super(BatchCompose, self).__init__(transforms, num_classes)
self.collate_batch = collate_batch
def __call__(self, data):
for f in self.transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map batch transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
# remove keys which is not needed by model
extra_key = ['h', 'w', 'flipped']
for k in extra_key:
for sample in data:
if k in sample:
sample.pop(k)
# batch data, if user-define batch function needed
# use user-defined here
if self.collate_batch:
batch_data = default_collate_fn(data)
else:
batch_data = {}
for k in data[0].keys():
tmp_data = []
for i in range(len(data)):
tmp_data.append(data[i][k])
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
tmp_data = np.stack(tmp_data, axis=0)
batch_data[k] = tmp_data
return batch_data
class BaseDataLoader(object):
"""
Base DataLoader implementation for detection models
Args:
sample_transforms (list): a list of transforms to perform
on each sample
batch_transforms (list): a list of transforms to perform
on batch
batch_size (int): batch size for batch collating, default 1.
shuffle (bool): whether to shuffle samples
drop_last (bool): whether to drop the last incomplete,
default False
num_classes (int): class number of dataset, default 80
collate_batch (bool): whether to collate batch in dataloader.
If set to True, the samples will collate into batch according
to the batch size. Otherwise, the ground-truth will not collate,
which is used when the number of ground-truch is different in
samples.
use_shared_memory (bool): whether to use shared memory to
accelerate data loading, enable this only if you
are sure that the shared memory size of your OS
is larger than memory cost of input datas of model.
Note that shared memory will be automatically
disabled if the shared memory of OS is less than
1G, which is not enough for detection models.
Default False.
"""
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=80,
collate_batch=True,
use_shared_memory=False,
**kwargs):
# sample transform
self._sample_transforms = Compose(
sample_transforms, num_classes=num_classes)
# batch transfrom
self._batch_transforms = BatchCompose(batch_transforms, num_classes,
collate_batch)
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
self.use_shared_memory = use_shared_memory
self.kwargs = kwargs
def __call__(self,
dataset,
worker_num,
batch_sampler=None,
return_list=False):
self.dataset = dataset
self.dataset.check_or_download_dataset()
self.dataset.parse_dataset()
# get data
self.dataset.set_transform(self._sample_transforms)
# set kwargs
self.dataset.set_kwargs(**self.kwargs)
# batch sampler
if batch_sampler is None:
self._batch_sampler = DistributedBatchSampler(
self.dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
drop_last=self.drop_last)
else:
self._batch_sampler = batch_sampler
# DataLoader do not start sub-process in Windows and Mac
# system, do not need to use shared memory
use_shared_memory = self.use_shared_memory and \
sys.platform not in ['win32', 'darwin']
# check whether shared memory size is bigger than 1G(1024M)
if use_shared_memory:
shm_size = _get_shared_memory_size_in_M()
if shm_size is not None and shm_size < 1024.:
logger.warning("Shared memory size is less than 1G, "
"disable shared_memory in DataLoader")
use_shared_memory = False
self.dataloader = DataLoader(
dataset=self.dataset,
batch_sampler=self._batch_sampler,
collate_fn=self._batch_transforms,
num_workers=worker_num,
return_list=return_list,
use_shared_memory=use_shared_memory)
self.loader = iter(self.dataloader)
return self
def __len__(self):
return len(self._batch_sampler)
def __iter__(self):
return self
def __next__(self):
try:
return next(self.loader)
except StopIteration:
self.loader = iter(self.dataloader)
six.reraise(*sys.exc_info())
def next(self):
# python2 compatibility
return self.__next__()
@register
class TrainReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=True,
drop_last=True,
num_classes=80,
collate_batch=True,
**kwargs):
super(TrainReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, collate_batch, **kwargs)
@register
class EvalReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=True,
num_classes=80,
**kwargs):
super(EvalReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class TestReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=80,
**kwargs):
super(TestReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class EvalMOTReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=1,
**kwargs):
super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class TestMOTReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=1,
**kwargs):
super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)

View File

@ -0,0 +1,67 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
SIZE_UNIT = ['K', 'M', 'G', 'T']
SHM_QUERY_CMD = 'df -h'
SHM_KEY = 'shm'
SHM_DEFAULT_MOUNT = '/dev/shm'
# [ shared memory size check ]
# In detection models, image/target data occupies a lot of memory, and
# will occupy lots of shared memory in multi-process DataLoader, we use
# following code to get shared memory size and perform a size check to
# disable shared memory use if shared memory size is not enough.
# Shared memory getting process as follows:
# 1. use `df -h` get all mount info
# 2. pick up spaces whose mount info contains 'shm'
# 3. if 'shm' space number is only 1, return its size
# 4. if there are multiple 'shm' space, try to find the default mount
# directory '/dev/shm' is Linux-like system, otherwise return the
# biggest space size.
def _parse_size_in_M(size_str):
num, unit = size_str[:-1], size_str[-1]
assert unit in SIZE_UNIT, \
"unknown shm size unit {}".format(unit)
return float(num) * \
(1024 ** (SIZE_UNIT.index(unit) - 1))
def _get_shared_memory_size_in_M():
try:
df_infos = os.popen(SHM_QUERY_CMD).readlines()
except:
return None
else:
shm_infos = []
for df_info in df_infos:
info = df_info.strip()
if info.find(SHM_KEY) >= 0:
shm_infos.append(info.split())
if len(shm_infos) == 0:
return None
elif len(shm_infos) == 1:
return _parse_size_in_M(shm_infos[0][3])
else:
default_mount_infos = [
si for si in shm_infos if si[-1] == SHM_DEFAULT_MOUNT
]
if default_mount_infos:
return _parse_size_in_M(default_mount_infos[0][3])
else:
return max([_parse_size_in_M(si[3]) for si in shm_infos])

View File

@ -0,0 +1,27 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import coco
from . import voc
from . import widerface
from . import category
from . import keypoint_coco
from . import mot
from .coco import *
from .voc import *
from .widerface import *
from .category import *
from .keypoint_coco import *
from .mot import *

View File

@ -0,0 +1,823 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from ppdet.data.source.voc import pascalvoc_label
from ppdet.data.source.widerface import widerface_label
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['get_categories']
def get_categories(metric_type, anno_file=None, arch=None):
"""
Get class id to category id map and category id
to category name map from annotation file.
Args:
metric_type (str): metric type, currently support 'coco', 'voc', 'oid'
and 'widerface'.
anno_file (str): annotation file path
"""
if arch == 'keypoint_arch':
return (None, {'id': 'keypoint'})
if metric_type.lower() == 'coco':
if anno_file and os.path.isfile(anno_file):
# lazy import pycocotools here
from pycocotools.coco import COCO
coco = COCO(anno_file)
cats = coco.loadCats(coco.getCatIds())
clsid2catid = {i: cat['id'] for i, cat in enumerate(cats)}
catid2name = {cat['id']: cat['name'] for cat in cats}
return clsid2catid, catid2name
# anno file not exist, load default categories of COCO17
else:
return _coco17_category()
elif metric_type.lower() == 'voc':
if anno_file and os.path.isfile(anno_file):
cats = []
with open(anno_file) as f:
for line in f.readlines():
cats.append(line.strip())
if cats[0] == 'background':
cats = cats[1:]
clsid2catid = {i: i for i in range(len(cats))}
catid2name = {i: name for i, name in enumerate(cats)}
return clsid2catid, catid2name
# anno file not exist, load default categories of
# VOC all 20 categories
else:
return _vocall_category()
elif metric_type.lower() == 'oid':
if anno_file and os.path.isfile(anno_file):
logger.warning("only default categories support for OID19")
return _oid19_category()
elif metric_type.lower() == 'widerface':
return _widerface_category()
elif metric_type.lower() == 'keypointtopdowncocoeval':
return (None, {'id': 'keypoint'})
elif metric_type.lower() in ['mot', 'motdet', 'reid']:
return _mot_category()
else:
raise ValueError("unknown metric type {}".format(metric_type))
def _mot_category():
"""
Get class id to category id map and category id
to category name map of mot dataset
"""
label_map = {'person': 0}
label_map = sorted(label_map.items(), key=lambda x: x[1])
cats = [l[0] for l in label_map]
clsid2catid = {i: i for i in range(len(cats))}
catid2name = {i: name for i, name in enumerate(cats)}
return clsid2catid, catid2name
def _coco17_category():
"""
Get class id to category id map and category id
to category name map of COCO2017 dataset
"""
clsid2catid = {
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: 7,
8: 8,
9: 9,
10: 10,
11: 11,
12: 13,
13: 14,
14: 15,
15: 16,
16: 17,
17: 18,
18: 19,
19: 20,
20: 21,
21: 22,
22: 23,
23: 24,
24: 25,
25: 27,
26: 28,
27: 31,
28: 32,
29: 33,
30: 34,
31: 35,
32: 36,
33: 37,
34: 38,
35: 39,
36: 40,
37: 41,
38: 42,
39: 43,
40: 44,
41: 46,
42: 47,
43: 48,
44: 49,
45: 50,
46: 51,
47: 52,
48: 53,
49: 54,
50: 55,
51: 56,
52: 57,
53: 58,
54: 59,
55: 60,
56: 61,
57: 62,
58: 63,
59: 64,
60: 65,
61: 67,
62: 70,
63: 72,
64: 73,
65: 74,
66: 75,
67: 76,
68: 77,
69: 78,
70: 79,
71: 80,
72: 81,
73: 82,
74: 84,
75: 85,
76: 86,
77: 87,
78: 88,
79: 89,
80: 90
}
catid2name = {
0: 'background',
1: 'person',
2: 'bicycle',
3: 'car',
4: 'motorcycle',
5: 'airplane',
6: 'bus',
7: 'train',
8: 'truck',
9: 'boat',
10: 'traffic light',
11: 'fire hydrant',
13: 'stop sign',
14: 'parking meter',
15: 'bench',
16: 'bird',
17: 'cat',
18: 'dog',
19: 'horse',
20: 'sheep',
21: 'cow',
22: 'elephant',
23: 'bear',
24: 'zebra',
25: 'giraffe',
27: 'backpack',
28: 'umbrella',
31: 'handbag',
32: 'tie',
33: 'suitcase',
34: 'frisbee',
35: 'skis',
36: 'snowboard',
37: 'sports ball',
38: 'kite',
39: 'baseball bat',
40: 'baseball glove',
41: 'skateboard',
42: 'surfboard',
43: 'tennis racket',
44: 'bottle',
46: 'wine glass',
47: 'cup',
48: 'fork',
49: 'knife',
50: 'spoon',
51: 'bowl',
52: 'banana',
53: 'apple',
54: 'sandwich',
55: 'orange',
56: 'broccoli',
57: 'carrot',
58: 'hot dog',
59: 'pizza',
60: 'donut',
61: 'cake',
62: 'chair',
63: 'couch',
64: 'potted plant',
65: 'bed',
67: 'dining table',
70: 'toilet',
72: 'tv',
73: 'laptop',
74: 'mouse',
75: 'remote',
76: 'keyboard',
77: 'cell phone',
78: 'microwave',
79: 'oven',
80: 'toaster',
81: 'sink',
82: 'refrigerator',
84: 'book',
85: 'clock',
86: 'vase',
87: 'scissors',
88: 'teddy bear',
89: 'hair drier',
90: 'toothbrush'
}
clsid2catid = {k - 1: v for k, v in clsid2catid.items()}
catid2name.pop(0)
return clsid2catid, catid2name
def _vocall_category():
"""
Get class id to category id map and category id
to category name map of mixup voc dataset
"""
label_map = pascalvoc_label()
label_map = sorted(label_map.items(), key=lambda x: x[1])
cats = [l[0] for l in label_map]
clsid2catid = {i: i for i in range(len(cats))}
catid2name = {i: name for i, name in enumerate(cats)}
return clsid2catid, catid2name
def _widerface_category():
label_map = widerface_label()
label_map = sorted(label_map.items(), key=lambda x: x[1])
cats = [l[0] for l in label_map]
clsid2catid = {i: i for i in range(len(cats))}
catid2name = {i: name for i, name in enumerate(cats)}
return clsid2catid, catid2name
def _oid19_category():
clsid2catid = {k: k + 1 for k in range(500)}
catid2name = {
0: "background",
1: "Infant bed",
2: "Rose",
3: "Flag",
4: "Flashlight",
5: "Sea turtle",
6: "Camera",
7: "Animal",
8: "Glove",
9: "Crocodile",
10: "Cattle",
11: "House",
12: "Guacamole",
13: "Penguin",
14: "Vehicle registration plate",
15: "Bench",
16: "Ladybug",
17: "Human nose",
18: "Watermelon",
19: "Flute",
20: "Butterfly",
21: "Washing machine",
22: "Raccoon",
23: "Segway",
24: "Taco",
25: "Jellyfish",
26: "Cake",
27: "Pen",
28: "Cannon",
29: "Bread",
30: "Tree",
31: "Shellfish",
32: "Bed",
33: "Hamster",
34: "Hat",
35: "Toaster",
36: "Sombrero",
37: "Tiara",
38: "Bowl",
39: "Dragonfly",
40: "Moths and butterflies",
41: "Antelope",
42: "Vegetable",
43: "Torch",
44: "Building",
45: "Power plugs and sockets",
46: "Blender",
47: "Billiard table",
48: "Cutting board",
49: "Bronze sculpture",
50: "Turtle",
51: "Broccoli",
52: "Tiger",
53: "Mirror",
54: "Bear",
55: "Zucchini",
56: "Dress",
57: "Volleyball",
58: "Guitar",
59: "Reptile",
60: "Golf cart",
61: "Tart",
62: "Fedora",
63: "Carnivore",
64: "Car",
65: "Lighthouse",
66: "Coffeemaker",
67: "Food processor",
68: "Truck",
69: "Bookcase",
70: "Surfboard",
71: "Footwear",
72: "Bench",
73: "Necklace",
74: "Flower",
75: "Radish",
76: "Marine mammal",
77: "Frying pan",
78: "Tap",
79: "Peach",
80: "Knife",
81: "Handbag",
82: "Laptop",
83: "Tent",
84: "Ambulance",
85: "Christmas tree",
86: "Eagle",
87: "Limousine",
88: "Kitchen & dining room table",
89: "Polar bear",
90: "Tower",
91: "Football",
92: "Willow",
93: "Human head",
94: "Stop sign",
95: "Banana",
96: "Mixer",
97: "Binoculars",
98: "Dessert",
99: "Bee",
100: "Chair",
101: "Wood-burning stove",
102: "Flowerpot",
103: "Beaker",
104: "Oyster",
105: "Woodpecker",
106: "Harp",
107: "Bathtub",
108: "Wall clock",
109: "Sports uniform",
110: "Rhinoceros",
111: "Beehive",
112: "Cupboard",
113: "Chicken",
114: "Man",
115: "Blue jay",
116: "Cucumber",
117: "Balloon",
118: "Kite",
119: "Fireplace",
120: "Lantern",
121: "Missile",
122: "Book",
123: "Spoon",
124: "Grapefruit",
125: "Squirrel",
126: "Orange",
127: "Coat",
128: "Punching bag",
129: "Zebra",
130: "Billboard",
131: "Bicycle",
132: "Door handle",
133: "Mechanical fan",
134: "Ring binder",
135: "Table",
136: "Parrot",
137: "Sock",
138: "Vase",
139: "Weapon",
140: "Shotgun",
141: "Glasses",
142: "Seahorse",
143: "Belt",
144: "Watercraft",
145: "Window",
146: "Giraffe",
147: "Lion",
148: "Tire",
149: "Vehicle",
150: "Canoe",
151: "Tie",
152: "Shelf",
153: "Picture frame",
154: "Printer",
155: "Human leg",
156: "Boat",
157: "Slow cooker",
158: "Croissant",
159: "Candle",
160: "Pancake",
161: "Pillow",
162: "Coin",
163: "Stretcher",
164: "Sandal",
165: "Woman",
166: "Stairs",
167: "Harpsichord",
168: "Stool",
169: "Bus",
170: "Suitcase",
171: "Human mouth",
172: "Juice",
173: "Skull",
174: "Door",
175: "Violin",
176: "Chopsticks",
177: "Digital clock",
178: "Sunflower",
179: "Leopard",
180: "Bell pepper",
181: "Harbor seal",
182: "Snake",
183: "Sewing machine",
184: "Goose",
185: "Helicopter",
186: "Seat belt",
187: "Coffee cup",
188: "Microwave oven",
189: "Hot dog",
190: "Countertop",
191: "Serving tray",
192: "Dog bed",
193: "Beer",
194: "Sunglasses",
195: "Golf ball",
196: "Waffle",
197: "Palm tree",
198: "Trumpet",
199: "Ruler",
200: "Helmet",
201: "Ladder",
202: "Office building",
203: "Tablet computer",
204: "Toilet paper",
205: "Pomegranate",
206: "Skirt",
207: "Gas stove",
208: "Cookie",
209: "Cart",
210: "Raven",
211: "Egg",
212: "Burrito",
213: "Goat",
214: "Kitchen knife",
215: "Skateboard",
216: "Salt and pepper shakers",
217: "Lynx",
218: "Boot",
219: "Platter",
220: "Ski",
221: "Swimwear",
222: "Swimming pool",
223: "Drinking straw",
224: "Wrench",
225: "Drum",
226: "Ant",
227: "Human ear",
228: "Headphones",
229: "Fountain",
230: "Bird",
231: "Jeans",
232: "Television",
233: "Crab",
234: "Microphone",
235: "Home appliance",
236: "Snowplow",
237: "Beetle",
238: "Artichoke",
239: "Jet ski",
240: "Stationary bicycle",
241: "Human hair",
242: "Brown bear",
243: "Starfish",
244: "Fork",
245: "Lobster",
246: "Corded phone",
247: "Drink",
248: "Saucer",
249: "Carrot",
250: "Insect",
251: "Clock",
252: "Castle",
253: "Tennis racket",
254: "Ceiling fan",
255: "Asparagus",
256: "Jaguar",
257: "Musical instrument",
258: "Train",
259: "Cat",
260: "Rifle",
261: "Dumbbell",
262: "Mobile phone",
263: "Taxi",
264: "Shower",
265: "Pitcher",
266: "Lemon",
267: "Invertebrate",
268: "Turkey",
269: "High heels",
270: "Bust",
271: "Elephant",
272: "Scarf",
273: "Barrel",
274: "Trombone",
275: "Pumpkin",
276: "Box",
277: "Tomato",
278: "Frog",
279: "Bidet",
280: "Human face",
281: "Houseplant",
282: "Van",
283: "Shark",
284: "Ice cream",
285: "Swim cap",
286: "Falcon",
287: "Ostrich",
288: "Handgun",
289: "Whiteboard",
290: "Lizard",
291: "Pasta",
292: "Snowmobile",
293: "Light bulb",
294: "Window blind",
295: "Muffin",
296: "Pretzel",
297: "Computer monitor",
298: "Horn",
299: "Furniture",
300: "Sandwich",
301: "Fox",
302: "Convenience store",
303: "Fish",
304: "Fruit",
305: "Earrings",
306: "Curtain",
307: "Grape",
308: "Sofa bed",
309: "Horse",
310: "Luggage and bags",
311: "Desk",
312: "Crutch",
313: "Bicycle helmet",
314: "Tick",
315: "Airplane",
316: "Canary",
317: "Spatula",
318: "Watch",
319: "Lily",
320: "Kitchen appliance",
321: "Filing cabinet",
322: "Aircraft",
323: "Cake stand",
324: "Candy",
325: "Sink",
326: "Mouse",
327: "Wine",
328: "Wheelchair",
329: "Goldfish",
330: "Refrigerator",
331: "French fries",
332: "Drawer",
333: "Treadmill",
334: "Picnic basket",
335: "Dice",
336: "Cabbage",
337: "Football helmet",
338: "Pig",
339: "Person",
340: "Shorts",
341: "Gondola",
342: "Honeycomb",
343: "Doughnut",
344: "Chest of drawers",
345: "Land vehicle",
346: "Bat",
347: "Monkey",
348: "Dagger",
349: "Tableware",
350: "Human foot",
351: "Mug",
352: "Alarm clock",
353: "Pressure cooker",
354: "Human hand",
355: "Tortoise",
356: "Baseball glove",
357: "Sword",
358: "Pear",
359: "Miniskirt",
360: "Traffic sign",
361: "Girl",
362: "Roller skates",
363: "Dinosaur",
364: "Porch",
365: "Human beard",
366: "Submarine sandwich",
367: "Screwdriver",
368: "Strawberry",
369: "Wine glass",
370: "Seafood",
371: "Racket",
372: "Wheel",
373: "Sea lion",
374: "Toy",
375: "Tea",
376: "Tennis ball",
377: "Waste container",
378: "Mule",
379: "Cricket ball",
380: "Pineapple",
381: "Coconut",
382: "Doll",
383: "Coffee table",
384: "Snowman",
385: "Lavender",
386: "Shrimp",
387: "Maple",
388: "Cowboy hat",
389: "Goggles",
390: "Rugby ball",
391: "Caterpillar",
392: "Poster",
393: "Rocket",
394: "Organ",
395: "Saxophone",
396: "Traffic light",
397: "Cocktail",
398: "Plastic bag",
399: "Squash",
400: "Mushroom",
401: "Hamburger",
402: "Light switch",
403: "Parachute",
404: "Teddy bear",
405: "Winter melon",
406: "Deer",
407: "Musical keyboard",
408: "Plumbing fixture",
409: "Scoreboard",
410: "Baseball bat",
411: "Envelope",
412: "Adhesive tape",
413: "Briefcase",
414: "Paddle",
415: "Bow and arrow",
416: "Telephone",
417: "Sheep",
418: "Jacket",
419: "Boy",
420: "Pizza",
421: "Otter",
422: "Office supplies",
423: "Couch",
424: "Cello",
425: "Bull",
426: "Camel",
427: "Ball",
428: "Duck",
429: "Whale",
430: "Shirt",
431: "Tank",
432: "Motorcycle",
433: "Accordion",
434: "Owl",
435: "Porcupine",
436: "Sun hat",
437: "Nail",
438: "Scissors",
439: "Swan",
440: "Lamp",
441: "Crown",
442: "Piano",
443: "Sculpture",
444: "Cheetah",
445: "Oboe",
446: "Tin can",
447: "Mango",
448: "Tripod",
449: "Oven",
450: "Mouse",
451: "Barge",
452: "Coffee",
453: "Snowboard",
454: "Common fig",
455: "Salad",
456: "Marine invertebrates",
457: "Umbrella",
458: "Kangaroo",
459: "Human arm",
460: "Measuring cup",
461: "Snail",
462: "Loveseat",
463: "Suit",
464: "Teapot",
465: "Bottle",
466: "Alpaca",
467: "Kettle",
468: "Trousers",
469: "Popcorn",
470: "Centipede",
471: "Spider",
472: "Sparrow",
473: "Plate",
474: "Bagel",
475: "Personal care",
476: "Apple",
477: "Brassiere",
478: "Bathroom cabinet",
479: "studio couch",
480: "Computer keyboard",
481: "Table tennis racket",
482: "Sushi",
483: "Cabinetry",
484: "Street light",
485: "Towel",
486: "Nightstand",
487: "Rabbit",
488: "Dolphin",
489: "Dog",
490: "Jug",
491: "Wok",
492: "Fire hydrant",
493: "Human eye",
494: "Skyscraper",
495: "Backpack",
496: "Potato",
497: "Paper towel",
498: "Lifejacket",
499: "Bicycle wheel",
500: "Toilet",
}
return clsid2catid, catid2name

View File

@ -0,0 +1,241 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@register
@serializable
class COCODataSet(DetDataset):
"""
Load dataset with COCO format.
Args:
dataset_dir (str): root directory for dataset.
image_dir (str): directory for images.
anno_path (str): coco annotation file path.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
load_crowd (bool): whether to load crowded ground-truth.
False as default
allow_empty (bool): whether to load empty entry. False as default
empty_ratio (float): the ratio of empty record number to total
record's, if empty_ratio is out of [0. ,1.), do not sample the
records. 1. as default
"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
load_crowd=False,
allow_empty=False,
empty_ratio=1.):
super(COCODataSet, self).__init__(dataset_dir, image_dir, anno_path,
data_fields, sample_num)
self.load_image_only = False
self.load_semantic = False
self.load_crowd = load_crowd
self.allow_empty = allow_empty
self.empty_ratio = empty_ratio
def _sample_empty(self, records, num):
# if empty_ratio is out of [0. ,1.), do not sample the records
if self.empty_ratio < 0. or self.empty_ratio >= 1.:
return records
import random
sample_num = int(num * self.empty_ratio / (1 - self.empty_ratio))
records = random.sample(records, sample_num)
return records
def parse_dataset(self):
anno_path = os.path.join(self.dataset_dir, self.anno_path)
image_dir = os.path.join(self.dataset_dir, self.image_dir)
assert anno_path.endswith('.json'), \
'invalid coco annotation file: ' + anno_path
from pycocotools.coco import COCO
coco = COCO(anno_path)
img_ids = coco.getImgIds()
img_ids.sort()
cat_ids = coco.getCatIds()
records = []
empty_records = []
ct = 0
self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
self.cname2cid = dict({
coco.loadCats(catid)[0]['name']: clsid
for catid, clsid in self.catid2clsid.items()
})
if 'annotations' not in coco.dataset:
self.load_image_only = True
logger.warning('Annotation file: {} does not contains ground truth '
'and load image information only.'.format(anno_path))
for img_id in img_ids:
img_anno = coco.loadImgs([img_id])[0]
im_fname = img_anno['file_name']
im_w = float(img_anno['width'])
im_h = float(img_anno['height'])
im_path = os.path.join(image_dir,
im_fname) if image_dir else im_fname
is_empty = False
if not os.path.exists(im_path):
logger.warning('Illegal image file: {}, and it will be '
'ignored'.format(im_path))
continue
if im_w < 0 or im_h < 0:
logger.warning('Illegal width: {} or height: {} in annotation, '
'and im_id: {} will be ignored'.format(
im_w, im_h, img_id))
continue
coco_rec = {
'im_file': im_path,
'im_id': np.array([img_id]),
'h': im_h,
'w': im_w,
} if 'image' in self.data_fields else {}
if not self.load_image_only:
ins_anno_ids = coco.getAnnIds(
imgIds=[img_id], iscrowd=None if self.load_crowd else False)
instances = coco.loadAnns(ins_anno_ids)
bboxes = []
is_rbox_anno = False
for inst in instances:
# check gt bbox
if inst.get('ignore', False):
continue
if 'bbox' not in inst.keys():
continue
else:
if not any(np.array(inst['bbox'])):
continue
# read rbox anno or not
is_rbox_anno = True if len(inst['bbox']) == 5 else False
if is_rbox_anno:
xc, yc, box_w, box_h, angle = inst['bbox']
x1 = xc - box_w / 2.0
y1 = yc - box_h / 2.0
x2 = x1 + box_w
y2 = y1 + box_h
else:
x1, y1, box_w, box_h = inst['bbox']
x2 = x1 + box_w
y2 = y1 + box_h
eps = 1e-5
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
inst['clean_bbox'] = [
round(float(x), 3) for x in [x1, y1, x2, y2]
]
if is_rbox_anno:
inst['clean_rbox'] = [xc, yc, box_w, box_h, angle]
bboxes.append(inst)
else:
logger.warning(
'Found an invalid bbox in annotations: im_id: {}, '
'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
img_id, float(inst['area']), x1, y1, x2, y2))
num_bbox = len(bboxes)
if num_bbox <= 0 and not self.allow_empty:
continue
elif num_bbox <= 0:
is_empty = True
gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
if is_rbox_anno:
gt_rbox = np.zeros((num_bbox, 5), dtype=np.float32)
gt_theta = np.zeros((num_bbox, 1), dtype=np.int32)
gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
difficult = np.zeros((num_bbox, 1), dtype=np.int32)
gt_poly = [None] * num_bbox
has_segmentation = False
for i, box in enumerate(bboxes):
catid = box['category_id']
gt_class[i][0] = self.catid2clsid[catid]
gt_bbox[i, :] = box['clean_bbox']
# xc, yc, w, h, theta
if is_rbox_anno:
gt_rbox[i, :] = box['clean_rbox']
is_crowd[i][0] = box['iscrowd']
# check RLE format
if 'segmentation' in box and box['iscrowd'] == 1:
gt_poly[i] = [[0.0, 0.0], ]
elif 'segmentation' in box and box['segmentation']:
gt_poly[i] = box['segmentation']
has_segmentation = True
if has_segmentation and not any(
gt_poly) and not self.allow_empty:
continue
if is_rbox_anno:
gt_rec = {
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_rbox': gt_rbox,
'gt_poly': gt_poly,
}
else:
gt_rec = {
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_poly': gt_poly,
}
for k, v in gt_rec.items():
if k in self.data_fields:
coco_rec[k] = v
# TODO: remove load_semantic
if self.load_semantic and 'semantic' in self.data_fields:
seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
'train2017', im_fname[:-3] + 'png')
coco_rec.update({'semantic': seg_path})
logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
im_path, img_id, im_h, im_w))
if is_empty:
empty_records.append(coco_rec)
else:
records.append(coco_rec)
ct += 1
if self.sample_num > 0 and ct >= self.sample_num:
break
assert ct > 0, 'not found any coco record in %s' % (anno_path)
logger.debug('{} samples in file {}'.format(ct, anno_path))
if len(empty_records) > 0:
empty_records = self._sample_empty(empty_records, len(records))
records += empty_records
self.roidbs = records

View File

@ -0,0 +1,192 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
from paddle.io import Dataset
from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path
import copy
@serializable
class DetDataset(Dataset):
"""
Load detection dataset.
Args:
dataset_dir (str): root directory for dataset.
image_dir (str): directory for images.
anno_path (str): annotation file path.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
use_default_label (bool): whether to load default label list.
"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
use_default_label=None,
**kwargs):
super(DetDataset, self).__init__()
self.dataset_dir = dataset_dir if dataset_dir is not None else ''
self.anno_path = anno_path
self.image_dir = image_dir if image_dir is not None else ''
self.data_fields = data_fields
self.sample_num = sample_num
self.use_default_label = use_default_label
self._epoch = 0
self._curr_iter = 0
def __len__(self, ):
return len(self.roidbs)
def __getitem__(self, idx):
# data batch
roidb = copy.deepcopy(self.roidbs[idx])
if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
n = len(self.roidbs)
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
n = len(self.roidbs)
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
n = len(self.roidbs)
roidb = [roidb, ] + [
copy.deepcopy(self.roidbs[np.random.randint(n)])
for _ in range(3)
]
if isinstance(roidb, Sequence):
for r in roidb:
r['curr_iter'] = self._curr_iter
else:
roidb['curr_iter'] = self._curr_iter
self._curr_iter += 1
return self.transform(roidb)
def check_or_download_dataset(self):
self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path,
self.image_dir)
def set_kwargs(self, **kwargs):
self.mixup_epoch = kwargs.get('mixup_epoch', -1)
self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)
def set_transform(self, transform):
self.transform = transform
def set_epoch(self, epoch_id):
self._epoch = epoch_id
def parse_dataset(self, ):
raise NotImplementedError(
"Need to implement parse_dataset method of Dataset")
def get_anno(self):
if self.anno_path is None:
return
return os.path.join(self.dataset_dir, self.anno_path)
def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
return f.lower().endswith(extensions)
def _make_dataset(dir):
dir = os.path.expanduser(dir)
if not os.path.isdir(dir):
raise ('{} should be a dir'.format(dir))
images = []
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
if _is_valid_file(path):
images.append(path)
return images
@register
@serializable
class ImageFolder(DetDataset):
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
sample_num=-1,
use_default_label=None,
**kwargs):
super(ImageFolder, self).__init__(
dataset_dir,
image_dir,
anno_path,
sample_num=sample_num,
use_default_label=use_default_label)
self._imid2path = {}
self.roidbs = None
self.sample_num = sample_num
def check_or_download_dataset(self):
return
def parse_dataset(self, ):
if not self.roidbs:
self.roidbs = self._load_images()
def _parse(self):
image_dir = self.image_dir
if not isinstance(image_dir, Sequence):
image_dir = [image_dir]
images = []
for im_dir in image_dir:
if os.path.isdir(im_dir):
im_dir = os.path.join(self.dataset_dir, im_dir)
images.extend(_make_dataset(im_dir))
elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
images.append(im_dir)
return images
def _load_images(self):
images = self._parse()
ct = 0
records = []
for image in images:
assert image != '' and os.path.isfile(image), \
"Image {} not found".format(image)
if self.sample_num > 0 and ct >= self.sample_num:
break
rec = {'im_id': np.array([ct]), 'im_file': image}
self._imid2path[ct] = image
ct += 1
records.append(rec)
assert len(records) > 0, "No image file found"
return records
def get_imid2path(self):
return self._imid2path
def set_images(self, images):
self.image_dir = images
self.roidbs = self._load_images()

View File

@ -0,0 +1,656 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import numpy as np
import json
import copy
import pycocotools
from pycocotools.coco import COCO
from .dataset import DetDataset
from ppdet.core.workspace import register, serializable
@serializable
class KeypointBottomUpBaseDataset(DetDataset):
"""Base class for bottom-up datasets.
All datasets should subclass it.
All subclasses should overwrite:
Methods:`_get_imganno`
Args:
dataset_dir (str): Root path to the dataset.
anno_path (str): Relative path to the annotation file.
image_dir (str): Path to a directory where images are held.
Default: None.
num_joints (int): keypoint numbers
transform (composed(operators)): A sequence of data transforms.
shard (list): [rank, worldsize], the distributed env params
test_mode (bool): Store True when building test or
validation dataset. Default: False.
"""
def __init__(self,
dataset_dir,
image_dir,
anno_path,
num_joints,
transform=[],
shard=[0, 1],
test_mode=False):
super().__init__(dataset_dir, image_dir, anno_path)
self.image_info = {}
self.ann_info = {}
self.img_prefix = os.path.join(dataset_dir, image_dir)
self.transform = transform
self.test_mode = test_mode
self.ann_info['num_joints'] = num_joints
self.img_ids = []
def __len__(self):
"""Get dataset length."""
return len(self.img_ids)
def _get_imganno(self, idx):
"""Get anno for a single image."""
raise NotImplementedError
def __getitem__(self, idx):
"""Prepare image for training given the index."""
records = copy.deepcopy(self._get_imganno(idx))
records['image'] = cv2.imread(records['image_file'])
records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
records['mask'] = (records['mask'] + 0).astype('uint8')
records = self.transform(records)
return records
def parse_dataset(self):
return
@register
@serializable
class KeypointBottomUpCocoDataset(KeypointBottomUpBaseDataset):
"""COCO dataset for bottom-up pose estimation.
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
COCO keypoint indexes::
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
Args:
dataset_dir (str): Root path to the dataset.
anno_path (str): Relative path to the annotation file.
image_dir (str): Path to a directory where images are held.
Default: None.
num_joints (int): keypoint numbers
transform (composed(operators)): A sequence of data transforms.
shard (list): [rank, worldsize], the distributed env params
test_mode (bool): Store True when building test or
validation dataset. Default: False.
"""
def __init__(self,
dataset_dir,
image_dir,
anno_path,
num_joints,
transform=[],
shard=[0, 1],
test_mode=False):
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
transform, shard, test_mode)
ann_file = os.path.join(dataset_dir, anno_path)
self.coco = COCO(ann_file)
self.img_ids = self.coco.getImgIds()
if not test_mode:
self.img_ids = [
img_id for img_id in self.img_ids
if len(self.coco.getAnnIds(
imgIds=img_id, iscrowd=None)) > 0
]
blocknum = int(len(self.img_ids) / shard[1])
self.img_ids = self.img_ids[(blocknum * shard[0]):(blocknum * (shard[0]
+ 1))]
self.num_images = len(self.img_ids)
self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs)
self.dataset_name = 'coco'
cat_ids = self.coco.getCatIds()
self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
print(f'=> num_images: {self.num_images}')
@staticmethod
def _get_mapping_id_name(imgs):
"""
Args:
imgs (dict): dict of image info.
Returns:
tuple: Image name & id mapping dicts.
- id2name (dict): Mapping image id to name.
- name2id (dict): Mapping image name to id.
"""
id2name = {}
name2id = {}
for image_id, image in imgs.items():
file_name = image['file_name']
id2name[image_id] = file_name
name2id[file_name] = image_id
return id2name, name2id
def _get_imganno(self, idx):
"""Get anno for a single image.
Args:
idx (int): image idx
Returns:
dict: info for model training
"""
coco = self.coco
img_id = self.img_ids[idx]
ann_ids = coco.getAnnIds(imgIds=img_id)
anno = coco.loadAnns(ann_ids)
mask = self._get_mask(anno, idx)
anno = [
obj for obj in anno
if obj['iscrowd'] == 0 or obj['num_keypoints'] > 0
]
joints, orgsize = self._get_joints(anno, idx)
db_rec = {}
db_rec['im_id'] = img_id
db_rec['image_file'] = os.path.join(self.img_prefix,
self.id2name[img_id])
db_rec['mask'] = mask
db_rec['joints'] = joints
db_rec['im_shape'] = orgsize
return db_rec
def _get_joints(self, anno, idx):
"""Get joints for all people in an image."""
num_people = len(anno)
joints = np.zeros(
(num_people, self.ann_info['num_joints'], 3), dtype=np.float32)
for i, obj in enumerate(anno):
joints[i, :self.ann_info['num_joints'], :3] = \
np.array(obj['keypoints']).reshape([-1, 3])
img_info = self.coco.loadImgs(self.img_ids[idx])[0]
joints[..., 0] /= img_info['width']
joints[..., 1] /= img_info['height']
orgsize = np.array([img_info['height'], img_info['width']])
return joints, orgsize
def _get_mask(self, anno, idx):
"""Get ignore masks to mask out losses."""
coco = self.coco
img_info = coco.loadImgs(self.img_ids[idx])[0]
m = np.zeros((img_info['height'], img_info['width']), dtype=np.float32)
for obj in anno:
if 'segmentation' in obj:
if obj['iscrowd']:
rle = pycocotools.mask.frPyObjects(obj['segmentation'],
img_info['height'],
img_info['width'])
m += pycocotools.mask.decode(rle)
elif obj['num_keypoints'] == 0:
rles = pycocotools.mask.frPyObjects(obj['segmentation'],
img_info['height'],
img_info['width'])
for rle in rles:
m += pycocotools.mask.decode(rle)
return m < 0.5
@register
@serializable
class KeypointBottomUpCrowdPoseDataset(KeypointBottomUpCocoDataset):
"""CrowdPose dataset for bottom-up pose estimation.
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
CrowdPose keypoint indexes::
0: 'left_shoulder',
1: 'right_shoulder',
2: 'left_elbow',
3: 'right_elbow',
4: 'left_wrist',
5: 'right_wrist',
6: 'left_hip',
7: 'right_hip',
8: 'left_knee',
9: 'right_knee',
10: 'left_ankle',
11: 'right_ankle',
12: 'top_head',
13: 'neck'
Args:
dataset_dir (str): Root path to the dataset.
anno_path (str): Relative path to the annotation file.
image_dir (str): Path to a directory where images are held.
Default: None.
num_joints (int): keypoint numbers
transform (composed(operators)): A sequence of data transforms.
shard (list): [rank, worldsize], the distributed env params
test_mode (bool): Store True when building test or
validation dataset. Default: False.
"""
def __init__(self,
dataset_dir,
image_dir,
anno_path,
num_joints,
transform=[],
shard=[0, 1],
test_mode=False):
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
transform, shard, test_mode)
ann_file = os.path.join(dataset_dir, anno_path)
self.coco = COCO(ann_file)
self.img_ids = self.coco.getImgIds()
if not test_mode:
self.img_ids = [
img_id for img_id in self.img_ids
if len(self.coco.getAnnIds(
imgIds=img_id, iscrowd=None)) > 0
]
blocknum = int(len(self.img_ids) / shard[1])
self.img_ids = self.img_ids[(blocknum * shard[0]):(blocknum * (shard[0]
+ 1))]
self.num_images = len(self.img_ids)
self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs)
self.dataset_name = 'crowdpose'
print('=> num_images: {}'.format(self.num_images))
@serializable
class KeypointTopDownBaseDataset(DetDataset):
"""Base class for top_down datasets.
All datasets should subclass it.
All subclasses should overwrite:
Methods:`_get_db`
Args:
dataset_dir (str): Root path to the dataset.
image_dir (str): Path to a directory where images are held.
anno_path (str): Relative path to the annotation file.
num_joints (int): keypoint numbers
transform (composed(operators)): A sequence of data transforms.
"""
def __init__(self,
dataset_dir,
image_dir,
anno_path,
num_joints,
transform=[]):
super().__init__(dataset_dir, image_dir, anno_path)
self.image_info = {}
self.ann_info = {}
self.img_prefix = os.path.join(dataset_dir, image_dir)
self.transform = transform
self.ann_info['num_joints'] = num_joints
self.db = []
def __len__(self):
"""Get dataset length."""
return len(self.db)
def _get_db(self):
"""Get a sample"""
raise NotImplementedError
def __getitem__(self, idx):
"""Prepare sample for training given the index."""
records = copy.deepcopy(self.db[idx])
records['image'] = cv2.imread(records['image_file'], cv2.IMREAD_COLOR |
cv2.IMREAD_IGNORE_ORIENTATION)
records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
records['score'] = records['score'] if 'score' in records else 1
records = self.transform(records)
# print('records', records)
return records
@register
@serializable
class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset):
"""COCO dataset for top-down pose estimation.
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
COCO keypoint indexes:
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
Args:
dataset_dir (str): Root path to the dataset.
image_dir (str): Path to a directory where images are held.
anno_path (str): Relative path to the annotation file.
num_joints (int): Keypoint numbers
trainsize (list):[w, h] Image target size
transform (composed(operators)): A sequence of data transforms.
bbox_file (str): Path to a detection bbox file
Default: None.
use_gt_bbox (bool): Whether to use ground truth bbox
Default: True.
pixel_std (int): The pixel std of the scale
Default: 200.
image_thre (float): The threshold to filter the detection box
Default: 0.0.
"""
def __init__(self,
dataset_dir,
image_dir,
anno_path,
num_joints,
trainsize,
transform=[],
bbox_file=None,
use_gt_bbox=True,
pixel_std=200,
image_thre=0.0):
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
transform)
self.bbox_file = bbox_file
self.use_gt_bbox = use_gt_bbox
self.trainsize = trainsize
self.pixel_std = pixel_std
self.image_thre = image_thre
self.dataset_name = 'coco'
def parse_dataset(self):
if self.use_gt_bbox:
self.db = self._load_coco_keypoint_annotations()
else:
self.db = self._load_coco_person_detection_results()
def _load_coco_keypoint_annotations(self):
coco = COCO(self.get_anno())
img_ids = coco.getImgIds()
gt_db = []
for index in img_ids:
im_ann = coco.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
file_name = im_ann['file_name']
im_id = int(im_ann["id"])
annIds = coco.getAnnIds(imgIds=index, iscrowd=False)
objs = coco.loadAnns(annIds)
valid_objs = []
for obj in objs:
x, y, w, h = obj['bbox']
x1 = np.max((0, x))
y1 = np.max((0, y))
x2 = np.min((width - 1, x1 + np.max((0, w - 1))))
y2 = np.min((height - 1, y1 + np.max((0, h - 1))))
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
obj['clean_bbox'] = [x1, y1, x2 - x1, y2 - y1]
valid_objs.append(obj)
objs = valid_objs
rec = []
for obj in objs:
if max(obj['keypoints']) == 0:
continue
joints = np.zeros(
(self.ann_info['num_joints'], 3), dtype=np.float)
joints_vis = np.zeros(
(self.ann_info['num_joints'], 3), dtype=np.float)
for ipt in range(self.ann_info['num_joints']):
joints[ipt, 0] = obj['keypoints'][ipt * 3 + 0]
joints[ipt, 1] = obj['keypoints'][ipt * 3 + 1]
joints[ipt, 2] = 0
t_vis = obj['keypoints'][ipt * 3 + 2]
if t_vis > 1:
t_vis = 1
joints_vis[ipt, 0] = t_vis
joints_vis[ipt, 1] = t_vis
joints_vis[ipt, 2] = 0
center, scale = self._box2cs(obj['clean_bbox'][:4])
rec.append({
'image_file': os.path.join(self.img_prefix, file_name),
'center': center,
'scale': scale,
'joints': joints,
'joints_vis': joints_vis,
'im_id': im_id,
})
gt_db.extend(rec)
return gt_db
def _box2cs(self, box):
x, y, w, h = box[:4]
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
aspect_ratio = self.trainsize[0] * 1.0 / self.trainsize[1]
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
scale = np.array(
[w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def _load_coco_person_detection_results(self):
all_boxes = None
bbox_file_path = os.path.join(self.dataset_dir, self.bbox_file)
with open(bbox_file_path, 'r') as f:
all_boxes = json.load(f)
if not all_boxes:
print('=> Load %s fail!' % bbox_file_path)
return None
kpt_db = []
for n_img in range(0, len(all_boxes)):
det_res = all_boxes[n_img]
if det_res['category_id'] != 1:
continue
file_name = det_res[
'filename'] if 'filename' in det_res else '%012d.jpg' % det_res[
'image_id']
img_name = os.path.join(self.img_prefix, file_name)
box = det_res['bbox']
score = det_res['score']
im_id = int(det_res['image_id'])
if score < self.image_thre:
continue
center, scale = self._box2cs(box)
joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float)
joints_vis = np.ones(
(self.ann_info['num_joints'], 3), dtype=np.float)
kpt_db.append({
'image_file': img_name,
'im_id': im_id,
'center': center,
'scale': scale,
'score': score,
'joints': joints,
'joints_vis': joints_vis,
})
return kpt_db
@register
@serializable
class KeypointTopDownMPIIDataset(KeypointTopDownBaseDataset):
"""MPII dataset for topdown pose estimation.
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
MPII keypoint indexes::
0: 'right_ankle',
1: 'right_knee',
2: 'right_hip',
3: 'left_hip',
4: 'left_knee',
5: 'left_ankle',
6: 'pelvis',
7: 'thorax',
8: 'upper_neck',
9: 'head_top',
10: 'right_wrist',
11: 'right_elbow',
12: 'right_shoulder',
13: 'left_shoulder',
14: 'left_elbow',
15: 'left_wrist',
Args:
dataset_dir (str): Root path to the dataset.
image_dir (str): Path to a directory where images are held.
anno_path (str): Relative path to the annotation file.
num_joints (int): Keypoint numbers
trainsize (list):[w, h] Image target size
transform (composed(operators)): A sequence of data transforms.
"""
def __init__(self,
dataset_dir,
image_dir,
anno_path,
num_joints,
transform=[]):
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
transform)
self.dataset_name = 'mpii'
def parse_dataset(self):
with open(self.get_anno()) as anno_file:
anno = json.load(anno_file)
gt_db = []
for a in anno:
image_name = a['image']
im_id = a['image_id'] if 'image_id' in a else int(
os.path.splitext(image_name)[0])
c = np.array(a['center'], dtype=np.float)
s = np.array([a['scale'], a['scale']], dtype=np.float)
# Adjust center/scale slightly to avoid cropping limbs
if c[0] != -1:
c[1] = c[1] + 15 * s[1]
s = s * 1.25
c = c - 1
joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float)
joints_vis = np.zeros(
(self.ann_info['num_joints'], 3), dtype=np.float)
if 'joints' in a:
joints_ = np.array(a['joints'])
joints_[:, 0:2] = joints_[:, 0:2] - 1
joints_vis_ = np.array(a['joints_vis'])
assert len(joints_) == self.ann_info[
'num_joints'], 'joint num diff: {} vs {}'.format(
len(joints_), self.ann_info['num_joints'])
joints[:, 0:2] = joints_[:, 0:2]
joints_vis[:, 0] = joints_vis_[:]
joints_vis[:, 1] = joints_vis_[:]
gt_db.append({
'image_file': os.path.join(self.img_prefix, image_name),
'im_id': im_id,
'center': c,
'scale': s,
'joints': joints,
'joints_vis': joints_vis
})
self.db = gt_db

View File

@ -0,0 +1,360 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import numpy as np
from collections import OrderedDict
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
from .dataset import DetDataset, _make_dataset, _is_valid_file
from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@register
@serializable
class MOTDataSet(DetDataset):
"""
Load dataset with MOT format.
Args:
dataset_dir (str): root directory for dataset.
image_lists (str|list): mot data image lists, muiti-source mot dataset.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
Notes:
MOT datasets root directory following this:
dataset/mot
|image_lists
| |caltech.train
| |caltech.val
| |mot16.train
| |mot17.train
| ......
|Caltech
|MOT17
|......
All the MOT datasets have the following structure:
Caltech
|images
| 00001.jpg
| | ...
| 0000N.jpg
labels_with_ids
00001.txt
| ...
0000N.txt
or
MOT17
|images
| train
| test
labels_with_ids
train
"""
def __init__(self,
dataset_dir=None,
image_lists=[],
data_fields=['image'],
sample_num=-1):
super(MOTDataSet, self).__init__(
dataset_dir=dataset_dir,
data_fields=data_fields,
sample_num=sample_num)
self.dataset_dir = dataset_dir
self.image_lists = image_lists
if isinstance(self.image_lists, str):
self.image_lists = [self.image_lists]
self.roidbs = None
self.cname2cid = None
def get_anno(self):
if self.image_lists == []:
return
# only used to get categories and metric
return os.path.join(self.dataset_dir, 'image_lists',
self.image_lists[0])
def parse_dataset(self):
self.img_files = OrderedDict()
self.img_start_index = OrderedDict()
self.label_files = OrderedDict()
self.tid_num = OrderedDict()
self.tid_start_index = OrderedDict()
img_index = 0
for data_name in self.image_lists:
# check every data image list
image_lists_dir = os.path.join(self.dataset_dir, 'image_lists')
assert os.path.isdir(image_lists_dir), \
"The {} is not a directory.".format(image_lists_dir)
list_path = os.path.join(image_lists_dir, data_name)
assert os.path.exists(list_path), \
"The list path {} does not exist.".format(list_path)
# record img_files, filter out empty ones
with open(list_path, 'r') as file:
self.img_files[data_name] = file.readlines()
self.img_files[data_name] = [
os.path.join(self.dataset_dir, x.strip())
for x in self.img_files[data_name]
]
self.img_files[data_name] = list(
filter(lambda x: len(x) > 0, self.img_files[data_name]))
self.img_start_index[data_name] = img_index
img_index += len(self.img_files[data_name])
# record label_files
self.label_files[data_name] = [
x.replace('images', 'labels_with_ids').replace(
'.png', '.txt').replace('.jpg', '.txt')
for x in self.img_files[data_name]
]
for data_name, label_paths in self.label_files.items():
max_index = -1
for lp in label_paths:
lb = np.loadtxt(lp)
if len(lb) < 1:
continue
if len(lb.shape) < 2:
img_max = lb[1]
else:
img_max = np.max(lb[:, 1])
if img_max > max_index:
max_index = img_max
self.tid_num[data_name] = int(max_index + 1)
last_index = 0
for i, (k, v) in enumerate(self.tid_num.items()):
self.tid_start_index[k] = last_index
last_index += v
self.total_identities = int(last_index + 1)
self.num_imgs_each_data = [len(x) for x in self.img_files.values()]
self.total_imgs = sum(self.num_imgs_each_data)
logger.info('=' * 80)
logger.info('MOT dataset summary: ')
logger.info(self.tid_num)
logger.info('total images: {}'.format(self.total_imgs))
logger.info('image start index: {}'.format(self.img_start_index))
logger.info('total identities: {}'.format(self.total_identities))
logger.info('identity start index: {}'.format(self.tid_start_index))
logger.info('=' * 80)
records = []
cname2cid = mot_label()
for img_index in range(self.total_imgs):
for i, (k, v) in enumerate(self.img_start_index.items()):
if img_index >= v:
data_name = list(self.label_files.keys())[i]
start_index = v
img_file = self.img_files[data_name][img_index - start_index]
lbl_file = self.label_files[data_name][img_index - start_index]
if not os.path.exists(img_file):
logger.warning('Illegal image file: {}, and it will be ignored'.
format(img_file))
continue
if not os.path.isfile(lbl_file):
logger.warning('Illegal label file: {}, and it will be ignored'.
format(lbl_file))
continue
labels = np.loadtxt(lbl_file, dtype=np.float32).reshape(-1, 6)
# each row in labels (N, 6) is [gt_class, gt_identity, cx, cy, w, h]
cx, cy = labels[:, 2], labels[:, 3]
w, h = labels[:, 4], labels[:, 5]
gt_bbox = np.stack((cx, cy, w, h)).T.astype('float32')
gt_class = labels[:, 0:1].astype('int32')
gt_score = np.ones((len(labels), 1)).astype('float32')
gt_ide = labels[:, 1:2].astype('int32')
for i, _ in enumerate(gt_ide):
if gt_ide[i] > -1:
gt_ide[i] += self.tid_start_index[data_name]
mot_rec = {
'im_file': img_file,
'im_id': img_index,
} if 'image' in self.data_fields else {}
gt_rec = {
'gt_class': gt_class,
'gt_score': gt_score,
'gt_bbox': gt_bbox,
'gt_ide': gt_ide,
}
for k, v in gt_rec.items():
if k in self.data_fields:
mot_rec[k] = v
records.append(mot_rec)
if self.sample_num > 0 and img_index >= self.sample_num:
break
assert len(records) > 0, 'not found any mot record in %s' % (
self.image_lists)
self.roidbs, self.cname2cid = records, cname2cid
def mot_label():
labels_map = {'person': 0}
return labels_map
@register
@serializable
class MOTImageFolder(DetDataset):
def __init__(self,
task,
dataset_dir=None,
data_root=None,
image_dir=None,
sample_num=-1,
keep_ori_im=False,
**kwargs):
super(MOTImageFolder, self).__init__(
dataset_dir, image_dir, sample_num=sample_num)
self.task = task
self.data_root = data_root
self.keep_ori_im = keep_ori_im
self._imid2path = {}
self.roidbs = None
def check_or_download_dataset(self):
return
def parse_dataset(self, ):
if not self.roidbs:
self.roidbs = self._load_images()
def _parse(self):
image_dir = self.image_dir
if not isinstance(image_dir, Sequence):
image_dir = [image_dir]
images = []
for im_dir in image_dir:
if os.path.isdir(im_dir):
im_dir = os.path.join(self.dataset_dir, im_dir)
images.extend(_make_dataset(im_dir))
elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
images.append(im_dir)
return images
def _load_images(self):
images = self._parse()
ct = 0
records = []
for image in images:
assert image != '' and os.path.isfile(image), \
"Image {} not found".format(image)
if self.sample_num > 0 and ct >= self.sample_num:
break
rec = {'im_id': np.array([ct]), 'im_file': image}
if self.keep_ori_im:
rec.update({'keep_ori_im': 1})
self._imid2path[ct] = image
ct += 1
records.append(rec)
assert len(records) > 0, "No image file found"
return records
def get_imid2path(self):
return self._imid2path
def set_images(self, images):
self.image_dir = images
self.roidbs = self._load_images()
def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', 'flv')):
return f.lower().endswith(extensions)
@register
@serializable
class MOTVideoDataset(DetDataset):
"""
Load MOT dataset with MOT format from video for inference.
Args:
video_file (str): path of the video file
dataset_dir (str): root directory for dataset.
keep_ori_im (bool): whether to keep original image, default False.
Set True when used during MOT model inference while saving
images or video, or used in DeepSORT.
"""
def __init__(self,
video_file='',
dataset_dir=None,
keep_ori_im=False,
**kwargs):
super(MOTVideoDataset, self).__init__(dataset_dir=dataset_dir)
self.video_file = video_file
self.dataset_dir = dataset_dir
self.keep_ori_im = keep_ori_im
self.roidbs = None
def parse_dataset(self, ):
if not self.roidbs:
self.roidbs = self._load_video_images()
def _load_video_images(self):
self.cap = cv2.VideoCapture(self.video_file)
self.vn = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
self.frame_rate = int(round(self.cap.get(cv2.CAP_PROP_FPS)))
logger.info('Length of the video: {:d} frames'.format(self.vn))
res = True
ct = 0
records = []
while res:
res, img = self.cap.read()
image = np.ascontiguousarray(img, dtype=np.float32)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
im_shape = image.shape
rec = {
'im_id': np.array([ct]),
'image': image,
'h': im_shape[0],
'w': im_shape[1],
'im_shape': np.array(
im_shape[:2], dtype=np.float32),
'scale_factor': np.array(
[1., 1.], dtype=np.float32),
}
if self.keep_ori_im:
rec.update({'ori_image': image})
ct += 1
records.append(rec)
records = records[:-1]
assert len(records) > 0, "No image file found"
return records
def set_video(self, video_file):
self.video_file = video_file
assert os.path.isfile(self.video_file) and _is_valid_video(self.video_file), \
"wrong or unsupported file format: {}".format(self.video_file)
self.roidbs = self._load_video_images()

View File

@ -0,0 +1,205 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import xml.etree.ElementTree as ET
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@register
@serializable
class VOCDataSet(DetDataset):
"""
Load dataset with PascalVOC format.
Notes:
`anno_path` must contains xml file and image file path for annotations.
Args:
dataset_dir (str): root directory for dataset.
image_dir (str): directory for images.
anno_path (str): voc annotation file path.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
label_list (str): if use_default_label is False, will load
mapping between category and class index.
"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
label_list=None):
super(VOCDataSet, self).__init__(
dataset_dir=dataset_dir,
image_dir=image_dir,
anno_path=anno_path,
data_fields=data_fields,
sample_num=sample_num)
self.label_list = label_list
def parse_dataset(self, ):
anno_path = os.path.join(self.dataset_dir, self.anno_path)
image_dir = os.path.join(self.dataset_dir, self.image_dir)
# mapping category name to class id
# first_class:0, second_class:1, ...
records = []
ct = 0
cname2cid = {}
if self.label_list:
label_path = os.path.join(self.dataset_dir, self.label_list)
if not os.path.exists(label_path):
raise ValueError("label_list {} does not exists".format(
label_path))
with open(label_path, 'r') as fr:
label_id = 0
for line in fr.readlines():
cname2cid[line.strip()] = label_id
label_id += 1
else:
cname2cid = pascalvoc_label()
with open(anno_path, 'r') as fr:
while True:
line = fr.readline()
if not line:
break
img_file, xml_file = [os.path.join(image_dir, x) \
for x in line.strip().split()[:2]]
if not os.path.exists(img_file):
logger.warning(
'Illegal image file: {}, and it will be ignored'.format(
img_file))
continue
if not os.path.isfile(xml_file):
logger.warning(
'Illegal xml file: {}, and it will be ignored'.format(
xml_file))
continue
tree = ET.parse(xml_file)
if tree.find('id') is None:
im_id = np.array([ct])
else:
im_id = np.array([int(tree.find('id').text)])
objs = tree.findall('object')
im_w = float(tree.find('size').find('width').text)
im_h = float(tree.find('size').find('height').text)
if im_w < 0 or im_h < 0:
logger.warning(
'Illegal width: {} or height: {} in annotation, '
'and {} will be ignored'.format(im_w, im_h, xml_file))
continue
gt_bbox = []
gt_class = []
gt_score = []
difficult = []
for i, obj in enumerate(objs):
cname = obj.find('name').text
# user dataset may not contain difficult field
_difficult = obj.find('difficult')
_difficult = int(
_difficult.text) if _difficult is not None else 0
x1 = float(obj.find('bndbox').find('xmin').text)
y1 = float(obj.find('bndbox').find('ymin').text)
x2 = float(obj.find('bndbox').find('xmax').text)
y2 = float(obj.find('bndbox').find('ymax').text)
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(im_w - 1, x2)
y2 = min(im_h - 1, y2)
if x2 > x1 and y2 > y1:
gt_bbox.append([x1, y1, x2, y2])
gt_class.append([cname2cid[cname]])
gt_score.append([1.])
difficult.append([_difficult])
else:
logger.warning(
'Found an invalid bbox in annotations: xml_file: {}'
', x1: {}, y1: {}, x2: {}, y2: {}.'.format(
xml_file, x1, y1, x2, y2))
gt_bbox = np.array(gt_bbox).astype('float32')
gt_class = np.array(gt_class).astype('int32')
gt_score = np.array(gt_score).astype('float32')
difficult = np.array(difficult).astype('int32')
voc_rec = {
'im_file': img_file,
'im_id': im_id,
'h': im_h,
'w': im_w
} if 'image' in self.data_fields else {}
gt_rec = {
'gt_class': gt_class,
'gt_score': gt_score,
'gt_bbox': gt_bbox,
'difficult': difficult
}
for k, v in gt_rec.items():
if k in self.data_fields:
voc_rec[k] = v
if len(objs) != 0:
records.append(voc_rec)
ct += 1
if self.sample_num > 0 and ct >= self.sample_num:
break
assert len(records) > 0, 'not found any voc record in %s' % (
self.anno_path)
logger.debug('{} samples in file {}'.format(ct, anno_path))
self.roidbs, self.cname2cid = records, cname2cid
def get_label_list(self):
return os.path.join(self.dataset_dir, self.label_list)
def pascalvoc_label():
labels_map = {
'aeroplane': 0,
'bicycle': 1,
'bird': 2,
'boat': 3,
'bottle': 4,
'bus': 5,
'car': 6,
'cat': 7,
'chair': 8,
'cow': 9,
'diningtable': 10,
'dog': 11,
'horse': 12,
'motorbike': 13,
'person': 14,
'pottedplant': 15,
'sheep': 16,
'sofa': 17,
'train': 18,
'tvmonitor': 19
}
return labels_map

View File

@ -0,0 +1,180 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@register
@serializable
class WIDERFaceDataSet(DetDataset):
"""
Load WiderFace records with 'anno_path'
Args:
dataset_dir (str): root directory for dataset.
image_dir (str): directory for images.
anno_path (str): WiderFace annotation data.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
with_lmk (bool): whether to load face landmark keypoint labels.
"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
with_lmk=False):
super(WIDERFaceDataSet, self).__init__(
dataset_dir=dataset_dir,
image_dir=image_dir,
anno_path=anno_path,
data_fields=data_fields,
sample_num=sample_num,
with_lmk=with_lmk)
self.anno_path = anno_path
self.sample_num = sample_num
self.roidbs = None
self.cname2cid = None
self.with_lmk = with_lmk
def parse_dataset(self):
anno_path = os.path.join(self.dataset_dir, self.anno_path)
image_dir = os.path.join(self.dataset_dir, self.image_dir)
txt_file = anno_path
records = []
ct = 0
file_lists = self._load_file_list(txt_file)
cname2cid = widerface_label()
for item in file_lists:
im_fname = item[0]
im_id = np.array([ct])
gt_bbox = np.zeros((len(item) - 1, 4), dtype=np.float32)
gt_class = np.zeros((len(item) - 1, 1), dtype=np.int32)
gt_lmk_labels = np.zeros((len(item) - 1, 10), dtype=np.float32)
lmk_ignore_flag = np.zeros((len(item) - 1, 1), dtype=np.int32)
for index_box in range(len(item)):
if index_box < 1:
continue
gt_bbox[index_box - 1] = item[index_box][0]
if self.with_lmk:
gt_lmk_labels[index_box - 1] = item[index_box][1]
lmk_ignore_flag[index_box - 1] = item[index_box][2]
im_fname = os.path.join(image_dir,
im_fname) if image_dir else im_fname
widerface_rec = {
'im_file': im_fname,
'im_id': im_id,
} if 'image' in self.data_fields else {}
gt_rec = {
'gt_bbox': gt_bbox,
'gt_class': gt_class,
}
for k, v in gt_rec.items():
if k in self.data_fields:
widerface_rec[k] = v
if self.with_lmk:
widerface_rec['gt_keypoint'] = gt_lmk_labels
widerface_rec['keypoint_ignore'] = lmk_ignore_flag
if len(item) != 0:
records.append(widerface_rec)
ct += 1
if self.sample_num > 0 and ct >= self.sample_num:
break
assert len(records) > 0, 'not found any widerface in %s' % (anno_path)
logger.debug('{} samples in file {}'.format(ct, anno_path))
self.roidbs, self.cname2cid = records, cname2cid
def _load_file_list(self, input_txt):
with open(input_txt, 'r') as f_dir:
lines_input_txt = f_dir.readlines()
file_dict = {}
num_class = 0
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for i in range(len(lines_input_txt)):
line_txt = lines_input_txt[i].strip('\n\t\r')
split_str = line_txt.split(' ')
if len(split_str) == 1:
img_file_name = os.path.split(split_str[0])[1]
split_txt = img_file_name.split('.')
if len(split_txt) < 2:
continue
elif split_txt[-1] in exts:
if i != 0:
num_class += 1
file_dict[num_class] = [line_txt]
else:
if len(line_txt) <= 6:
continue
result_boxs = []
xmin = float(split_str[0])
ymin = float(split_str[1])
w = float(split_str[2])
h = float(split_str[3])
# Filter out wrong labels
if w < 0 or h < 0:
logger.warning('Illegal box with w: {}, h: {} in '
'img: {}, and it will be ignored'.format(
w, h, file_dict[num_class][0]))
continue
xmin = max(0, xmin)
ymin = max(0, ymin)
xmax = xmin + w
ymax = ymin + h
gt_bbox = [xmin, ymin, xmax, ymax]
result_boxs.append(gt_bbox)
if self.with_lmk:
assert len(split_str) > 18, 'When `with_lmk=True`, the number' \
'of characters per line in the annotation file should' \
'exceed 18.'
lmk0_x = float(split_str[5])
lmk0_y = float(split_str[6])
lmk1_x = float(split_str[8])
lmk1_y = float(split_str[9])
lmk2_x = float(split_str[11])
lmk2_y = float(split_str[12])
lmk3_x = float(split_str[14])
lmk3_y = float(split_str[15])
lmk4_x = float(split_str[17])
lmk4_y = float(split_str[18])
lmk_ignore_flag = 0 if lmk0_x == -1 else 1
gt_lmk_label = [
lmk0_x, lmk0_y, lmk1_x, lmk1_y, lmk2_x, lmk2_y, lmk3_x,
lmk3_y, lmk4_x, lmk4_y
]
result_boxs.append(gt_lmk_label)
result_boxs.append(lmk_ignore_flag)
file_dict[num_class].append(result_boxs)
return list(file_dict.values())
def widerface_label():
labels_map = {'face': 0}
return labels_map

View File

@ -0,0 +1,28 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import operators
from . import batch_operators
from . import keypoint_operators
from . import mot_operators
from .operators import *
from .batch_operators import *
from .keypoint_operators import *
from .mot_operators import *
__all__ = []
__all__ += registered_ops
__all__ += keypoint_operators.__all__
__all__ += mot_operators.__all__

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,748 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
import cv2
import numpy as np
from .operators import register_op, BaseOperator, Resize
from .op_helper import jaccard_overlap, gaussian2D
from scipy import ndimage
from ppdet.modeling import bbox_utils
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'PadBatch', 'BatchRandomResize', 'Gt2YoloTarget', 'Gt2FCOSTarget',
'Gt2TTFTarget', 'Gt2Solov2Target'
]
@register_op
class PadBatch(BaseOperator):
"""
Pad a batch of samples so they can be divisible by a stride.
The layout of each image should be 'CHW'.
Args:
pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
height and width is divisible by `pad_to_stride`.
"""
def __init__(self, pad_to_stride=0):
super(PadBatch, self).__init__()
self.pad_to_stride = pad_to_stride
def __call__(self, samples, context=None):
"""
Args:
samples (list): a batch of sample, each is dict.
"""
coarsest_stride = self.pad_to_stride
max_shape = np.array([data['image'].shape for data in samples]).max(
axis=0)
if coarsest_stride > 0:
max_shape[1] = int(
np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
max_shape[2] = int(
np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)
for data in samples:
im = data['image']
im_c, im_h, im_w = im.shape[:]
padding_im = np.zeros(
(im_c, max_shape[1], max_shape[2]), dtype=np.float32)
padding_im[:, :im_h, :im_w] = im
data['image'] = padding_im
if 'semantic' in data and data['semantic'] is not None:
semantic = data['semantic']
padding_sem = np.zeros(
(1, max_shape[1], max_shape[2]), dtype=np.float32)
padding_sem[:, :im_h, :im_w] = semantic
data['semantic'] = padding_sem
if 'gt_segm' in data and data['gt_segm'] is not None:
gt_segm = data['gt_segm']
padding_segm = np.zeros(
(gt_segm.shape[0], max_shape[1], max_shape[2]),
dtype=np.uint8)
padding_segm[:, :im_h, :im_w] = gt_segm
data['gt_segm'] = padding_segm
if 'gt_rbox2poly' in data and data['gt_rbox2poly'] is not None:
# ploy to rbox
polys = data['gt_rbox2poly']
rbox = bbox_utils.poly2rbox(polys)
data['gt_rbox'] = rbox
return samples
@register_op
class BatchRandomResize(BaseOperator):
"""
Resize image to target size randomly. random target_size and interpolation method
Args:
target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
keep_ratio (bool): whether keep_raio or not, default true
interp (int): the interpolation method
random_size (bool): whether random select target size of image
random_interp (bool): whether random select interpolation method
"""
def __init__(self,
target_size,
keep_ratio,
interp=cv2.INTER_NEAREST,
random_size=True,
random_interp=False):
super(BatchRandomResize, self).__init__()
self.keep_ratio = keep_ratio
self.interps = [
cv2.INTER_NEAREST,
cv2.INTER_LINEAR,
cv2.INTER_AREA,
cv2.INTER_CUBIC,
cv2.INTER_LANCZOS4,
]
self.interp = interp
assert isinstance(target_size, (
int, Sequence)), "target_size must be int, list or tuple"
if random_size and not isinstance(target_size, list):
raise TypeError(
"Type of target_size is invalid when random_size is True. Must be List, now is {}".
format(type(target_size)))
self.target_size = target_size
self.random_size = random_size
self.random_interp = random_interp
def __call__(self, samples, context=None):
if self.random_size:
index = np.random.choice(len(self.target_size))
target_size = self.target_size[index]
else:
target_size = self.target_size
if self.random_interp:
interp = np.random.choice(self.interps)
else:
interp = self.interp
resizer = Resize(target_size, keep_ratio=self.keep_ratio, interp=interp)
return resizer(samples, context=context)
@register_op
class Gt2YoloTarget(BaseOperator):
"""
Generate YOLOv3 targets by groud truth data, this operator is only used in
fine grained YOLOv3 loss mode
"""
def __init__(self,
anchors,
anchor_masks,
downsample_ratios,
num_classes=80,
iou_thresh=1.):
super(Gt2YoloTarget, self).__init__()
self.anchors = anchors
self.anchor_masks = anchor_masks
self.downsample_ratios = downsample_ratios
self.num_classes = num_classes
self.iou_thresh = iou_thresh
def __call__(self, samples, context=None):
assert len(self.anchor_masks) == len(self.downsample_ratios), \
"anchor_masks', and 'downsample_ratios' should have same length."
h, w = samples[0]['image'].shape[1:3]
an_hw = np.array(self.anchors) / np.array([[w, h]])
for sample in samples:
# im, gt_bbox, gt_class, gt_score = sample
im = sample['image']
gt_bbox = sample['gt_bbox']
gt_class = sample['gt_class']
if 'gt_score' not in sample:
sample['gt_score'] = np.ones(
(gt_bbox.shape[0], 1), dtype=np.float32)
gt_score = sample['gt_score']
for i, (
mask, downsample_ratio
) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
grid_h = int(h / downsample_ratio)
grid_w = int(w / downsample_ratio)
target = np.zeros(
(len(mask), 6 + self.num_classes, grid_h, grid_w),
dtype=np.float32)
for b in range(gt_bbox.shape[0]):
gx, gy, gw, gh = gt_bbox[b, :]
cls = gt_class[b]
score = gt_score[b]
if gw <= 0. or gh <= 0. or score <= 0.:
continue
# find best match anchor index
best_iou = 0.
best_idx = -1
for an_idx in range(an_hw.shape[0]):
iou = jaccard_overlap(
[0., 0., gw, gh],
[0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
if iou > best_iou:
best_iou = iou
best_idx = an_idx
gi = int(gx * grid_w)
gj = int(gy * grid_h)
# gtbox should be regresed in this layes if best match
# anchor index in anchor mask of this layer
if best_idx in mask:
best_n = mask.index(best_idx)
# x, y, w, h, scale
target[best_n, 0, gj, gi] = gx * grid_w - gi
target[best_n, 1, gj, gi] = gy * grid_h - gj
target[best_n, 2, gj, gi] = np.log(
gw * w / self.anchors[best_idx][0])
target[best_n, 3, gj, gi] = np.log(
gh * h / self.anchors[best_idx][1])
target[best_n, 4, gj, gi] = 2.0 - gw * gh
# objectness record gt_score
target[best_n, 5, gj, gi] = score
# classification
target[best_n, 6 + cls, gj, gi] = 1.
# For non-matched anchors, calculate the target if the iou
# between anchor and gt is larger than iou_thresh
if self.iou_thresh < 1:
for idx, mask_i in enumerate(mask):
if mask_i == best_idx: continue
iou = jaccard_overlap(
[0., 0., gw, gh],
[0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
if iou > self.iou_thresh and target[idx, 5, gj,
gi] == 0.:
# x, y, w, h, scale
target[idx, 0, gj, gi] = gx * grid_w - gi
target[idx, 1, gj, gi] = gy * grid_h - gj
target[idx, 2, gj, gi] = np.log(
gw * w / self.anchors[mask_i][0])
target[idx, 3, gj, gi] = np.log(
gh * h / self.anchors[mask_i][1])
target[idx, 4, gj, gi] = 2.0 - gw * gh
# objectness record gt_score
target[idx, 5, gj, gi] = score
# classification
target[idx, 6 + cls, gj, gi] = 1.
sample['target{}'.format(i)] = target
# remove useless gt_class and gt_score after target calculated
sample.pop('gt_class')
sample.pop('gt_score')
return samples
@register_op
class Gt2FCOSTarget(BaseOperator):
"""
Generate FCOS targets by groud truth data
"""
def __init__(self,
object_sizes_boundary,
center_sampling_radius,
downsample_ratios,
norm_reg_targets=False):
super(Gt2FCOSTarget, self).__init__()
self.center_sampling_radius = center_sampling_radius
self.downsample_ratios = downsample_ratios
self.INF = np.inf
self.object_sizes_boundary = [-1] + object_sizes_boundary + [self.INF]
object_sizes_of_interest = []
for i in range(len(self.object_sizes_boundary) - 1):
object_sizes_of_interest.append([
self.object_sizes_boundary[i], self.object_sizes_boundary[i + 1]
])
self.object_sizes_of_interest = object_sizes_of_interest
self.norm_reg_targets = norm_reg_targets
def _compute_points(self, w, h):
"""
compute the corresponding points in each feature map
:param h: image height
:param w: image width
:return: points from all feature map
"""
locations = []
for stride in self.downsample_ratios:
shift_x = np.arange(0, w, stride).astype(np.float32)
shift_y = np.arange(0, h, stride).astype(np.float32)
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shift_x = shift_x.flatten()
shift_y = shift_y.flatten()
location = np.stack([shift_x, shift_y], axis=1) + stride // 2
locations.append(location)
num_points_each_level = [len(location) for location in locations]
locations = np.concatenate(locations, axis=0)
return locations, num_points_each_level
def _convert_xywh2xyxy(self, gt_bbox, w, h):
"""
convert the bounding box from style xywh to xyxy
:param gt_bbox: bounding boxes normalized into [0, 1]
:param w: image width
:param h: image height
:return: bounding boxes in xyxy style
"""
bboxes = gt_bbox.copy()
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * w
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * h
bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
return bboxes
def _check_inside_boxes_limited(self, gt_bbox, xs, ys,
num_points_each_level):
"""
check if points is within the clipped boxes
:param gt_bbox: bounding boxes
:param xs: horizontal coordinate of points
:param ys: vertical coordinate of points
:return: the mask of points is within gt_box or not
"""
bboxes = np.reshape(
gt_bbox, newshape=[1, gt_bbox.shape[0], gt_bbox.shape[1]])
bboxes = np.tile(bboxes, reps=[xs.shape[0], 1, 1])
ct_x = (bboxes[:, :, 0] + bboxes[:, :, 2]) / 2
ct_y = (bboxes[:, :, 1] + bboxes[:, :, 3]) / 2
beg = 0
clipped_box = bboxes.copy()
for lvl, stride in enumerate(self.downsample_ratios):
end = beg + num_points_each_level[lvl]
stride_exp = self.center_sampling_radius * stride
clipped_box[beg:end, :, 0] = np.maximum(
bboxes[beg:end, :, 0], ct_x[beg:end, :] - stride_exp)
clipped_box[beg:end, :, 1] = np.maximum(
bboxes[beg:end, :, 1], ct_y[beg:end, :] - stride_exp)
clipped_box[beg:end, :, 2] = np.minimum(
bboxes[beg:end, :, 2], ct_x[beg:end, :] + stride_exp)
clipped_box[beg:end, :, 3] = np.minimum(
bboxes[beg:end, :, 3], ct_y[beg:end, :] + stride_exp)
beg = end
l_res = xs - clipped_box[:, :, 0]
r_res = clipped_box[:, :, 2] - xs
t_res = ys - clipped_box[:, :, 1]
b_res = clipped_box[:, :, 3] - ys
clipped_box_reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
inside_gt_box = np.min(clipped_box_reg_targets, axis=2) > 0
return inside_gt_box
def __call__(self, samples, context=None):
assert len(self.object_sizes_of_interest) == len(self.downsample_ratios), \
"object_sizes_of_interest', and 'downsample_ratios' should have same length."
for sample in samples:
# im, gt_bbox, gt_class, gt_score = sample
im = sample['image']
bboxes = sample['gt_bbox']
gt_class = sample['gt_class']
# calculate the locations
h, w = im.shape[1:3]
points, num_points_each_level = self._compute_points(w, h)
object_scale_exp = []
for i, num_pts in enumerate(num_points_each_level):
object_scale_exp.append(
np.tile(
np.array([self.object_sizes_of_interest[i]]),
reps=[num_pts, 1]))
object_scale_exp = np.concatenate(object_scale_exp, axis=0)
gt_area = (bboxes[:, 2] - bboxes[:, 0]) * (
bboxes[:, 3] - bboxes[:, 1])
xs, ys = points[:, 0], points[:, 1]
xs = np.reshape(xs, newshape=[xs.shape[0], 1])
xs = np.tile(xs, reps=[1, bboxes.shape[0]])
ys = np.reshape(ys, newshape=[ys.shape[0], 1])
ys = np.tile(ys, reps=[1, bboxes.shape[0]])
l_res = xs - bboxes[:, 0]
r_res = bboxes[:, 2] - xs
t_res = ys - bboxes[:, 1]
b_res = bboxes[:, 3] - ys
reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
if self.center_sampling_radius > 0:
is_inside_box = self._check_inside_boxes_limited(
bboxes, xs, ys, num_points_each_level)
else:
is_inside_box = np.min(reg_targets, axis=2) > 0
# check if the targets is inside the corresponding level
max_reg_targets = np.max(reg_targets, axis=2)
lower_bound = np.tile(
np.expand_dims(
object_scale_exp[:, 0], axis=1),
reps=[1, max_reg_targets.shape[1]])
high_bound = np.tile(
np.expand_dims(
object_scale_exp[:, 1], axis=1),
reps=[1, max_reg_targets.shape[1]])
is_match_current_level = \
(max_reg_targets > lower_bound) & \
(max_reg_targets < high_bound)
points2gtarea = np.tile(
np.expand_dims(
gt_area, axis=0), reps=[xs.shape[0], 1])
points2gtarea[is_inside_box == 0] = self.INF
points2gtarea[is_match_current_level == 0] = self.INF
points2min_area = points2gtarea.min(axis=1)
points2min_area_ind = points2gtarea.argmin(axis=1)
labels = gt_class[points2min_area_ind] + 1
labels[points2min_area == self.INF] = 0
reg_targets = reg_targets[range(xs.shape[0]), points2min_area_ind]
ctn_targets = np.sqrt((reg_targets[:, [0, 2]].min(axis=1) / \
reg_targets[:, [0, 2]].max(axis=1)) * \
(reg_targets[:, [1, 3]].min(axis=1) / \
reg_targets[:, [1, 3]].max(axis=1))).astype(np.float32)
ctn_targets = np.reshape(
ctn_targets, newshape=[ctn_targets.shape[0], 1])
ctn_targets[labels <= 0] = 0
pos_ind = np.nonzero(labels != 0)
reg_targets_pos = reg_targets[pos_ind[0], :]
split_sections = []
beg = 0
for lvl in range(len(num_points_each_level)):
end = beg + num_points_each_level[lvl]
split_sections.append(end)
beg = end
labels_by_level = np.split(labels, split_sections, axis=0)
reg_targets_by_level = np.split(reg_targets, split_sections, axis=0)
ctn_targets_by_level = np.split(ctn_targets, split_sections, axis=0)
for lvl in range(len(self.downsample_ratios)):
grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
if self.norm_reg_targets:
sample['reg_target{}'.format(lvl)] = \
np.reshape(
reg_targets_by_level[lvl] / \
self.downsample_ratios[lvl],
newshape=[grid_h, grid_w, 4])
else:
sample['reg_target{}'.format(lvl)] = np.reshape(
reg_targets_by_level[lvl],
newshape=[grid_h, grid_w, 4])
sample['labels{}'.format(lvl)] = np.reshape(
labels_by_level[lvl], newshape=[grid_h, grid_w, 1])
sample['centerness{}'.format(lvl)] = np.reshape(
ctn_targets_by_level[lvl], newshape=[grid_h, grid_w, 1])
sample.pop('is_crowd', None)
sample.pop('difficult', None)
sample.pop('gt_class', None)
sample.pop('gt_bbox', None)
return samples
@register_op
class Gt2TTFTarget(BaseOperator):
__shared__ = ['num_classes']
"""
Gt2TTFTarget
Generate TTFNet targets by ground truth data
Args:
num_classes(int): the number of classes.
down_ratio(int): the down ratio from images to heatmap, 4 by default.
alpha(float): the alpha parameter to generate gaussian target.
0.54 by default.
"""
def __init__(self, num_classes=80, down_ratio=4, alpha=0.54):
super(Gt2TTFTarget, self).__init__()
self.down_ratio = down_ratio
self.num_classes = num_classes
self.alpha = alpha
def __call__(self, samples, context=None):
output_size = samples[0]['image'].shape[1]
feat_size = output_size // self.down_ratio
for sample in samples:
heatmap = np.zeros(
(self.num_classes, feat_size, feat_size), dtype='float32')
box_target = np.ones(
(4, feat_size, feat_size), dtype='float32') * -1
reg_weight = np.zeros((1, feat_size, feat_size), dtype='float32')
gt_bbox = sample['gt_bbox']
gt_class = sample['gt_class']
bbox_w = gt_bbox[:, 2] - gt_bbox[:, 0] + 1
bbox_h = gt_bbox[:, 3] - gt_bbox[:, 1] + 1
area = bbox_w * bbox_h
boxes_areas_log = np.log(area)
boxes_ind = np.argsort(boxes_areas_log, axis=0)[::-1]
boxes_area_topk_log = boxes_areas_log[boxes_ind]
gt_bbox = gt_bbox[boxes_ind]
gt_class = gt_class[boxes_ind]
feat_gt_bbox = gt_bbox / self.down_ratio
feat_gt_bbox = np.clip(feat_gt_bbox, 0, feat_size - 1)
feat_hs, feat_ws = (feat_gt_bbox[:, 3] - feat_gt_bbox[:, 1],
feat_gt_bbox[:, 2] - feat_gt_bbox[:, 0])
ct_inds = np.stack(
[(gt_bbox[:, 0] + gt_bbox[:, 2]) / 2,
(gt_bbox[:, 1] + gt_bbox[:, 3]) / 2],
axis=1) / self.down_ratio
h_radiuses_alpha = (feat_hs / 2. * self.alpha).astype('int32')
w_radiuses_alpha = (feat_ws / 2. * self.alpha).astype('int32')
for k in range(len(gt_bbox)):
cls_id = gt_class[k]
fake_heatmap = np.zeros((feat_size, feat_size), dtype='float32')
self.draw_truncate_gaussian(fake_heatmap, ct_inds[k],
h_radiuses_alpha[k],
w_radiuses_alpha[k])
heatmap[cls_id] = np.maximum(heatmap[cls_id], fake_heatmap)
box_target_inds = fake_heatmap > 0
box_target[:, box_target_inds] = gt_bbox[k][:, None]
local_heatmap = fake_heatmap[box_target_inds]
ct_div = np.sum(local_heatmap)
local_heatmap *= boxes_area_topk_log[k]
reg_weight[0, box_target_inds] = local_heatmap / ct_div
sample['ttf_heatmap'] = heatmap
sample['ttf_box_target'] = box_target
sample['ttf_reg_weight'] = reg_weight
sample.pop('is_crowd', None)
sample.pop('difficult', None)
sample.pop('gt_class', None)
sample.pop('gt_bbox', None)
sample.pop('gt_score', None)
return samples
def draw_truncate_gaussian(self, heatmap, center, h_radius, w_radius):
h, w = 2 * h_radius + 1, 2 * w_radius + 1
sigma_x = w / 6
sigma_y = h / 6
gaussian = gaussian2D((h, w), sigma_x, sigma_y)
x, y = int(center[0]), int(center[1])
height, width = heatmap.shape[0:2]
left, right = min(x, w_radius), min(width - x, w_radius + 1)
top, bottom = min(y, h_radius), min(height - y, h_radius + 1)
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
masked_gaussian = gaussian[h_radius - top:h_radius + bottom, w_radius -
left:w_radius + right]
if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
heatmap[y - top:y + bottom, x - left:x + right] = np.maximum(
masked_heatmap, masked_gaussian)
return heatmap
@register_op
class Gt2Solov2Target(BaseOperator):
"""Assign mask target and labels in SOLOv2 network.
Args:
num_grids (list): The list of feature map grids size.
scale_ranges (list): The list of mask boundary range.
coord_sigma (float): The coefficient of coordinate area length.
sampling_ratio (float): The ratio of down sampling.
"""
def __init__(self,
num_grids=[40, 36, 24, 16, 12],
scale_ranges=[[1, 96], [48, 192], [96, 384], [192, 768],
[384, 2048]],
coord_sigma=0.2,
sampling_ratio=4.0):
super(Gt2Solov2Target, self).__init__()
self.num_grids = num_grids
self.scale_ranges = scale_ranges
self.coord_sigma = coord_sigma
self.sampling_ratio = sampling_ratio
def _scale_size(self, im, scale):
h, w = im.shape[:2]
new_size = (int(w * float(scale) + 0.5), int(h * float(scale) + 0.5))
resized_img = cv2.resize(
im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
return resized_img
def __call__(self, samples, context=None):
sample_id = 0
max_ins_num = [0] * len(self.num_grids)
for sample in samples:
gt_bboxes_raw = sample['gt_bbox']
gt_labels_raw = sample['gt_class'] + 1
im_c, im_h, im_w = sample['image'].shape[:]
gt_masks_raw = sample['gt_segm'].astype(np.uint8)
mask_feat_size = [
int(im_h / self.sampling_ratio), int(im_w / self.sampling_ratio)
]
gt_areas = np.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
(gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
ins_ind_label_list = []
idx = 0
for (lower_bound, upper_bound), num_grid \
in zip(self.scale_ranges, self.num_grids):
hit_indices = ((gt_areas >= lower_bound) &
(gt_areas <= upper_bound)).nonzero()[0]
num_ins = len(hit_indices)
ins_label = []
grid_order = []
cate_label = np.zeros([num_grid, num_grid], dtype=np.int64)
ins_ind_label = np.zeros([num_grid**2], dtype=np.bool)
if num_ins == 0:
ins_label = np.zeros(
[1, mask_feat_size[0], mask_feat_size[1]],
dtype=np.uint8)
ins_ind_label_list.append(ins_ind_label)
sample['cate_label{}'.format(idx)] = cate_label.flatten()
sample['ins_label{}'.format(idx)] = ins_label
sample['grid_order{}'.format(idx)] = np.asarray(
[sample_id * num_grid * num_grid + 0], dtype=np.int32)
idx += 1
continue
gt_bboxes = gt_bboxes_raw[hit_indices]
gt_labels = gt_labels_raw[hit_indices]
gt_masks = gt_masks_raw[hit_indices, ...]
half_ws = 0.5 * (
gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.coord_sigma
half_hs = 0.5 * (
gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.coord_sigma
for seg_mask, gt_label, half_h, half_w in zip(
gt_masks, gt_labels, half_hs, half_ws):
if seg_mask.sum() == 0:
continue
# mass center
upsampled_size = (mask_feat_size[0] * 4,
mask_feat_size[1] * 4)
center_h, center_w = ndimage.measurements.center_of_mass(
seg_mask)
coord_w = int(
(center_w / upsampled_size[1]) // (1. / num_grid))
coord_h = int(
(center_h / upsampled_size[0]) // (1. / num_grid))
# left, top, right, down
top_box = max(0,
int(((center_h - half_h) / upsampled_size[0])
// (1. / num_grid)))
down_box = min(num_grid - 1,
int(((center_h + half_h) / upsampled_size[0])
// (1. / num_grid)))
left_box = max(0,
int(((center_w - half_w) / upsampled_size[1])
// (1. / num_grid)))
right_box = min(num_grid - 1,
int(((center_w + half_w) /
upsampled_size[1]) // (1. / num_grid)))
top = max(top_box, coord_h - 1)
down = min(down_box, coord_h + 1)
left = max(coord_w - 1, left_box)
right = min(right_box, coord_w + 1)
cate_label[top:(down + 1), left:(right + 1)] = gt_label
seg_mask = self._scale_size(
seg_mask, scale=1. / self.sampling_ratio)
for i in range(top, down + 1):
for j in range(left, right + 1):
label = int(i * num_grid + j)
cur_ins_label = np.zeros(
[mask_feat_size[0], mask_feat_size[1]],
dtype=np.uint8)
cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[
1]] = seg_mask
ins_label.append(cur_ins_label)
ins_ind_label[label] = True
grid_order.append(sample_id * num_grid * num_grid +
label)
if ins_label == []:
ins_label = np.zeros(
[1, mask_feat_size[0], mask_feat_size[1]],
dtype=np.uint8)
ins_ind_label_list.append(ins_ind_label)
sample['cate_label{}'.format(idx)] = cate_label.flatten()
sample['ins_label{}'.format(idx)] = ins_label
sample['grid_order{}'.format(idx)] = np.asarray(
[sample_id * num_grid * num_grid + 0], dtype=np.int32)
else:
ins_label = np.stack(ins_label, axis=0)
ins_ind_label_list.append(ins_ind_label)
sample['cate_label{}'.format(idx)] = cate_label.flatten()
sample['ins_label{}'.format(idx)] = ins_label
sample['grid_order{}'.format(idx)] = np.asarray(
grid_order, dtype=np.int32)
assert len(grid_order) > 0
max_ins_num[idx] = max(
max_ins_num[idx],
sample['ins_label{}'.format(idx)].shape[0])
idx += 1
ins_ind_labels = np.concatenate([
ins_ind_labels_level_img
for ins_ind_labels_level_img in ins_ind_label_list
])
fg_num = np.sum(ins_ind_labels)
sample['fg_num'] = fg_num
sample_id += 1
sample.pop('is_crowd')
sample.pop('gt_class')
sample.pop('gt_bbox')
sample.pop('gt_poly')
sample.pop('gt_segm')
# padding batch
for data in samples:
for idx in range(len(self.num_grids)):
gt_ins_data = np.zeros(
[
max_ins_num[idx],
data['ins_label{}'.format(idx)].shape[1],
data['ins_label{}'.format(idx)].shape[2]
],
dtype=np.uint8)
gt_ins_data[0:data['ins_label{}'.format(idx)].shape[
0], :, :] = data['ins_label{}'.format(idx)]
gt_grid_order = np.zeros([max_ins_num[idx]], dtype=np.int32)
gt_grid_order[0:data['grid_order{}'.format(idx)].shape[
0]] = data['grid_order{}'.format(idx)]
data['ins_label{}'.format(idx)] = gt_ins_data
data['grid_order{}'.format(idx)] = gt_grid_order
return samples

View File

@ -0,0 +1,83 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import numpy as np
from PIL import Image
class Gridmask(object):
def __init__(self,
use_h=True,
use_w=True,
rotate=1,
offset=False,
ratio=0.5,
mode=1,
prob=0.7,
upper_iter=360000):
super(Gridmask, self).__init__()
self.use_h = use_h
self.use_w = use_w
self.rotate = rotate
self.offset = offset
self.ratio = ratio
self.mode = mode
self.prob = prob
self.st_prob = prob
self.upper_iter = upper_iter
def __call__(self, x, curr_iter):
self.prob = self.st_prob * min(1, 1.0 * curr_iter / self.upper_iter)
if np.random.rand() > self.prob:
return x
h, w, _ = x.shape
hh = int(1.5 * h)
ww = int(1.5 * w)
d = np.random.randint(2, h)
self.l = min(max(int(d * self.ratio + 0.5), 1), d - 1)
mask = np.ones((hh, ww), np.float32)
st_h = np.random.randint(d)
st_w = np.random.randint(d)
if self.use_h:
for i in range(hh // d):
s = d * i + st_h
t = min(s + self.l, hh)
mask[s:t, :] *= 0
if self.use_w:
for i in range(ww // d):
s = d * i + st_w
t = min(s + self.l, ww)
mask[:, s:t] *= 0
r = np.random.randint(self.rotate)
mask = Image.fromarray(np.uint8(mask))
mask = mask.rotate(r)
mask = np.asarray(mask)
mask = mask[(hh - h) // 2:(hh - h) // 2 + h, (ww - w) // 2:(ww - w) // 2
+ w].astype(np.float32)
if self.mode == 1:
mask = 1 - mask
mask = np.expand_dims(mask, axis=-1)
if self.offset:
offset = (2 * (np.random.rand(h, w) - 0.5)).astype(np.float32)
x = (x * mask + offset * (1 - mask)).astype(x.dtype)
else:
x = (x * mask).astype(x.dtype)
return x

View File

@ -0,0 +1,663 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# function:
# operators to process sample,
# eg: decode/resize/crop image
from __future__ import absolute_import
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
import cv2
import numpy as np
import math
import copy
from ...modeling.keypoint_utils import get_affine_mat_kernel, warp_affine_joints, get_affine_transform, affine_transform
from ppdet.core.workspace import serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
registered_ops = []
__all__ = [
'RandomAffine', 'KeyPointFlip', 'TagGenerate', 'ToHeatmaps',
'NormalizePermute', 'EvalAffine', 'RandomFlipHalfBodyTransform',
'TopDownAffine', 'ToHeatmapsTopDown', 'TopDownEvalAffine'
]
def register_keypointop(cls):
return serializable(cls)
@register_keypointop
class KeyPointFlip(object):
"""Get the fliped image by flip_prob. flip the coords also
the left coords and right coords should exchange while flip, for the right keypoint will be left keypoint after image fliped
Args:
flip_permutation (list[17]): the left-right exchange order list corresponding to [0,1,2,...,16]
hmsize (list[2]): output heatmap's shape list of different scale outputs of higherhrnet
flip_prob (float): the ratio whether to flip the image
records(dict): the dict contained the image, mask and coords
Returns:
records(dict): contain the image, mask and coords after tranformed
"""
def __init__(self, flip_permutation, hmsize, flip_prob=0.5):
super(KeyPointFlip, self).__init__()
assert isinstance(flip_permutation, Sequence)
self.flip_permutation = flip_permutation
self.flip_prob = flip_prob
self.hmsize = hmsize
def __call__(self, records):
image = records['image']
kpts_lst = records['joints']
mask_lst = records['mask']
flip = np.random.random() < self.flip_prob
if flip:
image = image[:, ::-1]
for idx, hmsize in enumerate(self.hmsize):
if len(mask_lst) > idx:
mask_lst[idx] = mask_lst[idx][:, ::-1]
if kpts_lst[idx].ndim == 3:
kpts_lst[idx] = kpts_lst[idx][:, self.flip_permutation]
else:
kpts_lst[idx] = kpts_lst[idx][self.flip_permutation]
kpts_lst[idx][..., 0] = hmsize - kpts_lst[idx][..., 0]
kpts_lst[idx] = kpts_lst[idx].astype(np.int64)
kpts_lst[idx][kpts_lst[idx][..., 0] >= hmsize, 2] = 0
kpts_lst[idx][kpts_lst[idx][..., 1] >= hmsize, 2] = 0
kpts_lst[idx][kpts_lst[idx][..., 0] < 0, 2] = 0
kpts_lst[idx][kpts_lst[idx][..., 1] < 0, 2] = 0
records['image'] = image
records['joints'] = kpts_lst
records['mask'] = mask_lst
return records
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = math.cos(theta) * scale_x
matrix[0, 1] = -math.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * math.cos(theta) + 0.5 * size_input[1] *
math.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = math.sin(theta) * scale_y
matrix[1, 1] = math.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * math.sin(theta) - 0.5 * size_input[1] *
math.cos(theta) + 0.5 * size_target[1])
return matrix
@register_keypointop
class RandomAffine(object):
"""apply affine transform to image, mask and coords
to achieve the rotate, scale and shift effect for training image
Args:
max_degree (float): the max abslute rotate degree to apply, transform range is [-max_degree, max_degree]
max_scale (list[2]): the scale range to apply, transform range is [min, max]
max_shift (float): the max abslute shift ratio to apply, transform range is [-max_shift*imagesize, max_shift*imagesize]
hmsize (list[2]): output heatmap's shape list of different scale outputs of higherhrnet
trainsize (int): the standard length used to train, the 'scale_type' of [h,w] will be resize to trainsize for standard
scale_type (str): the length of [h,w] to used for trainsize, chosed between 'short' and 'long'
records(dict): the dict contained the image, mask and coords
Returns:
records(dict): contain the image, mask and coords after tranformed
"""
def __init__(self,
max_degree=30,
scale=[0.75, 1.5],
max_shift=0.2,
hmsize=[128, 256],
trainsize=512,
scale_type='short'):
super(RandomAffine, self).__init__()
self.max_degree = max_degree
self.min_scale = scale[0]
self.max_scale = scale[1]
self.max_shift = max_shift
self.hmsize = hmsize
self.trainsize = trainsize
self.scale_type = scale_type
def _get_affine_matrix(self, center, scale, res, rot=0):
"""Generate transformation matrix."""
h = scale
t = np.zeros((3, 3), dtype=np.float32)
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
if rot != 0:
rot = -rot # To match direction of rotation from cropping
rot_mat = np.zeros((3, 3), dtype=np.float32)
rot_rad = rot * np.pi / 180
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0, :2] = [cs, -sn]
rot_mat[1, :2] = [sn, cs]
rot_mat[2, 2] = 1
# Need to rotate around center
t_mat = np.eye(3)
t_mat[0, 2] = -res[1] / 2
t_mat[1, 2] = -res[0] / 2
t_inv = t_mat.copy()
t_inv[:2, 2] *= -1
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
return t
def __call__(self, records):
image = records['image']
keypoints = records['joints']
heatmap_mask = records['mask']
degree = (np.random.random() * 2 - 1) * self.max_degree
shape = np.array(image.shape[:2][::-1])
center = center = np.array((np.array(shape) / 2))
aug_scale = np.random.random() * (self.max_scale - self.min_scale
) + self.min_scale
if self.scale_type == 'long':
scale = max(shape[0], shape[1]) / 1.0
elif self.scale_type == 'short':
scale = min(shape[0], shape[1]) / 1.0
else:
raise ValueError('Unknown scale type: {}'.format(self.scale_type))
roi_size = aug_scale * scale
dx = int(0)
dy = int(0)
if self.max_shift > 0:
dx = np.random.randint(-self.max_shift * roi_size,
self.max_shift * roi_size)
dy = np.random.randint(-self.max_shift * roi_size,
self.max_shift * roi_size)
center += np.array([dx, dy])
input_size = 2 * center
keypoints[..., :2] *= shape
heatmap_mask *= 255
kpts_lst = []
mask_lst = []
image_affine_mat = self._get_affine_matrix(
center, roi_size, (self.trainsize, self.trainsize), degree)[:2]
image = cv2.warpAffine(
image,
image_affine_mat, (self.trainsize, self.trainsize),
flags=cv2.INTER_LINEAR)
for hmsize in self.hmsize:
kpts = copy.deepcopy(keypoints)
mask_affine_mat = self._get_affine_matrix(
center, roi_size, (hmsize, hmsize), degree)[:2]
if heatmap_mask is not None:
mask = cv2.warpAffine(heatmap_mask, mask_affine_mat,
(hmsize, hmsize))
mask = ((mask / 255) > 0.5).astype(np.float32)
kpts[..., 0:2] = warp_affine_joints(kpts[..., 0:2].copy(),
mask_affine_mat)
kpts[np.trunc(kpts[..., 0]) >= hmsize, 2] = 0
kpts[np.trunc(kpts[..., 1]) >= hmsize, 2] = 0
kpts[np.trunc(kpts[..., 0]) < 0, 2] = 0
kpts[np.trunc(kpts[..., 1]) < 0, 2] = 0
kpts_lst.append(kpts)
mask_lst.append(mask)
records['image'] = image
records['joints'] = kpts_lst
records['mask'] = mask_lst
return records
@register_keypointop
class EvalAffine(object):
"""apply affine transform to image
resize the short of [h,w] to standard size for eval
Args:
size (int): the standard length used to train, the 'short' of [h,w] will be resize to trainsize for standard
records(dict): the dict contained the image, mask and coords
Returns:
records(dict): contain the image, mask and coords after tranformed
"""
def __init__(self, size, stride=64):
super(EvalAffine, self).__init__()
self.size = size
self.stride = stride
def __call__(self, records):
image = records['image']
mask = records['mask'] if 'mask' in records else None
s = self.size
h, w, _ = image.shape
trans, size_resized = get_affine_mat_kernel(h, w, s, inv=False)
image_resized = cv2.warpAffine(image, trans, size_resized)
if mask is not None:
mask = cv2.warpAffine(mask, trans, size_resized)
records['mask'] = mask
if 'joints' in records:
del records['joints']
records['image'] = image_resized
return records
@register_keypointop
class NormalizePermute(object):
def __init__(self,
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.120, 57.375],
is_scale=True):
super(NormalizePermute, self).__init__()
self.mean = mean
self.std = std
self.is_scale = is_scale
def __call__(self, records):
image = records['image']
image = image.astype(np.float32)
if self.is_scale:
image /= 255.
image = image.transpose((2, 0, 1))
mean = np.array(self.mean, dtype=np.float32)
std = np.array(self.std, dtype=np.float32)
invstd = 1. / std
for v, m, s in zip(image, mean, invstd):
v.__isub__(m).__imul__(s)
records['image'] = image
return records
@register_keypointop
class TagGenerate(object):
"""record gt coords for aeloss to sample coords value in tagmaps
Args:
num_joints (int): the keypoint numbers of dataset to train
num_people (int): maxmum people to support for sample aeloss
records(dict): the dict contained the image, mask and coords
Returns:
records(dict): contain the gt coords used in tagmap
"""
def __init__(self, num_joints, max_people=30):
super(TagGenerate, self).__init__()
self.max_people = max_people
self.num_joints = num_joints
def __call__(self, records):
kpts_lst = records['joints']
kpts = kpts_lst[0]
tagmap = np.zeros((self.max_people, self.num_joints, 4), dtype=np.int64)
inds = np.where(kpts[..., 2] > 0)
p, j = inds[0], inds[1]
visible = kpts[inds]
# tagmap is [p, j, 3], where last dim is j, y, x
tagmap[p, j, 0] = j
tagmap[p, j, 1] = visible[..., 1] # y
tagmap[p, j, 2] = visible[..., 0] # x
tagmap[p, j, 3] = 1
records['tagmap'] = tagmap
del records['joints']
return records
@register_keypointop
class ToHeatmaps(object):
"""to generate the gaussin heatmaps of keypoint for heatmap loss
Args:
num_joints (int): the keypoint numbers of dataset to train
hmsize (list[2]): output heatmap's shape list of different scale outputs of higherhrnet
sigma (float): the std of gaussin kernel genereted
records(dict): the dict contained the image, mask and coords
Returns:
records(dict): contain the heatmaps used to heatmaploss
"""
def __init__(self, num_joints, hmsize, sigma=None):
super(ToHeatmaps, self).__init__()
self.num_joints = num_joints
self.hmsize = np.array(hmsize)
if sigma is None:
sigma = hmsize[0] // 64
self.sigma = sigma
r = 6 * sigma + 3
x = np.arange(0, r, 1, np.float32)
y = x[:, None]
x0, y0 = 3 * sigma + 1, 3 * sigma + 1
self.gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
def __call__(self, records):
kpts_lst = records['joints']
mask_lst = records['mask']
for idx, hmsize in enumerate(self.hmsize):
mask = mask_lst[idx]
kpts = kpts_lst[idx]
heatmaps = np.zeros((self.num_joints, hmsize, hmsize))
inds = np.where(kpts[..., 2] > 0)
visible = kpts[inds].astype(np.int64)[..., :2]
ul = np.round(visible - 3 * self.sigma - 1)
br = np.round(visible + 3 * self.sigma + 2)
sul = np.maximum(0, -ul)
sbr = np.minimum(hmsize, br) - ul
dul = np.clip(ul, 0, hmsize - 1)
dbr = np.clip(br, 0, hmsize)
for i in range(len(visible)):
dx1, dy1 = dul[i]
dx2, dy2 = dbr[i]
sx1, sy1 = sul[i]
sx2, sy2 = sbr[i]
heatmaps[inds[1][i], dy1:dy2, dx1:dx2] = np.maximum(
self.gaussian[sy1:sy2, sx1:sx2],
heatmaps[inds[1][i], dy1:dy2, dx1:dx2])
records['heatmap_gt{}x'.format(idx + 1)] = heatmaps
records['mask_{}x'.format(idx + 1)] = mask
del records['mask']
return records
@register_keypointop
class RandomFlipHalfBodyTransform(object):
"""apply data augment to image and coords
to achieve the flip, scale, rotate and half body transform effect for training image
Args:
trainsize (list):[w, h], Image target size
upper_body_ids (list): The upper body joint ids
flip_pairs (list): The left-right joints exchange order list
pixel_std (int): The pixel std of the scale
scale (float): The scale factor to transform the image
rot (int): The rotate factor to transform the image
num_joints_half_body (int): The joints threshold of the half body transform
prob_half_body (float): The threshold of the half body transform
flip (bool): Whether to flip the image
Returns:
records(dict): contain the image and coords after tranformed
"""
def __init__(self,
trainsize,
upper_body_ids,
flip_pairs,
pixel_std,
scale=0.35,
rot=40,
num_joints_half_body=8,
prob_half_body=0.3,
flip=True,
rot_prob=0.6):
super(RandomFlipHalfBodyTransform, self).__init__()
self.trainsize = trainsize
self.upper_body_ids = upper_body_ids
self.flip_pairs = flip_pairs
self.pixel_std = pixel_std
self.scale = scale
self.rot = rot
self.num_joints_half_body = num_joints_half_body
self.prob_half_body = prob_half_body
self.flip = flip
self.aspect_ratio = trainsize[0] * 1.0 / trainsize[1]
self.rot_prob = rot_prob
def halfbody_transform(self, joints, joints_vis):
upper_joints = []
lower_joints = []
for joint_id in range(joints.shape[0]):
if joints_vis[joint_id][0] > 0:
if joint_id in self.upper_body_ids:
upper_joints.append(joints[joint_id])
else:
lower_joints.append(joints[joint_id])
if np.random.randn() < 0.5 and len(upper_joints) > 2:
selected_joints = upper_joints
else:
selected_joints = lower_joints if len(
lower_joints) > 2 else upper_joints
if len(selected_joints) < 2:
return None, None
selected_joints = np.array(selected_joints, dtype=np.float32)
center = selected_joints.mean(axis=0)[:2]
left_top = np.amin(selected_joints, axis=0)
right_bottom = np.amax(selected_joints, axis=0)
w = right_bottom[0] - left_top[0]
h = right_bottom[1] - left_top[1]
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array(
[w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
dtype=np.float32)
scale = scale * 1.5
return center, scale
def flip_joints(self, joints, joints_vis, width, matched_parts):
joints[:, 0] = width - joints[:, 0] - 1
for pair in matched_parts:
joints[pair[0], :], joints[pair[1], :] = \
joints[pair[1], :], joints[pair[0], :].copy()
joints_vis[pair[0], :], joints_vis[pair[1], :] = \
joints_vis[pair[1], :], joints_vis[pair[0], :].copy()
return joints * joints_vis, joints_vis
def __call__(self, records):
image = records['image']
joints = records['joints']
joints_vis = records['joints_vis']
c = records['center']
s = records['scale']
r = 0
if (np.sum(joints_vis[:, 0]) > self.num_joints_half_body and
np.random.rand() < self.prob_half_body):
c_half_body, s_half_body = self.halfbody_transform(joints,
joints_vis)
if c_half_body is not None and s_half_body is not None:
c, s = c_half_body, s_half_body
sf = self.scale
rf = self.rot
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
r = np.clip(np.random.randn() * rf, -rf * 2,
rf * 2) if np.random.random() <= self.rot_prob else 0
if self.flip and np.random.random() <= 0.5:
image = image[:, ::-1, :]
joints, joints_vis = self.flip_joints(
joints, joints_vis, image.shape[1], self.flip_pairs)
c[0] = image.shape[1] - c[0] - 1
records['image'] = image
records['joints'] = joints
records['joints_vis'] = joints_vis
records['center'] = c
records['scale'] = s
records['rotate'] = r
return records
@register_keypointop
class TopDownAffine(object):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def __init__(self, trainsize):
self.trainsize = trainsize
def __call__(self, records):
image = records['image']
joints = records['joints']
joints_vis = records['joints_vis']
rot = records['rotate'] if "rotate" in records else 0
trans = get_affine_transform(records['center'], records['scale'] * 200,
rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
for i in range(joints.shape[0]):
if joints_vis[i, 0] > 0.0:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
records['image'] = image
records['joints'] = joints
return records
@register_keypointop
class TopDownEvalAffine(object):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def __init__(self, trainsize):
self.trainsize = trainsize
def __call__(self, records):
image = records['image']
rot = 0
imshape = records['im_shape'][::-1]
center = imshape / 2.
scale = imshape
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
records['image'] = image
return records
@register_keypointop
class ToHeatmapsTopDown(object):
"""to generate the gaussin heatmaps of keypoint for heatmap loss
Args:
hmsize (list): [w, h] output heatmap's size
sigma (float): the std of gaussin kernel genereted
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the heatmaps used to heatmaploss
"""
def __init__(self, hmsize, sigma):
super(ToHeatmapsTopDown, self).__init__()
self.hmsize = np.array(hmsize)
self.sigma = sigma
def __call__(self, records):
joints = records['joints']
joints_vis = records['joints_vis']
num_joints = joints.shape[0]
image_size = np.array(
[records['image'].shape[1], records['image'].shape[0]])
target_weight = np.ones((num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_vis[:, 0]
target = np.zeros(
(num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
tmp_size = self.sigma * 3
for joint_id in range(num_joints):
feat_stride = image_size / self.hmsize
mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= self.hmsize[0] or ul[1] >= self.hmsize[1] or br[
0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, np.newaxis]
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * self.sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], self.hmsize[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], self.hmsize[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], self.hmsize[0])
img_y = max(0, ul[1]), min(br[1], self.hmsize[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[
0]:g_y[1], g_x[0]:g_x[1]]
records['target'] = target
records['target_weight'] = target_weight
del records['joints'], records['joints_vis']
return records

View File

@ -0,0 +1,634 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
from numbers import Integral
import cv2
import copy
import numpy as np
import random
import math
from .operators import BaseOperator, register_op
from .batch_operators import Gt2TTFTarget
from ppdet.modeling.bbox_utils import bbox_iou_np_expand
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'RGBReverse', 'LetterBoxResize', 'MOTRandomAffine', 'Gt2JDETargetThres',
'Gt2JDETargetMax', 'Gt2FairMOTTarget'
]
@register_op
class RGBReverse(BaseOperator):
"""RGB to BGR, or BGR to RGB, sensitive to MOTRandomAffine
"""
def __init__(self):
super(RGBReverse, self).__init__()
def apply(self, sample, context=None):
im = sample['image']
sample['image'] = np.ascontiguousarray(im[:, :, ::-1])
return sample
@register_op
class LetterBoxResize(BaseOperator):
def __init__(self, target_size):
"""
Resize image to target size, convert normalized xywh to pixel xyxy
format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
Args:
target_size (int|list): image target size.
"""
super(LetterBoxResize, self).__init__()
if not isinstance(target_size, (Integral, Sequence)):
raise TypeError(
"Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
format(type(target_size)))
if isinstance(target_size, Integral):
target_size = [target_size, target_size]
self.target_size = target_size
def apply_image(self, img, height, width, color=(127.5, 127.5, 127.5)):
# letterbox: resize a rectangular image to a padded rectangular
shape = img.shape[:2] # [height, width]
ratio_h = float(height) / shape[0]
ratio_w = float(width) / shape[1]
ratio = min(ratio_h, ratio_w)
new_shape = (round(shape[1] * ratio),
round(shape[0] * ratio)) # [width, height]
padw = (width - new_shape[0]) / 2
padh = (height - new_shape[1]) / 2
top, bottom = round(padh - 0.1), round(padh + 0.1)
left, right = round(padw - 0.1), round(padw + 0.1)
img = cv2.resize(
img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=color) # padded rectangular
return img, ratio, padw, padh
def apply_bbox(self, bbox0, h, w, ratio, padw, padh):
bboxes = bbox0.copy()
bboxes[:, 0] = ratio * w * (bbox0[:, 0] - bbox0[:, 2] / 2) + padw
bboxes[:, 1] = ratio * h * (bbox0[:, 1] - bbox0[:, 3] / 2) + padh
bboxes[:, 2] = ratio * w * (bbox0[:, 0] + bbox0[:, 2] / 2) + padw
bboxes[:, 3] = ratio * h * (bbox0[:, 1] + bbox0[:, 3] / 2) + padh
return bboxes
def apply(self, sample, context=None):
""" Resize the image numpy.
"""
im = sample['image']
h, w = sample['im_shape']
if not isinstance(im, np.ndarray):
raise TypeError("{}: image type is not numpy.".format(self))
if len(im.shape) != 3:
raise ImageError('{}: image is not 3-dimensional.'.format(self))
# apply image
height, width = self.target_size
img, ratio, padw, padh = self.apply_image(
im, height=height, width=width)
sample['image'] = img
new_shape = (round(h * ratio), round(w * ratio))
sample['im_shape'] = np.asarray(new_shape, dtype=np.float32)
sample['scale_factor'] = np.asarray([ratio, ratio], dtype=np.float32)
# apply bbox
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], h, w, ratio,
padw, padh)
return sample
@register_op
class MOTRandomAffine(BaseOperator):
"""
Affine transform to image and coords to achieve the rotate, scale and
shift effect for training image.
Args:
degrees (list[2]): the rotate range to apply, transform range is [min, max]
translate (list[2]): the translate range to apply, ransform range is [min, max]
scale (list[2]): the scale range to apply, transform range is [min, max]
shear (list[2]): the shear range to apply, transform range is [min, max]
borderValue (list[3]): value used in case of a constant border when appling
the perspective transformation
reject_outside (bool): reject warped bounding bboxes outside of image
Returns:
records(dict): contain the image and coords after tranformed
"""
def __init__(self,
degrees=(-5, 5),
translate=(0.10, 0.10),
scale=(0.50, 1.20),
shear=(-2, 2),
borderValue=(127.5, 127.5, 127.5),
reject_outside=True):
super(MOTRandomAffine, self).__init__()
self.degrees = degrees
self.translate = translate
self.scale = scale
self.shear = shear
self.borderValue = borderValue
self.reject_outside = reject_outside
def apply(self, sample, context=None):
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
border = 0 # width of added border (optional)
img = sample['image']
height, width = img.shape[0], img.shape[1]
# Rotation and Scale
R = np.eye(3)
a = random.random() * (self.degrees[1] - self.degrees[0]
) + self.degrees[0]
s = random.random() * (self.scale[1] - self.scale[0]) + self.scale[0]
R[:2] = cv2.getRotationMatrix2D(
angle=a, center=(width / 2, height / 2), scale=s)
# Translation
T = np.eye(3)
T[0, 2] = (
random.random() * 2 - 1
) * self.translate[0] * height + border # x translation (pixels)
T[1, 2] = (
random.random() * 2 - 1
) * self.translate[1] * width + border # y translation (pixels)
# Shear
S = np.eye(3)
S[0, 1] = math.tan((random.random() *
(self.shear[1] - self.shear[0]) + self.shear[0]) *
math.pi / 180) # x shear (deg)
S[1, 0] = math.tan((random.random() *
(self.shear[1] - self.shear[0]) + self.shear[0]) *
math.pi / 180) # y shear (deg)
M = S @T @R # Combined rotation matrix. ORDER IS IMPORTANT HERE!!
imw = cv2.warpPerspective(
img,
M,
dsize=(width, height),
flags=cv2.INTER_LINEAR,
borderValue=self.borderValue) # BGR order borderValue
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
targets = sample['gt_bbox']
n = targets.shape[0]
points = targets.copy()
area0 = (points[:, 2] - points[:, 0]) * (
points[:, 3] - points[:, 1])
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = (xy @M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate(
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# apply angle-based reduction
radians = a * math.pi / 180
reduction = max(abs(math.sin(radians)), abs(math.cos(radians)))**0.5
x = (xy[:, 2] + xy[:, 0]) / 2
y = (xy[:, 3] + xy[:, 1]) / 2
w = (xy[:, 2] - xy[:, 0]) * reduction
h = (xy[:, 3] - xy[:, 1]) * reduction
xy = np.concatenate(
(x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# reject warped points outside of image
if self.reject_outside:
np.clip(xy[:, 0], 0, width, out=xy[:, 0])
np.clip(xy[:, 2], 0, width, out=xy[:, 2])
np.clip(xy[:, 1], 0, height, out=xy[:, 1])
np.clip(xy[:, 3], 0, height, out=xy[:, 3])
w = xy[:, 2] - xy[:, 0]
h = xy[:, 3] - xy[:, 1]
area = w * h
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16))
i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10)
if sum(i) > 0:
sample['gt_bbox'] = xy[i].astype(sample['gt_bbox'].dtype)
sample['gt_class'] = sample['gt_class'][i]
if 'difficult' in sample:
sample['difficult'] = sample['difficult'][i]
if 'gt_ide' in sample:
sample['gt_ide'] = sample['gt_ide'][i]
if 'is_crowd' in sample:
sample['is_crowd'] = sample['is_crowd'][i]
sample['image'] = imw
return sample
else:
return sample
@register_op
class Gt2JDETargetThres(BaseOperator):
__shared__ = ['num_classes']
"""
Generate JDE targets by groud truth data when training
Args:
anchors (list): anchors of JDE model
anchor_masks (list): anchor_masks of JDE model
downsample_ratios (list): downsample ratios of JDE model
ide_thresh (float): thresh of identity, higher is groud truth
fg_thresh (float): thresh of foreground, higher is foreground
bg_thresh (float): thresh of background, lower is background
num_classes (int): number of classes
"""
def __init__(self,
anchors,
anchor_masks,
downsample_ratios,
ide_thresh=0.5,
fg_thresh=0.5,
bg_thresh=0.4,
num_classes=1):
super(Gt2JDETargetThres, self).__init__()
self.anchors = anchors
self.anchor_masks = anchor_masks
self.downsample_ratios = downsample_ratios
self.ide_thresh = ide_thresh
self.fg_thresh = fg_thresh
self.bg_thresh = bg_thresh
self.num_classes = num_classes
def generate_anchor(self, nGh, nGw, anchor_hw):
nA = len(anchor_hw)
yy, xx = np.meshgrid(np.arange(nGh), np.arange(nGw))
mesh = np.stack([xx.T, yy.T], axis=0) # [2, nGh, nGw]
mesh = np.repeat(mesh[None, :], nA, axis=0) # [nA, 2, nGh, nGw]
anchor_offset_mesh = anchor_hw[:, :, None][:, :, :, None]
anchor_offset_mesh = np.repeat(anchor_offset_mesh, nGh, axis=-2)
anchor_offset_mesh = np.repeat(anchor_offset_mesh, nGw, axis=-1)
anchor_mesh = np.concatenate(
[mesh, anchor_offset_mesh], axis=1) # [nA, 4, nGh, nGw]
return anchor_mesh
def encode_delta(self, gt_box_list, fg_anchor_list):
px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \
fg_anchor_list[:, 2], fg_anchor_list[:,3]
gx, gy, gw, gh = gt_box_list[:, 0], gt_box_list[:, 1], \
gt_box_list[:, 2], gt_box_list[:, 3]
dx = (gx - px) / pw
dy = (gy - py) / ph
dw = np.log(gw / pw)
dh = np.log(gh / ph)
return np.stack([dx, dy, dw, dh], axis=1)
def pad_box(self, sample, num_max):
assert 'gt_bbox' in sample
bbox = sample['gt_bbox']
gt_num = len(bbox)
pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
if gt_num > 0:
pad_bbox[:gt_num, :] = bbox[:gt_num, :]
sample['gt_bbox'] = pad_bbox
if 'gt_score' in sample:
pad_score = np.zeros((num_max, ), dtype=np.float32)
if gt_num > 0:
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
sample['gt_score'] = pad_score
if 'difficult' in sample:
pad_diff = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:
pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
sample['difficult'] = pad_diff
if 'is_crowd' in sample:
pad_crowd = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:
pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
sample['is_crowd'] = pad_crowd
if 'gt_ide' in sample:
pad_ide = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:
pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
sample['gt_ide'] = pad_ide
return sample
def __call__(self, samples, context=None):
assert len(self.anchor_masks) == len(self.downsample_ratios), \
"anchor_masks', and 'downsample_ratios' should have same length."
h, w = samples[0]['image'].shape[1:3]
num_max = 0
for sample in samples:
num_max = max(num_max, len(sample['gt_bbox']))
for sample in samples:
gt_bbox = sample['gt_bbox']
gt_ide = sample['gt_ide']
for i, (anchor_hw, downsample_ratio
) in enumerate(zip(self.anchors, self.downsample_ratios)):
anchor_hw = np.array(
anchor_hw, dtype=np.float32) / downsample_ratio
nA = len(anchor_hw)
nGh, nGw = int(h / downsample_ratio), int(w / downsample_ratio)
tbox = np.zeros((nA, nGh, nGw, 4), dtype=np.float32)
tconf = np.zeros((nA, nGh, nGw), dtype=np.float32)
tid = -np.ones((nA, nGh, nGw, 1), dtype=np.float32)
gxy, gwh = gt_bbox[:, 0:2].copy(), gt_bbox[:, 2:4].copy()
gxy[:, 0] = gxy[:, 0] * nGw
gxy[:, 1] = gxy[:, 1] * nGh
gwh[:, 0] = gwh[:, 0] * nGw
gwh[:, 1] = gwh[:, 1] * nGh
gxy[:, 0] = np.clip(gxy[:, 0], 0, nGw - 1)
gxy[:, 1] = np.clip(gxy[:, 1], 0, nGh - 1)
tboxes = np.concatenate([gxy, gwh], axis=1)
anchor_mesh = self.generate_anchor(nGh, nGw, anchor_hw)
anchor_list = np.transpose(anchor_mesh,
(0, 2, 3, 1)).reshape(-1, 4)
iou_pdist = bbox_iou_np_expand(
anchor_list, tboxes, x1y1x2y2=False)
iou_max = np.max(iou_pdist, axis=1)
max_gt_index = np.argmax(iou_pdist, axis=1)
iou_map = iou_max.reshape(nA, nGh, nGw)
gt_index_map = max_gt_index.reshape(nA, nGh, nGw)
id_index = iou_map > self.ide_thresh
fg_index = iou_map > self.fg_thresh
bg_index = iou_map < self.bg_thresh
ign_index = (iou_map < self.fg_thresh) * (
iou_map > self.bg_thresh)
tconf[fg_index] = 1
tconf[bg_index] = 0
tconf[ign_index] = -1
gt_index = gt_index_map[fg_index]
gt_box_list = tboxes[gt_index]
gt_id_list = gt_ide[gt_index_map[id_index]]
if np.sum(fg_index) > 0:
tid[id_index] = gt_id_list
fg_anchor_list = anchor_list.reshape(nA, nGh, nGw,
4)[fg_index]
delta_target = self.encode_delta(gt_box_list,
fg_anchor_list)
tbox[fg_index] = delta_target
sample['tbox{}'.format(i)] = tbox
sample['tconf{}'.format(i)] = tconf
sample['tide{}'.format(i)] = tid
sample.pop('gt_class')
sample = self.pad_box(sample, num_max)
return samples
@register_op
class Gt2JDETargetMax(BaseOperator):
__shared__ = ['num_classes']
"""
Generate JDE targets by groud truth data when evaluating
Args:
anchors (list): anchors of JDE model
anchor_masks (list): anchor_masks of JDE model
downsample_ratios (list): downsample ratios of JDE model
max_iou_thresh (float): iou thresh for high quality anchor
num_classes (int): number of classes
"""
def __init__(self,
anchors,
anchor_masks,
downsample_ratios,
max_iou_thresh=0.60,
num_classes=1):
super(Gt2JDETargetMax, self).__init__()
self.anchors = anchors
self.anchor_masks = anchor_masks
self.downsample_ratios = downsample_ratios
self.max_iou_thresh = max_iou_thresh
self.num_classes = num_classes
def __call__(self, samples, context=None):
assert len(self.anchor_masks) == len(self.downsample_ratios), \
"anchor_masks', and 'downsample_ratios' should have same length."
h, w = samples[0]['image'].shape[1:3]
for sample in samples:
gt_bbox = sample['gt_bbox']
gt_ide = sample['gt_ide']
for i, (anchor_hw, downsample_ratio
) in enumerate(zip(self.anchors, self.downsample_ratios)):
anchor_hw = np.array(
anchor_hw, dtype=np.float32) / downsample_ratio
nA = len(anchor_hw)
nGh, nGw = int(h / downsample_ratio), int(w / downsample_ratio)
tbox = np.zeros((nA, nGh, nGw, 4), dtype=np.float32)
tconf = np.zeros((nA, nGh, nGw), dtype=np.float32)
tid = -np.ones((nA, nGh, nGw, 1), dtype=np.float32)
gxy, gwh = gt_bbox[:, 0:2].copy(), gt_bbox[:, 2:4].copy()
gxy[:, 0] = gxy[:, 0] * nGw
gxy[:, 1] = gxy[:, 1] * nGh
gwh[:, 0] = gwh[:, 0] * nGw
gwh[:, 1] = gwh[:, 1] * nGh
gi = np.clip(gxy[:, 0], 0, nGw - 1).astype(int)
gj = np.clip(gxy[:, 1], 0, nGh - 1).astype(int)
# iou of targets-anchors (using wh only)
box1 = gwh
box2 = anchor_hw[:, None, :]
inter_area = np.minimum(box1, box2).prod(2)
iou = inter_area / (
box1.prod(1) + box2.prod(2) - inter_area + 1e-16)
# Select best iou_pred and anchor
iou_best = iou.max(0) # best anchor [0-2] for each target
a = np.argmax(iou, axis=0)
# Select best unique target-anchor combinations
iou_order = np.argsort(-iou_best) # best to worst
# Unique anchor selection
u = np.stack((gi, gj, a), 0)[:, iou_order]
_, first_unique = np.unique(u, axis=1, return_index=True)
mask = iou_order[first_unique]
# best anchor must share significant commonality (iou) with target
# TODO: examine arbitrary threshold
idx = mask[iou_best[mask] > self.max_iou_thresh]
if len(idx) > 0:
a_i, gj_i, gi_i = a[idx], gj[idx], gi[idx]
t_box = gt_bbox[idx]
t_id = gt_ide[idx]
if len(t_box.shape) == 1:
t_box = t_box.reshape(1, 4)
gxy, gwh = t_box[:, 0:2].copy(), t_box[:, 2:4].copy()
gxy[:, 0] = gxy[:, 0] * nGw
gxy[:, 1] = gxy[:, 1] * nGh
gwh[:, 0] = gwh[:, 0] * nGw
gwh[:, 1] = gwh[:, 1] * nGh
# XY coordinates
tbox[:, :, :, 0:2][a_i, gj_i, gi_i] = gxy - gxy.astype(int)
# Width and height in yolo method
tbox[:, :, :, 2:4][a_i, gj_i, gi_i] = np.log(gwh /
anchor_hw[a_i])
tconf[a_i, gj_i, gi_i] = 1
tid[a_i, gj_i, gi_i] = t_id
sample['tbox{}'.format(i)] = tbox
sample['tconf{}'.format(i)] = tconf
sample['tide{}'.format(i)] = tid
class Gt2FairMOTTarget(Gt2TTFTarget):
__shared__ = ['num_classes']
"""
Generate FairMOT targets by ground truth data.
Difference between Gt2FairMOTTarget and Gt2TTFTarget are:
1. the gaussian kernal radius to generate a heatmap.
2. the targets needed during traing.
Args:
num_classes(int): the number of classes.
down_ratio(int): the down ratio from images to heatmap, 4 by default.
max_objs(int): the maximum number of ground truth objects in a image, 500 by default.
"""
def __init__(self, num_classes=1, down_ratio=4, max_objs=500):
super(Gt2TTFTarget, self).__init__()
self.down_ratio = down_ratio
self.num_classes = num_classes
self.max_objs = max_objs
def __call__(self, samples, context=None):
for b_id, sample in enumerate(samples):
output_h = sample['image'].shape[1] // self.down_ratio
output_w = sample['image'].shape[2] // self.down_ratio
heatmap = np.zeros(
(self.num_classes, output_h, output_w), dtype='float32')
bbox_size = np.zeros((self.max_objs, 4), dtype=np.float32)
center_offset = np.zeros((self.max_objs, 2), dtype=np.float32)
index = np.zeros((self.max_objs, ), dtype=np.int64)
index_mask = np.zeros((self.max_objs, ), dtype=np.int32)
reid = np.zeros((self.max_objs, ), dtype=np.int64)
bbox_xys = np.zeros((self.max_objs, 4), dtype=np.float32)
gt_bbox = sample['gt_bbox']
gt_class = sample['gt_class']
gt_ide = sample['gt_ide']
for k in range(len(gt_bbox)):
cls_id = gt_class[k][0]
bbox = gt_bbox[k]
ide = gt_ide[k][0]
bbox[[0, 2]] = bbox[[0, 2]] * output_w
bbox[[1, 3]] = bbox[[1, 3]] * output_h
bbox_amodal = copy.deepcopy(bbox)
bbox_amodal[0] = bbox_amodal[0] - bbox_amodal[2] / 2.
bbox_amodal[1] = bbox_amodal[1] - bbox_amodal[3] / 2.
bbox_amodal[2] = bbox_amodal[0] + bbox_amodal[2]
bbox_amodal[3] = bbox_amodal[1] + bbox_amodal[3]
bbox[0] = np.clip(bbox[0], 0, output_w - 1)
bbox[1] = np.clip(bbox[1], 0, output_h - 1)
h = bbox[3]
w = bbox[2]
bbox_xy = copy.deepcopy(bbox)
bbox_xy[0] = bbox_xy[0] - bbox_xy[2] / 2
bbox_xy[1] = bbox_xy[1] - bbox_xy[3] / 2
bbox_xy[2] = bbox_xy[0] + bbox_xy[2]
bbox_xy[3] = bbox_xy[1] + bbox_xy[3]
if h > 0 and w > 0:
radius = self.gaussian_radius((math.ceil(h), math.ceil(w)))
radius = max(0, int(radius))
ct = np.array([bbox[0], bbox[1]], dtype=np.float32)
ct_int = ct.astype(np.int32)
self.draw_truncate_gaussian(heatmap[cls_id], ct_int, radius,
radius)
bbox_size[k] = ct[0] - bbox_amodal[0], ct[1] - bbox_amodal[1], \
bbox_amodal[2] - ct[0], bbox_amodal[3] - ct[1]
index[k] = ct_int[1] * output_w + ct_int[0]
center_offset[k] = ct - ct_int
index_mask[k] = 1
reid[k] = ide
bbox_xys[k] = bbox_xy
sample['heatmap'] = heatmap
sample['index'] = index
sample['offset'] = center_offset
sample['size'] = bbox_size
sample['index_mask'] = index_mask
sample['reid'] = reid
sample['bbox_xys'] = bbox_xys
sample.pop('is_crowd', None)
sample.pop('difficult', None)
sample.pop('gt_class', None)
sample.pop('gt_bbox', None)
sample.pop('gt_score', None)
sample.pop('gt_ide', None)
return samples
def gaussian_radius(self, det_size, min_overlap=0.7):
height, width = det_size
a1 = 1
b1 = (height + width)
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
sq1 = np.sqrt(b1**2 - 4 * a1 * c1)
r1 = (b1 + sq1) / 2
a2 = 4
b2 = 2 * (height + width)
c2 = (1 - min_overlap) * width * height
sq2 = np.sqrt(b2**2 - 4 * a2 * c2)
r2 = (b2 + sq2) / 2
a3 = 4 * min_overlap
b3 = -2 * min_overlap * (height + width)
c3 = (min_overlap - 1) * width * height
sq3 = np.sqrt(b3**2 - 4 * a3 * c3)
r3 = (b3 + sq3) / 2
return min(r1, r2, r3)

View File

@ -0,0 +1,523 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this file contains helper methods for BBOX processing
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import random
import math
import cv2
def meet_emit_constraint(src_bbox, sample_bbox):
center_x = (src_bbox[2] + src_bbox[0]) / 2
center_y = (src_bbox[3] + src_bbox[1]) / 2
if center_x >= sample_bbox[0] and \
center_x <= sample_bbox[2] and \
center_y >= sample_bbox[1] and \
center_y <= sample_bbox[3]:
return True
return False
def clip_bbox(src_bbox):
src_bbox[0] = max(min(src_bbox[0], 1.0), 0.0)
src_bbox[1] = max(min(src_bbox[1], 1.0), 0.0)
src_bbox[2] = max(min(src_bbox[2], 1.0), 0.0)
src_bbox[3] = max(min(src_bbox[3], 1.0), 0.0)
return src_bbox
def bbox_area(src_bbox):
if src_bbox[2] < src_bbox[0] or src_bbox[3] < src_bbox[1]:
return 0.
else:
width = src_bbox[2] - src_bbox[0]
height = src_bbox[3] - src_bbox[1]
return width * height
def is_overlap(object_bbox, sample_bbox):
if object_bbox[0] >= sample_bbox[2] or \
object_bbox[2] <= sample_bbox[0] or \
object_bbox[1] >= sample_bbox[3] or \
object_bbox[3] <= sample_bbox[1]:
return False
else:
return True
def filter_and_process(sample_bbox, bboxes, labels, scores=None,
keypoints=None):
new_bboxes = []
new_labels = []
new_scores = []
new_keypoints = []
new_kp_ignore = []
for i in range(len(bboxes)):
new_bbox = [0, 0, 0, 0]
obj_bbox = [bboxes[i][0], bboxes[i][1], bboxes[i][2], bboxes[i][3]]
if not meet_emit_constraint(obj_bbox, sample_bbox):
continue
if not is_overlap(obj_bbox, sample_bbox):
continue
sample_width = sample_bbox[2] - sample_bbox[0]
sample_height = sample_bbox[3] - sample_bbox[1]
new_bbox[0] = (obj_bbox[0] - sample_bbox[0]) / sample_width
new_bbox[1] = (obj_bbox[1] - sample_bbox[1]) / sample_height
new_bbox[2] = (obj_bbox[2] - sample_bbox[0]) / sample_width
new_bbox[3] = (obj_bbox[3] - sample_bbox[1]) / sample_height
new_bbox = clip_bbox(new_bbox)
if bbox_area(new_bbox) > 0:
new_bboxes.append(new_bbox)
new_labels.append([labels[i][0]])
if scores is not None:
new_scores.append([scores[i][0]])
if keypoints is not None:
sample_keypoint = keypoints[0][i]
for j in range(len(sample_keypoint)):
kp_len = sample_height if j % 2 else sample_width
sample_coord = sample_bbox[1] if j % 2 else sample_bbox[0]
sample_keypoint[j] = (
sample_keypoint[j] - sample_coord) / kp_len
sample_keypoint[j] = max(min(sample_keypoint[j], 1.0), 0.0)
new_keypoints.append(sample_keypoint)
new_kp_ignore.append(keypoints[1][i])
bboxes = np.array(new_bboxes)
labels = np.array(new_labels)
scores = np.array(new_scores)
if keypoints is not None:
keypoints = np.array(new_keypoints)
new_kp_ignore = np.array(new_kp_ignore)
return bboxes, labels, scores, (keypoints, new_kp_ignore)
return bboxes, labels, scores
def bbox_area_sampling(bboxes, labels, scores, target_size, min_size):
new_bboxes = []
new_labels = []
new_scores = []
for i, bbox in enumerate(bboxes):
w = float((bbox[2] - bbox[0]) * target_size)
h = float((bbox[3] - bbox[1]) * target_size)
if w * h < float(min_size * min_size):
continue
else:
new_bboxes.append(bbox)
new_labels.append(labels[i])
if scores is not None and scores.size != 0:
new_scores.append(scores[i])
bboxes = np.array(new_bboxes)
labels = np.array(new_labels)
scores = np.array(new_scores)
return bboxes, labels, scores
def generate_sample_bbox(sampler):
scale = np.random.uniform(sampler[2], sampler[3])
aspect_ratio = np.random.uniform(sampler[4], sampler[5])
aspect_ratio = max(aspect_ratio, (scale**2.0))
aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))
bbox_width = scale * (aspect_ratio**0.5)
bbox_height = scale / (aspect_ratio**0.5)
xmin_bound = 1 - bbox_width
ymin_bound = 1 - bbox_height
xmin = np.random.uniform(0, xmin_bound)
ymin = np.random.uniform(0, ymin_bound)
xmax = xmin + bbox_width
ymax = ymin + bbox_height
sampled_bbox = [xmin, ymin, xmax, ymax]
return sampled_bbox
def generate_sample_bbox_square(sampler, image_width, image_height):
scale = np.random.uniform(sampler[2], sampler[3])
aspect_ratio = np.random.uniform(sampler[4], sampler[5])
aspect_ratio = max(aspect_ratio, (scale**2.0))
aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))
bbox_width = scale * (aspect_ratio**0.5)
bbox_height = scale / (aspect_ratio**0.5)
if image_height < image_width:
bbox_width = bbox_height * image_height / image_width
else:
bbox_height = bbox_width * image_width / image_height
xmin_bound = 1 - bbox_width
ymin_bound = 1 - bbox_height
xmin = np.random.uniform(0, xmin_bound)
ymin = np.random.uniform(0, ymin_bound)
xmax = xmin + bbox_width
ymax = ymin + bbox_height
sampled_bbox = [xmin, ymin, xmax, ymax]
return sampled_bbox
def data_anchor_sampling(bbox_labels, image_width, image_height, scale_array,
resize_width):
num_gt = len(bbox_labels)
# np.random.randint range: [low, high)
rand_idx = np.random.randint(0, num_gt) if num_gt != 0 else 0
if num_gt != 0:
norm_xmin = bbox_labels[rand_idx][0]
norm_ymin = bbox_labels[rand_idx][1]
norm_xmax = bbox_labels[rand_idx][2]
norm_ymax = bbox_labels[rand_idx][3]
xmin = norm_xmin * image_width
ymin = norm_ymin * image_height
wid = image_width * (norm_xmax - norm_xmin)
hei = image_height * (norm_ymax - norm_ymin)
range_size = 0
area = wid * hei
for scale_ind in range(0, len(scale_array) - 1):
if area > scale_array[scale_ind] ** 2 and area < \
scale_array[scale_ind + 1] ** 2:
range_size = scale_ind + 1
break
if area > scale_array[len(scale_array) - 2]**2:
range_size = len(scale_array) - 2
scale_choose = 0.0
if range_size == 0:
rand_idx_size = 0
else:
# np.random.randint range: [low, high)
rng_rand_size = np.random.randint(0, range_size + 1)
rand_idx_size = rng_rand_size % (range_size + 1)
if rand_idx_size == range_size:
min_resize_val = scale_array[rand_idx_size] / 2.0
max_resize_val = min(2.0 * scale_array[rand_idx_size],
2 * math.sqrt(wid * hei))
scale_choose = random.uniform(min_resize_val, max_resize_val)
else:
min_resize_val = scale_array[rand_idx_size] / 2.0
max_resize_val = 2.0 * scale_array[rand_idx_size]
scale_choose = random.uniform(min_resize_val, max_resize_val)
sample_bbox_size = wid * resize_width / scale_choose
w_off_orig = 0.0
h_off_orig = 0.0
if sample_bbox_size < max(image_height, image_width):
if wid <= sample_bbox_size:
w_off_orig = np.random.uniform(xmin + wid - sample_bbox_size,
xmin)
else:
w_off_orig = np.random.uniform(xmin,
xmin + wid - sample_bbox_size)
if hei <= sample_bbox_size:
h_off_orig = np.random.uniform(ymin + hei - sample_bbox_size,
ymin)
else:
h_off_orig = np.random.uniform(ymin,
ymin + hei - sample_bbox_size)
else:
w_off_orig = np.random.uniform(image_width - sample_bbox_size, 0.0)
h_off_orig = np.random.uniform(image_height - sample_bbox_size, 0.0)
w_off_orig = math.floor(w_off_orig)
h_off_orig = math.floor(h_off_orig)
# Figure out top left coordinates.
w_off = float(w_off_orig / image_width)
h_off = float(h_off_orig / image_height)
sampled_bbox = [
w_off, h_off, w_off + float(sample_bbox_size / image_width),
h_off + float(sample_bbox_size / image_height)
]
return sampled_bbox
else:
return 0
def jaccard_overlap(sample_bbox, object_bbox):
if sample_bbox[0] >= object_bbox[2] or \
sample_bbox[2] <= object_bbox[0] or \
sample_bbox[1] >= object_bbox[3] or \
sample_bbox[3] <= object_bbox[1]:
return 0
intersect_xmin = max(sample_bbox[0], object_bbox[0])
intersect_ymin = max(sample_bbox[1], object_bbox[1])
intersect_xmax = min(sample_bbox[2], object_bbox[2])
intersect_ymax = min(sample_bbox[3], object_bbox[3])
intersect_size = (intersect_xmax - intersect_xmin) * (
intersect_ymax - intersect_ymin)
sample_bbox_size = bbox_area(sample_bbox)
object_bbox_size = bbox_area(object_bbox)
overlap = intersect_size / (
sample_bbox_size + object_bbox_size - intersect_size)
return overlap
def intersect_bbox(bbox1, bbox2):
if bbox2[0] > bbox1[2] or bbox2[2] < bbox1[0] or \
bbox2[1] > bbox1[3] or bbox2[3] < bbox1[1]:
intersection_box = [0.0, 0.0, 0.0, 0.0]
else:
intersection_box = [
max(bbox1[0], bbox2[0]), max(bbox1[1], bbox2[1]),
min(bbox1[2], bbox2[2]), min(bbox1[3], bbox2[3])
]
return intersection_box
def bbox_coverage(bbox1, bbox2):
inter_box = intersect_bbox(bbox1, bbox2)
intersect_size = bbox_area(inter_box)
if intersect_size > 0:
bbox1_size = bbox_area(bbox1)
return intersect_size / bbox1_size
else:
return 0.
def satisfy_sample_constraint(sampler,
sample_bbox,
gt_bboxes,
satisfy_all=False):
if sampler[6] == 0 and sampler[7] == 0:
return True
satisfied = []
for i in range(len(gt_bboxes)):
object_bbox = [
gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3]
]
overlap = jaccard_overlap(sample_bbox, object_bbox)
if sampler[6] != 0 and \
overlap < sampler[6]:
satisfied.append(False)
continue
if sampler[7] != 0 and \
overlap > sampler[7]:
satisfied.append(False)
continue
satisfied.append(True)
if not satisfy_all:
return True
if satisfy_all:
return np.all(satisfied)
else:
return False
def satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bboxes):
if sampler[6] == 0 and sampler[7] == 0:
has_jaccard_overlap = False
else:
has_jaccard_overlap = True
if sampler[8] == 0 and sampler[9] == 0:
has_object_coverage = False
else:
has_object_coverage = True
if not has_jaccard_overlap and not has_object_coverage:
return True
found = False
for i in range(len(gt_bboxes)):
object_bbox = [
gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3]
]
if has_jaccard_overlap:
overlap = jaccard_overlap(sample_bbox, object_bbox)
if sampler[6] != 0 and \
overlap < sampler[6]:
continue
if sampler[7] != 0 and \
overlap > sampler[7]:
continue
found = True
if has_object_coverage:
object_coverage = bbox_coverage(object_bbox, sample_bbox)
if sampler[8] != 0 and \
object_coverage < sampler[8]:
continue
if sampler[9] != 0 and \
object_coverage > sampler[9]:
continue
found = True
if found:
return True
return found
def crop_image_sampling(img, sample_bbox, image_width, image_height,
target_size):
# no clipping here
xmin = int(sample_bbox[0] * image_width)
xmax = int(sample_bbox[2] * image_width)
ymin = int(sample_bbox[1] * image_height)
ymax = int(sample_bbox[3] * image_height)
w_off = xmin
h_off = ymin
width = xmax - xmin
height = ymax - ymin
cross_xmin = max(0.0, float(w_off))
cross_ymin = max(0.0, float(h_off))
cross_xmax = min(float(w_off + width - 1.0), float(image_width))
cross_ymax = min(float(h_off + height - 1.0), float(image_height))
cross_width = cross_xmax - cross_xmin
cross_height = cross_ymax - cross_ymin
roi_xmin = 0 if w_off >= 0 else abs(w_off)
roi_ymin = 0 if h_off >= 0 else abs(h_off)
roi_width = cross_width
roi_height = cross_height
roi_y1 = int(roi_ymin)
roi_y2 = int(roi_ymin + roi_height)
roi_x1 = int(roi_xmin)
roi_x2 = int(roi_xmin + roi_width)
cross_y1 = int(cross_ymin)
cross_y2 = int(cross_ymin + cross_height)
cross_x1 = int(cross_xmin)
cross_x2 = int(cross_xmin + cross_width)
sample_img = np.zeros((height, width, 3))
sample_img[roi_y1: roi_y2, roi_x1: roi_x2] = \
img[cross_y1: cross_y2, cross_x1: cross_x2]
sample_img = cv2.resize(
sample_img, (target_size, target_size), interpolation=cv2.INTER_AREA)
return sample_img
def is_poly(segm):
assert isinstance(segm, (list, dict)), \
"Invalid segm type: {}".format(type(segm))
return isinstance(segm, list)
def gaussian_radius(bbox_size, min_overlap):
height, width = bbox_size
a1 = 1
b1 = (height + width)
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
sq1 = np.sqrt(b1**2 - 4 * a1 * c1)
radius1 = (b1 - sq1) / (2 * a1)
a2 = 4
b2 = 2 * (height + width)
c2 = (1 - min_overlap) * width * height
sq2 = np.sqrt(b2**2 - 4 * a2 * c2)
radius2 = (b2 - sq2) / (2 * a2)
a3 = 4 * min_overlap
b3 = -2 * min_overlap * (height + width)
c3 = (min_overlap - 1) * width * height
sq3 = np.sqrt(b3**2 - 4 * a3 * c3)
radius3 = (b3 + sq3) / (2 * a3)
return min(radius1, radius2, radius3)
def draw_gaussian(heatmap, center, radius, k=1, delte=6):
diameter = 2 * radius + 1
sigma = diameter / delte
gaussian = gaussian2D((diameter, diameter), sigma_x=sigma, sigma_y=sigma)
x, y = center
height, width = heatmap.shape[0:2]
left, right = min(x, radius), min(width - x, radius + 1)
top, bottom = min(y, radius), min(height - y, radius + 1)
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:
radius + right]
np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
def gaussian2D(shape, sigma_x=1, sigma_y=1):
m, n = [(ss - 1.) / 2. for ss in shape]
y, x = np.ogrid[-m:m + 1, -n:n + 1]
h = np.exp(-(x * x / (2 * sigma_x * sigma_x) + y * y / (2 * sigma_y *
sigma_y)))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
return h
def transform_bbox(sample,
M,
w,
h,
area_thr=0.25,
wh_thr=2,
ar_thr=20,
perspective=False):
"""
transfrom bbox according to tranformation matrix M,
refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
"""
bbox = sample['gt_bbox']
label = sample['gt_class']
# rotate bbox
n = len(bbox)
xy = np.ones((n * 4, 3), dtype=np.float32)
xy[:, :2] = bbox[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)
# xy = xy @ M.T
xy = np.matmul(xy, M.T)
if perspective:
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)
else:
xy = xy[:, :2].reshape(n, 8)
# get new bboxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
bbox = np.concatenate(
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip boxes
mask = filter_bbox(bbox, w, h, area_thr)
sample['gt_bbox'] = bbox[mask]
sample['gt_class'] = sample['gt_class'][mask]
if 'is_crowd' in sample:
sample['is_crowd'] = sample['is_crowd'][mask]
if 'difficult' in sample:
sample['difficult'] = sample['difficult'][mask]
return sample
def filter_bbox(bbox, w, h, area_thr=0.25, wh_thr=2, ar_thr=20):
"""
filter bbox, refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
"""
# clip boxes
area1 = (bbox[:, 2:4] - bbox[:, 0:2]).prod(1)
bbox[:, [0, 2]] = bbox[:, [0, 2]].clip(0, w)
bbox[:, [1, 3]] = bbox[:, [1, 3]].clip(0, h)
# compute
area2 = (bbox[:, 2:4] - bbox[:, 0:2]).prod(1)
area_ratio = area2 / (area1 + 1e-16)
wh = bbox[:, 2:4] - bbox[:, 0:2]
ar_ratio = np.maximum(wh[:, 1] / (wh[:, 0] + 1e-16),
wh[:, 0] / (wh[:, 1] + 1e-16))
mask = (area_ratio > area_thr) & (
(wh > wh_thr).all(1)) & (ar_ratio < ar_thr)
return mask

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,29 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import trainer
from .trainer import *
from . import tracker
from .tracker import *
from . import callbacks
from .callbacks import *
from . import env
from .env import *
__all__ = trainer.__all__ \
+ tracker.__all__ \
+ callbacks.__all__ \
+ env.__all__

View File

@ -0,0 +1,258 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import datetime
import six
import paddle.distributed as dist
from ppdet.utils.checkpoint import save_model
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
__all__ = ['Callback', 'ComposeCallback', 'LogPrinter', 'Checkpointer']
class Callback(object):
def __init__(self, model):
self.model = model
def on_step_begin(self, status):
pass
def on_step_end(self, status):
pass
def on_epoch_begin(self, status):
pass
def on_epoch_end(self, status):
pass
class ComposeCallback(object):
def __init__(self, callbacks):
callbacks = [c for c in list(callbacks) if c is not None]
for c in callbacks:
assert isinstance(
c, Callback), "callback should be subclass of Callback"
self._callbacks = callbacks
def on_step_begin(self, status):
for c in self._callbacks:
c.on_step_begin(status)
def on_step_end(self, status):
for c in self._callbacks:
c.on_step_end(status)
def on_epoch_begin(self, status):
for c in self._callbacks:
c.on_epoch_begin(status)
def on_epoch_end(self, status):
for c in self._callbacks:
c.on_epoch_end(status)
class LogPrinter(Callback):
def __init__(self, model):
super(LogPrinter, self).__init__(model)
def on_step_end(self, status):
if dist.get_world_size() < 2 or dist.get_rank() == 0:
mode = status['mode']
if mode == 'train':
epoch_id = status['epoch_id']
step_id = status['step_id']
steps_per_epoch = status['steps_per_epoch']
training_staus = status['training_staus']
batch_time = status['batch_time']
data_time = status['data_time']
epoches = self.model.cfg.epoch
batch_size = self.model.cfg['{}Reader'.format(mode.capitalize(
))]['batch_size']
logs = training_staus.log()
space_fmt = ':' + str(len(str(steps_per_epoch))) + 'd'
if step_id % self.model.cfg.log_iter == 0:
eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id
eta_sec = eta_steps * batch_time.global_avg
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
ips = float(batch_size) / batch_time.avg
fmt = ' '.join([
'Epoch: [{}]',
'[{' + space_fmt + '}/{}]',
'learning_rate: {lr:.6f}',
'{meters}',
'eta: {eta}',
'batch_cost: {btime}',
'data_cost: {dtime}',
'ips: {ips:.4f} images/s',
])
fmt = fmt.format(
epoch_id,
step_id,
steps_per_epoch,
lr=status['learning_rate'],
meters=logs,
eta=eta_str,
btime=str(batch_time),
dtime=str(data_time),
ips=ips)
logger.info(fmt)
if mode == 'eval':
step_id = status['step_id']
if step_id % 100 == 0:
logger.info("Eval iter: {}".format(step_id))
def on_epoch_end(self, status):
if dist.get_world_size() < 2 or dist.get_rank() == 0:
mode = status['mode']
if mode == 'eval':
sample_num = status['sample_num']
cost_time = status['cost_time']
logger.info('Total sample number: {}, averge FPS: {}'.format(
sample_num, sample_num / cost_time))
class Checkpointer(Callback):
def __init__(self, model):
super(Checkpointer, self).__init__(model)
cfg = self.model.cfg
self.best_ap = 0.
self.save_dir = os.path.join(self.model.cfg.save_dir,
self.model.cfg.filename)
if hasattr(self.model.model, 'student_model'):
self.weight = self.model.model.student_model
else:
self.weight = self.model.model
def on_epoch_end(self, status):
# Checkpointer only performed during training
mode = status['mode']
epoch_id = status['epoch_id']
weight = None
save_name = None
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'train':
end_epoch = self.model.cfg.epoch
if (
epoch_id + 1
) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1:
save_name = str(
epoch_id) if epoch_id != end_epoch - 1 else "model_final"
weight = self.weight
elif mode == 'eval':
if 'save_best_model' in status and status['save_best_model']:
for metric in self.model._metrics:
map_res = metric.get_results()
if 'bbox' in map_res:
key = 'bbox'
elif 'keypoint' in map_res:
key = 'keypoint'
else:
key = 'mask'
if key not in map_res:
logger.warning("Evaluation results empty, this may be due to " \
"training iterations being too few or not " \
"loading the correct weights.")
return
if map_res[key][0] > self.best_ap:
self.best_ap = map_res[key][0]
save_name = 'best_model'
weight = self.weight
logger.info("Best test {} ap is {:0.3f}.".format(
key, self.best_ap))
if weight:
save_model(weight, self.model.optimizer, self.save_dir,
save_name, epoch_id + 1)
class WiferFaceEval(Callback):
def __init__(self, model):
super(WiferFaceEval, self).__init__(model)
def on_epoch_begin(self, status):
assert self.model.mode == 'eval', \
"WiferFaceEval can only be set during evaluation"
for metric in self.model._metrics:
metric.update(self.model.model)
sys.exit()
class VisualDLWriter(Callback):
"""
Use VisualDL to log data or image
"""
def __init__(self, model):
super(VisualDLWriter, self).__init__(model)
assert six.PY3, "VisualDL requires Python >= 3.5"
try:
from visualdl import LogWriter
except Exception as e:
logger.error('visualdl not found, plaese install visualdl. '
'for example: `pip install visualdl`.')
raise e
self.vdl_writer = LogWriter(
model.cfg.get('vdl_log_dir', 'vdl_log_dir/scalar'))
self.vdl_loss_step = 0
self.vdl_mAP_step = 0
self.vdl_image_step = 0
self.vdl_image_frame = 0
def on_step_end(self, status):
mode = status['mode']
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'train':
training_staus = status['training_staus']
for loss_name, loss_value in training_staus.get().items():
self.vdl_writer.add_scalar(loss_name, loss_value,
self.vdl_loss_step)
self.vdl_loss_step += 1
elif mode == 'test':
ori_image = status['original_image']
result_image = status['result_image']
self.vdl_writer.add_image(
"original/frame_{}".format(self.vdl_image_frame), ori_image,
self.vdl_image_step)
self.vdl_writer.add_image(
"result/frame_{}".format(self.vdl_image_frame),
result_image, self.vdl_image_step)
self.vdl_image_step += 1
# each frame can display ten pictures at most.
if self.vdl_image_step % 10 == 0:
self.vdl_image_step = 0
self.vdl_image_frame += 1
def on_epoch_end(self, status):
mode = status['mode']
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'eval':
for metric in self.model._metrics:
for key, map_value in metric.get_results().items():
self.vdl_writer.add_scalar("{}-mAP".format(key),
map_value[0],
self.vdl_mAP_step)
self.vdl_mAP_step += 1

View File

@ -0,0 +1,47 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import numpy as np
import paddle
from paddle.distributed import fleet
__all__ = ['init_parallel_env', 'set_random_seed', 'init_fleet_env']
def init_fleet_env():
fleet.init(is_collective=True)
def init_parallel_env():
env = os.environ
dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
if dist:
trainer_id = int(env['PADDLE_TRAINER_ID'])
local_seed = (99 + trainer_id)
random.seed(local_seed)
np.random.seed(local_seed)
paddle.distributed.init_parallel_env()
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)

View File

@ -0,0 +1,117 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import yaml
from collections import OrderedDict
from ppdet.data.source.category import get_categories
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
# Global dictionary
TRT_MIN_SUBGRAPH = {
'YOLO': 3,
'SSD': 60,
'RCNN': 40,
'RetinaNet': 40,
'S2ANet': 80,
'EfficientDet': 40,
'Face': 3,
'TTFNet': 60,
'FCOS': 16,
'SOLOv2': 60,
'HigherHRNet': 3,
'HRNet': 3,
}
KEYPOINT_ARCH = ['HigherHRNet', 'TopDownHRNet']
def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
preprocess_list = []
anno_file = dataset_cfg.get_anno()
clsid2catid, catid2name = get_categories(metric, anno_file, arch)
label_list = [str(cat) for cat in catid2name.values()]
sample_transforms = reader_cfg['sample_transforms']
for st in sample_transforms[1:]:
for key, value in st.items():
p = {'type': key}
if key == 'Resize':
if int(image_shape[1]) != -1:
value['target_size'] = image_shape[1:]
p.update(value)
preprocess_list.append(p)
batch_transforms = reader_cfg.get('batch_transforms', None)
if batch_transforms:
for bt in batch_transforms:
for key, value in bt.items():
# for deploy/infer, use PadStride(stride) instead PadBatch(pad_to_stride)
if key == 'PadBatch':
preprocess_list.append({
'type': 'PadStride',
'stride': value['pad_to_stride']
})
break
return preprocess_list, label_list
def _dump_infer_config(config, path, image_shape, model):
arch_state = False
from ppdet.core.config.yaml_helpers import setup_orderdict
setup_orderdict()
infer_cfg = OrderedDict({
'mode': 'fluid',
'draw_threshold': 0.5,
'metric': config['metric'],
})
infer_arch = config['architecture']
for arch, min_subgraph_size in TRT_MIN_SUBGRAPH.items():
if arch in infer_arch:
infer_cfg['arch'] = arch
infer_cfg['min_subgraph_size'] = min_subgraph_size
arch_state = True
break
if not arch_state:
logger.error(
'Architecture: {} is not supported for exporting model now'.format(
infer_arch))
os._exit(0)
if 'Mask' in infer_arch:
infer_cfg['mask'] = True
label_arch = 'detection_arch'
if infer_arch in KEYPOINT_ARCH:
label_arch = 'keypoint_arch'
infer_cfg['Preprocess'], infer_cfg['label_list'] = _parse_reader(
config['TestReader'], config['TestDataset'], config['metric'],
label_arch, image_shape)
if infer_arch == 'S2ANet':
# TODO: move background to num_classes
if infer_cfg['label_list'][0] != 'background':
infer_cfg['label_list'].insert(0, 'background')
yaml.dump(infer_cfg, open(path, 'w'))
logger.info("Export inference config file to {}".format(os.path.join(path)))

View File

@ -0,0 +1,421 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cv2
import glob
import paddle
import numpy as np
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight
from ppdet.modeling.mot.utils import Timer, load_det_results
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.metrics import Metric, MOTMetric
from .callbacks import Callback, ComposeCallback
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['Tracker']
class Tracker(object):
def __init__(self, cfg, mode='eval'):
self.cfg = cfg
assert mode.lower() in ['test', 'eval'], \
"mode should be 'test' or 'eval'"
self.mode = mode.lower()
self.optimizer = None
# build MOT data loader
self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
# build model
self.model = create(cfg.architecture)
self.status = {}
self.start_epoch = 0
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def _init_callbacks(self):
self._callbacks = []
self._compose_callback = None
def _init_metrics(self):
if self.mode in ['test']:
self._metrics = []
return
if self.cfg.metric == 'MOT':
self._metrics = [MOTMetric(), ]
else:
logger.warning("Metric not support for metric type {}".format(
self.cfg.metric))
self._metrics = []
def _reset_metrics(self):
for metric in self._metrics:
metric.reset()
def register_callbacks(self, callbacks):
callbacks = [h for h in list(callbacks) if h is not None]
for c in callbacks:
assert isinstance(c, Callback), \
"metrics shoule be instances of subclass of Metric"
self._callbacks.extend(callbacks)
self._compose_callback = ComposeCallback(self._callbacks)
def register_metrics(self, metrics):
metrics = [m for m in list(metrics) if m is not None]
for m in metrics:
assert isinstance(m, Metric), \
"metrics shoule be instances of subclass of Metric"
self._metrics.extend(metrics)
def load_weights_jde(self, weights):
load_weight(self.model, weights, self.optimizer)
def load_weights_sde(self, det_weights, reid_weights):
if self.model.detector:
load_weight(self.model.detector, det_weights, self.optimizer)
load_weight(self.model.reid, reid_weights, self.optimizer)
def _eval_seq_jde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)
timer = Timer()
results = []
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
for step_id, data in enumerate(dataloader):
self.status['step_id'] = step_id
if frame_id % 40 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(
frame_id, 1. / max(1e-5, timer.average_time)))
# forward
timer.tic()
online_targets = self.model(data)
online_tlwhs, online_ids = [], []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids))
self.save_results(data, frame_id, online_ids, online_tlwhs,
timer.average_time, show_image, save_dir)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def _eval_seq_sde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
det_file=''):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
use_detector = False if not self.model.detector else True
timer = Timer()
results = []
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
self.model.reid.eval()
if not use_detector:
dets_list = load_det_results(det_file, len(dataloader))
logger.info('Finish loading detection results file {}.'.format(
det_file))
for step_id, data in enumerate(dataloader):
self.status['step_id'] = step_id
if frame_id % 40 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(
frame_id, 1. / max(1e-5, timer.average_time)))
timer.tic()
if not use_detector:
timer.tic()
dets = dets_list[frame_id]
bbox_tlwh = paddle.to_tensor(dets['bbox'], dtype='float32')
pred_scores = paddle.to_tensor(dets['score'], dtype='float32')
if bbox_tlwh.shape[0] > 0:
pred_bboxes = paddle.concat(
(bbox_tlwh[:, 0:2],
bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
axis=1)
else:
pred_bboxes = []
pred_scores = []
data.update({
'pred_bboxes': pred_bboxes,
'pred_scores': pred_scores
})
# forward
timer.tic()
online_targets = self.model(data)
online_tlwhs = []
online_ids = []
for track in online_targets:
if not track.is_confirmed() or track.time_since_update > 1:
continue
tlwh = track.to_tlwh()
track_id = track.track_id
online_tlwhs.append(tlwh)
online_ids.append(track_id)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids))
self.save_results(data, frame_id, online_ids, online_tlwhs,
timer.average_time, show_image, save_dir)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def mot_evaluate(self,
data_root,
seqs,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=False,
show_image=False,
det_results_dir=''):
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in ['mot', 'kitti'], \
"data_type should be 'mot' or 'kitti'"
assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
"model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"
# run tracking
n_frame = 0
timer_avgs, timer_calls = [], []
for seq in seqs:
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
logger.info('start seq: {}'.format(seq))
infer_dir = os.path.join(data_root, seq, 'img1')
images = self.get_infer_images(infer_dir)
self.dataset.set_images(images)
dataloader = create('EvalMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read()
frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
meta_info.find('\nseqLength')])
if model_type in ['JDE', 'FairMOT']:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
elif model_type in ['DeepSORT']:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
det_file=os.path.join(det_results_dir,
'{}.txt'.format(seq)))
else:
raise ValueError(model_type)
self.write_mot_results(result_filename, results, data_type)
n_frame += nf
timer_avgs.append(ta)
timer_calls.append(tc)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}.'.format(output_video_path))
logger.info('Evaluate seq: {}'.format(seq))
# update metrics
for metric in self._metrics:
metric.update(data_root, seq, data_type, result_root,
result_filename)
timer_avgs = np.asarray(timer_avgs)
timer_calls = np.asarray(timer_calls)
all_time = np.dot(timer_avgs, timer_calls)
avg_time = all_time / np.sum(timer_calls)
logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
all_time, 1.0 / avg_time))
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
# reset metric states for metric may performed multiple times
self._reset_metrics()
def get_infer_images(self, infer_dir):
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
images = set()
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
images.sort()
assert len(images) > 0, "no image found in {}".format(infer_dir)
logger.info("Found {} inference images in total.".format(len(images)))
return images
def mot_predict(self,
video_file,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=True,
show_image=False,
det_results_dir=''):
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in ['mot', 'kitti'], \
"data_type should be 'mot' or 'kitti'"
assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
"model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"
# run tracking
seq = video_file.split('/')[-1].split('.')[0]
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
logger.info('Starting tracking {}'.format(video_file))
self.dataset.set_video(video_file)
dataloader = create('TestMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
frame_rate = self.dataset.frame_rate
if model_type in ['JDE', 'FairMOT']:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
elif model_type in ['DeepSORT']:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
det_file=os.path.join(det_results_dir, '{}.txt'.format(seq)))
else:
raise ValueError(model_type)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}'.format(output_video_path))
def write_mot_results(self, filename, results, data_type='mot'):
if data_type in ['mot', 'mcmot', 'lab']:
save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
elif data_type == 'kitti':
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
else:
raise ValueError(data_type)
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids in results:
if data_type == 'kitti':
frame_id -= 1
for tlwh, track_id in zip(tlwhs, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
x2, y2 = x1 + w, y1 + h
line = save_format.format(
frame=frame_id,
id=track_id,
x1=x1,
y1=y1,
x2=x2,
y2=y2,
w=w,
h=h)
f.write(line)
logger.info('MOT results save in {}'.format(filename))
def save_results(self, data, frame_id, online_ids, online_tlwhs,
average_time, show_image, save_dir):
if show_image or save_dir is not None:
assert 'ori_image' in data
img0 = data['ori_image'].numpy()[0]
online_im = mot_vis.plot_tracking(
img0,
online_tlwhs,
online_ids,
frame_id=frame_id,
fps=1. / average_time)
if show_image:
cv2.imshow('online_im', online_im)
if save_dir is not None:
cv2.imwrite(
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
online_im)

View File

@ -0,0 +1,533 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import copy
import time
import numpy as np
from PIL import Image
import paddle
import paddle.distributed as dist
from paddle.distributed import fleet
from paddle import amp
from paddle.static import InputSpec
from ppdet.optimizer import ModelEMA
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.utils.visualizer import visualize_results, save_result
from ppdet.metrics import JDEDetMetric, JDEReIDMetric
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval
from ppdet.data.source.category import get_categories
import ppdet.utils.stats as stats
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
from .export_utils import _dump_infer_config
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
__all__ = ['Trainer']
class Trainer(object):
def __init__(self, cfg, mode='train'):
self.cfg = cfg
assert mode.lower() in ['train', 'eval', 'test'], \
"mode should be 'train', 'eval' or 'test'"
self.mode = mode.lower()
self.optimizer = None
self.is_loaded_weights = False
# build data loader
self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
if self.mode == 'train':
self.loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, cfg.worker_num)
if cfg.architecture == 'JDE' and self.mode == 'train':
cfg['JDEEmbeddingHead'][
'num_identifiers'] = self.dataset.total_identities
if cfg.architecture == 'FairMOT' and self.mode == 'train':
cfg['FairMOTEmbeddingHead'][
'num_identifiers'] = self.dataset.total_identities
# build model
if 'model' not in self.cfg:
self.model = create(cfg.architecture)
else:
self.model = self.cfg.model
self.is_loaded_weights = True
self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
if self.use_ema:
self.ema = ModelEMA(
cfg['ema_decay'], self.model, use_thres_step=True)
# EvalDataset build with BatchSampler to evaluate in single device
# TODO: multi-device evaluate
if self.mode == 'eval':
self._eval_batch_sampler = paddle.io.BatchSampler(
self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
self.loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, cfg.worker_num, self._eval_batch_sampler)
# TestDataset build after user set images, skip loader creation here
# build optimizer in train mode
if self.mode == 'train':
steps_per_epoch = len(self.loader)
self.lr = create('LearningRate')(steps_per_epoch)
self.optimizer = create('OptimizerBuilder')(self.lr,
self.model.parameters())
self._nranks = dist.get_world_size()
self._local_rank = dist.get_rank()
self.status = {}
self.start_epoch = 0
self.end_epoch = cfg.epoch
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def _init_callbacks(self):
if self.mode == 'train':
self._callbacks = [LogPrinter(self), Checkpointer(self)]
if self.cfg.get('use_vdl', False):
self._callbacks.append(VisualDLWriter(self))
self._compose_callback = ComposeCallback(self._callbacks)
elif self.mode == 'eval':
self._callbacks = [LogPrinter(self)]
if self.cfg.metric == 'WiderFace':
self._callbacks.append(WiferFaceEval(self))
self._compose_callback = ComposeCallback(self._callbacks)
elif self.mode == 'test' and self.cfg.get('use_vdl', False):
self._callbacks = [VisualDLWriter(self)]
self._compose_callback = ComposeCallback(self._callbacks)
else:
self._callbacks = []
self._compose_callback = None
def _init_metrics(self, validate=False):
if self.mode == 'test' or (self.mode == 'train' and not validate):
self._metrics = []
return
classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
if self.cfg.metric == 'COCO':
# TODO: bias should be unified
bias = self.cfg['bias'] if 'bias' in self.cfg else 0
output_eval = self.cfg['output_eval'] \
if 'output_eval' in self.cfg else None
save_prediction_only = self.cfg.get('save_prediction_only', False)
# pass clsid2catid info to metric instance to avoid multiple loading
# annotation file
clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
if self.mode == 'eval' else None
# when do validation in train, annotation file should be get from
# EvalReader instead of self.dataset(which is TrainReader)
anno_file = self.dataset.get_anno()
if self.mode == 'train' and validate:
eval_dataset = self.cfg['EvalDataset']
eval_dataset.check_or_download_dataset()
anno_file = eval_dataset.get_anno()
IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
self._metrics = [
COCOMetric(
anno_file=anno_file,
clsid2catid=clsid2catid,
classwise=classwise,
output_eval=output_eval,
bias=bias,
IouType=IouType,
save_prediction_only=save_prediction_only)
]
elif self.cfg.metric == 'VOC':
self._metrics = [
VOCMetric(
label_list=self.dataset.get_label_list(),
class_num=self.cfg.num_classes,
map_type=self.cfg.map_type,
classwise=classwise)
]
elif self.cfg.metric == 'WiderFace':
multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
self._metrics = [
WiderFaceMetric(
image_dir=os.path.join(self.dataset.dataset_dir,
self.dataset.image_dir),
anno_file=self.dataset.get_anno(),
multi_scale=multi_scale)
]
elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
eval_dataset = self.cfg['EvalDataset']
eval_dataset.check_or_download_dataset()
anno_file = eval_dataset.get_anno()
self._metrics = [
KeyPointTopDownCOCOEval(anno_file,
len(eval_dataset), self.cfg.num_joints,
self.cfg.save_dir)
]
elif self.cfg.metric == 'MOTDet':
self._metrics = [JDEDetMetric(), ]
elif self.cfg.metric == 'ReID':
self._metrics = [JDEReIDMetric(), ]
else:
logger.warning("Metric not support for metric type {}".format(
self.cfg.metric))
self._metrics = []
def _reset_metrics(self):
for metric in self._metrics:
metric.reset()
def register_callbacks(self, callbacks):
callbacks = [c for c in list(callbacks) if c is not None]
for c in callbacks:
assert isinstance(c, Callback), \
"metrics shoule be instances of subclass of Metric"
self._callbacks.extend(callbacks)
self._compose_callback = ComposeCallback(self._callbacks)
def register_metrics(self, metrics):
metrics = [m for m in list(metrics) if m is not None]
for m in metrics:
assert isinstance(m, Metric), \
"metrics shoule be instances of subclass of Metric"
self._metrics.extend(metrics)
def load_weights(self, weights):
if self.is_loaded_weights:
return
self.start_epoch = 0
if hasattr(self.model, 'detector'):
if self.model.__class__.__name__ == 'FairMOT':
load_pretrain_weight(self.model, weights)
else:
load_pretrain_weight(self.model.detector, weights)
else:
load_pretrain_weight(self.model, weights)
logger.debug("Load weights {} to start training".format(weights))
def resume_weights(self, weights):
# support Distill resume weights
if hasattr(self.model, 'student_model'):
self.start_epoch = load_weight(self.model.student_model, weights,
self.optimizer)
else:
self.start_epoch = load_weight(self.model, weights, self.optimizer)
logger.debug("Resume weights of epoch {}".format(self.start_epoch))
def train(self, validate=False):
assert self.mode == 'train', "Model not in 'train' mode"
# if validation in training is enabled, metrics should be re-init
if validate:
self._init_metrics(validate=validate)
self._reset_metrics()
model = self.model
if self.cfg.get('fleet', False):
model = fleet.distributed_model(model)
self.optimizer = fleet.distributed_optimizer(self.optimizer)
elif self._nranks > 1:
find_unused_parameters = self.cfg[
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
model = paddle.DataParallel(
self.model, find_unused_parameters=find_unused_parameters)
# initial fp16
if self.cfg.get('fp16', False):
scaler = amp.GradScaler(
enable=self.cfg.use_gpu, init_loss_scaling=1024)
self.status.update({
'epoch_id': self.start_epoch,
'step_id': 0,
'steps_per_epoch': len(self.loader)
})
self.status['batch_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['data_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)
for epoch_id in range(self.start_epoch, self.cfg.epoch):
self.status['mode'] = 'train'
self.status['epoch_id'] = epoch_id
self._compose_callback.on_epoch_begin(self.status)
self.loader.dataset.set_epoch(epoch_id)
model.train()
iter_tic = time.time()
for step_id, data in enumerate(self.loader):
self.status['data_time'].update(time.time() - iter_tic)
self.status['step_id'] = step_id
self._compose_callback.on_step_begin(self.status)
if self.cfg.get('fp16', False):
with amp.auto_cast(enable=self.cfg.use_gpu):
# model forward
outputs = model(data)
loss = outputs['loss']
# model backward
scaled_loss = scaler.scale(loss)
scaled_loss.backward()
# in dygraph mode, optimizer.minimize is equal to optimizer.step
scaler.minimize(self.optimizer, scaled_loss)
else:
# model forward
outputs = model(data)
loss = outputs['loss']
# model backward
loss.backward()
self.optimizer.step()
curr_lr = self.optimizer.get_lr()
self.lr.step()
self.optimizer.clear_grad()
self.status['learning_rate'] = curr_lr
if self._nranks < 2 or self._local_rank == 0:
self.status['training_staus'].update(outputs)
self.status['batch_time'].update(time.time() - iter_tic)
self._compose_callback.on_step_end(self.status)
if self.use_ema:
self.ema.update(self.model)
iter_tic = time.time()
# apply ema weight on model
if self.use_ema:
weight = copy.deepcopy(self.model.state_dict())
self.model.set_dict(self.ema.apply())
self._compose_callback.on_epoch_end(self.status)
if validate and (self._nranks < 2 or self._local_rank == 0) \
and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
or epoch_id == self.end_epoch - 1):
if not hasattr(self, '_eval_loader'):
# build evaluation dataset and loader
self._eval_dataset = self.cfg.EvalDataset
self._eval_batch_sampler = \
paddle.io.BatchSampler(
self._eval_dataset,
batch_size=self.cfg.EvalReader['batch_size'])
self._eval_loader = create('EvalReader')(
self._eval_dataset,
self.cfg.worker_num,
batch_sampler=self._eval_batch_sampler)
with paddle.no_grad():
self.status['save_best_model'] = True
self._eval_with_loader(self._eval_loader)
# restore origin weight on model
if self.use_ema:
self.model.set_dict(weight)
def _eval_with_loader(self, loader):
sample_num = 0
tic = time.time()
self._compose_callback.on_epoch_begin(self.status)
self.status['mode'] = 'eval'
self.model.eval()
for step_id, data in enumerate(loader):
self.status['step_id'] = step_id
self._compose_callback.on_step_begin(self.status)
# forward
outs = self.model(data)
# update metrics
for metric in self._metrics:
metric.update(data, outs)
sample_num += data['im_id'].numpy().shape[0]
self._compose_callback.on_step_end(self.status)
self.status['sample_num'] = sample_num
self.status['cost_time'] = time.time() - tic
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
self._compose_callback.on_epoch_end(self.status)
# reset metric states for metric may performed multiple times
self._reset_metrics()
def evaluate(self):
with paddle.no_grad():
self._eval_with_loader(self.loader)
def predict(self,
images,
draw_threshold=0.5,
output_dir='output',
save_txt=False):
self.dataset.set_images(images)
loader = create('TestReader')(self.dataset, 0)
imid2path = self.dataset.get_imid2path()
anno_file = self.dataset.get_anno()
clsid2catid, catid2name = get_categories(
self.cfg.metric, anno_file=anno_file)
# Run Infer
self.status['mode'] = 'test'
self.model.eval()
for step_id, data in enumerate(loader):
self.status['step_id'] = step_id
# forward
outs = self.model(data)
for key in ['im_shape', 'scale_factor', 'im_id']:
outs[key] = data[key]
for key, value in outs.items():
if hasattr(value, 'numpy'):
outs[key] = value.numpy()
batch_res = get_infer_results(outs, clsid2catid)
bbox_num = outs['bbox_num']
start = 0
for i, im_id in enumerate(outs['im_id']):
image_path = imid2path[int(im_id)]
image = Image.open(image_path).convert('RGB')
self.status['original_image'] = np.array(image.copy())
end = start + bbox_num[i]
bbox_res = batch_res['bbox'][start:end] \
if 'bbox' in batch_res else None
mask_res = batch_res['mask'][start:end] \
if 'mask' in batch_res else None
segm_res = batch_res['segm'][start:end] \
if 'segm' in batch_res else None
keypoint_res = batch_res['keypoint'][start:end] \
if 'keypoint' in batch_res else None
image = visualize_results(
image, bbox_res, mask_res, segm_res, keypoint_res,
int(im_id), catid2name, draw_threshold)
self.status['result_image'] = np.array(image.copy())
if self._compose_callback:
self._compose_callback.on_step_end(self.status)
# save image with detection
save_name = self._get_save_image_name(output_dir, image_path)
logger.info("Detection bbox results save in {}".format(
save_name))
image.save(save_name, quality=95)
if save_txt:
save_path = os.path.splitext(save_name)[0] + '.txt'
results = {}
results["im_id"] = im_id
if bbox_res:
results["bbox_res"] = bbox_res
if keypoint_res:
results["keypoint_res"] = keypoint_res
save_result(save_path, results, catid2name, draw_threshold)
start = end
def _get_save_image_name(self, output_dir, image_path):
"""
Get save image name from source image path.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
image_name = os.path.split(image_path)[-1]
name, ext = os.path.splitext(image_name)
return os.path.join(output_dir, "{}".format(name)) + ext
def export(self, output_dir='output_inference'):
self.model.eval()
model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
save_dir = os.path.join(output_dir, model_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
image_shape = None
if 'inputs_def' in self.cfg['TestReader']:
inputs_def = self.cfg['TestReader']['inputs_def']
image_shape = inputs_def.get('image_shape', None)
# set image_shape=[3, -1, -1] as default
if image_shape is None:
image_shape = [3, -1, -1]
self.model.eval()
if hasattr(self.model, 'deploy'): self.model.deploy = True
# Save infer cfg
_dump_infer_config(self.cfg,
os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
self.model)
input_spec = [{
"image": InputSpec(
shape=[None] + image_shape, name='image'),
"im_shape": InputSpec(
shape=[None, 2], name='im_shape'),
"scale_factor": InputSpec(
shape=[None, 2], name='scale_factor')
}]
# dy2st and save model
if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
static_model = paddle.jit.to_static(
self.model, input_spec=input_spec)
# NOTE: dy2st do not pruned program, but jit.save will prune program
# input spec, prune input spec here and save with pruned input spec
pruned_input_spec = self._prune_input_spec(
input_spec, static_model.forward.main_program,
static_model.forward.outputs)
paddle.jit.save(
static_model,
os.path.join(save_dir, 'model'),
input_spec=pruned_input_spec)
logger.info("Export model and saved in {}".format(save_dir))
else:
self.cfg.slim.save_quantized_model(
self.model,
os.path.join(save_dir, 'model'),
input_spec=input_spec)
def _prune_input_spec(self, input_spec, program, targets):
# try to prune static program to figure out pruned input spec
# so we perform following operations in static mode
paddle.enable_static()
pruned_input_spec = [{}]
program = program.clone()
program = program._prune(targets=targets)
global_block = program.global_block()
for name, spec in input_spec[0].items():
try:
v = global_block.var(name)
pruned_input_spec[0][name] = spec
except Exception:
pass
paddle.disable_static()
return pruned_input_spec

View File

@ -0,0 +1,23 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import metrics
from . import keypoint_metrics
from . import mot_metrics
from .metrics import *
from .mot_metrics import *
from .keypoint_metrics import *
__all__ = metrics.__all__ + keypoint_metrics.__all__ + mot_metrics.__all__

View File

@ -0,0 +1,184 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import itertools
from ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res, get_keypoint_res
from ppdet.metrics.map_utils import draw_pr_curve
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
def get_infer_results(outs, catid, bias=0):
"""
Get result at the stage of inference.
The output format is dictionary containing bbox or mask result.
For example, bbox result is a list and each element contains
image_id, category_id, bbox and score.
"""
if outs is None or len(outs) == 0:
raise ValueError(
'The number of valid detection result if zero. Please use reasonable model and check input data.'
)
im_id = outs['im_id']
infer_res = {}
if 'bbox' in outs:
if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6:
infer_res['bbox'] = get_det_poly_res(
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
else:
infer_res['bbox'] = get_det_res(
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
if 'mask' in outs:
# mask post process
infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'],
outs['bbox_num'], im_id, catid)
if 'segm' in outs:
infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)
if 'keypoint' in outs:
infer_res['keypoint'] = get_keypoint_res(outs, im_id)
outs['bbox_num'] = [len(infer_res['keypoint'])]
return infer_res
def cocoapi_eval(jsonfile,
style,
coco_gt=None,
anno_file=None,
max_dets=(100, 300, 1000),
classwise=False,
sigmas=None,
use_area=True):
"""
Args:
jsonfile (str): Evaluation json file, eg: bbox.json, mask.json.
style (str): COCOeval style, can be `bbox` , `segm` , `proposal`, `keypoints` and `keypoints_crowd`.
coco_gt (str): Whether to load COCOAPI through anno_file,
eg: coco_gt = COCO(anno_file)
anno_file (str): COCO annotations file.
max_dets (tuple): COCO evaluation maxDets.
classwise (bool): Whether per-category AP and draw P-R Curve or not.
sigmas (nparray): keypoint labelling sigmas.
use_area (bool): If gt annotations (eg. CrowdPose, AIC)
do not have 'area', please set use_area=False.
"""
assert coco_gt != None or anno_file != None
if style == 'keypoints_crowd':
#please install xtcocotools==1.6
from xtcocotools.coco import COCO
from xtcocotools.cocoeval import COCOeval
else:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
if coco_gt == None:
coco_gt = COCO(anno_file)
logger.info("Start evaluate...")
coco_dt = coco_gt.loadRes(jsonfile)
if style == 'proposal':
coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
coco_eval.params.useCats = 0
coco_eval.params.maxDets = list(max_dets)
elif style == 'keypoints_crowd':
coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area)
else:
coco_eval = COCOeval(coco_gt, coco_dt, style)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if classwise:
# Compute per-category AP and PR curve
try:
from terminaltables import AsciiTable
except Exception as e:
logger.error(
'terminaltables not found, plaese install terminaltables. '
'for example: `pip install terminaltables`.')
raise e
precisions = coco_eval.eval['precision']
cat_ids = coco_gt.getCatIds()
# precision: (iou, recall, cls, area range, max dets)
assert len(cat_ids) == precisions.shape[2]
results_per_category = []
for idx, catId in enumerate(cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
nm = coco_gt.loadCats(catId)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(str(nm["name"]), '{:0.3f}'.format(float(ap))))
pr_array = precisions[0, :, idx, 0, 2]
recall_array = np.arange(0.0, 1.01, 0.01)
draw_pr_curve(
pr_array,
recall_array,
out_dir=style + '_pr_curve',
file_name='{}_precision_recall_curve.jpg'.format(nm["name"]))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(
*[results_flatten[i::num_columns] for i in range(num_columns)])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('Per-category of {} AP: \n{}'.format(style, table.table))
logger.info("per-category PR curve has output to {} folder.".format(
style + '_pr_curve'))
# flush coco evaluation result
sys.stdout.flush()
return coco_eval.stats
def json_eval_results(metric, json_directory, dataset):
"""
cocoapi eval with already exists proposal.json, bbox.json or mask.json
"""
assert metric == 'COCO'
anno_file = dataset.get_anno()
json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
if json_directory:
assert os.path.exists(
json_directory), "The json directory:{} does not exist".format(
json_directory)
for k, v in enumerate(json_file_list):
json_file_list[k] = os.path.join(str(json_directory), v)
coco_eval_style = ['proposal', 'bbox', 'segm']
for i, v_json in enumerate(json_file_list):
if os.path.exists(v_json):
cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
else:
logger.info("{} not exists!".format(v_json))

View File

@ -0,0 +1,149 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import numpy as np
def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
det_res = []
k = 0
for i in range(len(bbox_nums)):
cur_image_id = int(image_id[i][0])
det_nums = bbox_nums[i]
for j in range(det_nums):
dt = bboxes[k]
k = k + 1
num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
if int(num_id) < 0:
continue
category_id = label_to_cat_id_map[int(num_id)]
w = xmax - xmin + bias
h = ymax - ymin + bias
bbox = [xmin, ymin, w, h]
dt_res = {
'image_id': cur_image_id,
'category_id': category_id,
'bbox': bbox,
'score': score
}
det_res.append(dt_res)
return det_res
def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
det_res = []
k = 0
for i in range(len(bbox_nums)):
cur_image_id = int(image_id[i][0])
det_nums = bbox_nums[i]
for j in range(det_nums):
dt = bboxes[k]
k = k + 1
num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
if int(num_id) < 0:
continue
category_id = label_to_cat_id_map[int(num_id)]
rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
dt_res = {
'image_id': cur_image_id,
'category_id': category_id,
'bbox': rbox,
'score': score
}
det_res.append(dt_res)
return det_res
def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
import pycocotools.mask as mask_util
seg_res = []
k = 0
for i in range(len(mask_nums)):
cur_image_id = int(image_id[i][0])
det_nums = mask_nums[i]
for j in range(det_nums):
mask = masks[k].astype(np.uint8)
score = float(bboxes[k][1])
label = int(bboxes[k][0])
k = k + 1
if label == -1:
continue
cat_id = label_to_cat_id_map[label]
rle = mask_util.encode(
np.array(
mask[:, :, None], order="F", dtype="uint8"))[0]
if six.PY3:
if 'counts' in rle:
rle['counts'] = rle['counts'].decode("utf8")
sg_res = {
'image_id': cur_image_id,
'category_id': cat_id,
'segmentation': rle,
'score': score
}
seg_res.append(sg_res)
return seg_res
def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
import pycocotools.mask as mask_util
segm_res = []
# for each batch
segms = results['segm'].astype(np.uint8)
clsid_labels = results['cate_label']
clsid_scores = results['cate_score']
lengths = segms.shape[0]
im_id = int(image_id[0][0])
if lengths == 0 or segms is None:
return None
# for each sample
for i in range(lengths - 1):
clsid = int(clsid_labels[i])
catid = num_id_to_cat_id_map[clsid]
score = float(clsid_scores[i])
mask = segms[i]
segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
segm['counts'] = segm['counts'].decode('utf8')
coco_res = {
'image_id': im_id,
'category_id': catid,
'segmentation': segm,
'score': score
}
segm_res.append(coco_res)
return segm_res
def get_keypoint_res(results, im_id):
anns = []
preds = results['keypoint']
for idx in range(im_id.shape[0]):
image_id = im_id[idx].item()
kpts, scores = preds[idx]
for kpt, score in zip(kpts, scores):
kpt = kpt.flatten()
ann = {
'image_id': image_id,
'category_id': 1, # XXX hard code
'keypoints': kpt.tolist(),
'score': float(score)
}
x = kpt[0::3]
y = kpt[1::3]
x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min(y).item(
), np.max(y).item()
ann['area'] = (x1 - x0) * (y1 - y0)
ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
anns.append(ann)
return anns

View File

@ -0,0 +1,200 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
from collections import defaultdict
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from ..modeling.keypoint_utils import oks_nms
__all__ = ['KeyPointTopDownCOCOEval']
class KeyPointTopDownCOCOEval(object):
def __init__(self,
anno_file,
num_samples,
num_joints,
output_eval,
iou_type='keypoints',
in_vis_thre=0.2,
oks_thre=0.9):
super(KeyPointTopDownCOCOEval, self).__init__()
self.coco = COCO(anno_file)
self.num_samples = num_samples
self.num_joints = num_joints
self.iou_type = iou_type
self.in_vis_thre = in_vis_thre
self.oks_thre = oks_thre
self.output_eval = output_eval
self.res_file = os.path.join(output_eval, "keypoints_results.json")
self.reset()
def reset(self):
self.results = {
'all_preds': np.zeros(
(self.num_samples, self.num_joints, 3), dtype=np.float32),
'all_boxes': np.zeros((self.num_samples, 6)),
'image_path': []
}
self.eval_results = {}
self.idx = 0
def update(self, inputs, outputs):
kpts, _ = outputs['keypoint'][0]
num_images = inputs['image'].shape[0]
self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
3] = kpts[:, :, 0:3]
self.results['all_boxes'][self.idx:self.idx + num_images, 0:2] = inputs[
'center'].numpy()[:, 0:2]
self.results['all_boxes'][self.idx:self.idx + num_images, 2:4] = inputs[
'scale'].numpy()[:, 0:2]
self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
inputs['scale'].numpy() * 200, 1)
self.results['all_boxes'][self.idx:self.idx + num_images,
5] = np.squeeze(inputs['score'].numpy())
self.results['image_path'].extend(inputs['im_id'].numpy())
self.idx += num_images
def _write_coco_keypoint_results(self, keypoints):
data_pack = [{
'cat_id': 1,
'cls': 'person',
'ann_type': 'keypoints',
'keypoints': keypoints
}]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
if not os.path.exists(self.output_eval):
os.makedirs(self.output_eval)
with open(self.res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
try:
json.load(open(self.res_file))
except Exception:
content = []
with open(self.res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(self.res_file, 'w') as f:
for c in content:
f.write(c)
def _coco_keypoint_results_one_category_kernel(self, data_pack):
cat_id = data_pack['cat_id']
keypoints = data_pack['keypoints']
cat_results = []
for img_kpts in keypoints:
if len(img_kpts) == 0:
continue
_key_points = np.array(
[img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
_key_points = _key_points.reshape(_key_points.shape[0], -1)
result = [{
'image_id': img_kpts[k]['image'],
'category_id': cat_id,
'keypoints': _key_points[k].tolist(),
'score': img_kpts[k]['score'],
'center': list(img_kpts[k]['center']),
'scale': list(img_kpts[k]['scale'])
} for k in range(len(img_kpts))]
cat_results.extend(result)
return cat_results
def get_final_results(self, preds, all_boxes, img_path):
_kpts = []
for idx, kpt in enumerate(preds):
_kpts.append({
'keypoints': kpt,
'center': all_boxes[idx][0:2],
'scale': all_boxes[idx][2:4],
'area': all_boxes[idx][4],
'score': all_boxes[idx][5],
'image': int(img_path[idx])
})
# image x person x (keypoints)
kpts = defaultdict(list)
for kpt in _kpts:
kpts[kpt['image']].append(kpt)
# rescoring and oks nms
num_joints = preds.shape[1]
in_vis_thre = self.in_vis_thre
oks_thre = self.oks_thre
oks_nmsed_kpts = []
for img in kpts.keys():
img_kpts = kpts[img]
for n_p in img_kpts:
box_score = n_p['score']
kpt_score = 0
valid_num = 0
for n_jt in range(0, num_joints):
t_s = n_p['keypoints'][n_jt][2]
if t_s > in_vis_thre:
kpt_score = kpt_score + t_s
valid_num = valid_num + 1
if valid_num != 0:
kpt_score = kpt_score / valid_num
# rescoring
n_p['score'] = kpt_score * box_score
keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
oks_thre)
if len(keep) == 0:
oks_nmsed_kpts.append(img_kpts)
else:
oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])
self._write_coco_keypoint_results(oks_nmsed_kpts)
def accumulate(self):
self.get_final_results(self.results['all_preds'],
self.results['all_boxes'],
self.results['image_path'])
coco_dt = self.coco.loadRes(self.res_file)
coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
keypoint_stats = []
for ind in range(len(coco_eval.stats)):
keypoint_stats.append((coco_eval.stats[ind]))
self.eval_results['keypoint'] = keypoint_stats
def log(self):
stats_names = [
'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
'AR .75', 'AR (M)', 'AR (L)'
]
num_values = len(stats_names)
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
print('|---' * (num_values + 1) + '|')
print(' '.join([
'| {:.3f}'.format(value) for value in self.eval_results['keypoint']
]) + ' |')
def get_results(self):
return self.eval_results

View File

@ -0,0 +1,395 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
import sys
import numpy as np
import itertools
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'draw_pr_curve',
'bbox_area',
'jaccard_overlap',
'prune_zero_padding',
'DetectionMAP',
'ap_per_class',
'compute_ap',
]
def draw_pr_curve(precision,
recall,
iou=0.5,
out_dir='pr_curve',
file_name='precision_recall_curve.jpg'):
if not os.path.exists(out_dir):
os.makedirs(out_dir)
output_path = os.path.join(out_dir, file_name)
try:
import matplotlib.pyplot as plt
except Exception as e:
logger.error('Matplotlib not found, plaese install matplotlib.'
'for example: `pip install matplotlib`.')
raise e
plt.cla()
plt.figure('P-R Curve')
plt.title('Precision/Recall Curve(IoU={})'.format(iou))
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.grid(True)
plt.plot(recall, precision)
plt.savefig(output_path)
def bbox_area(bbox, is_bbox_normalized):
"""
Calculate area of a bounding box
"""
norm = 1. - float(is_bbox_normalized)
width = bbox[2] - bbox[0] + norm
height = bbox[3] - bbox[1] + norm
return width * height
def jaccard_overlap(pred, gt, is_bbox_normalized=False):
"""
Calculate jaccard overlap ratio between two bounding box
"""
if pred[0] >= gt[2] or pred[2] <= gt[0] or \
pred[1] >= gt[3] or pred[3] <= gt[1]:
return 0.
inter_xmin = max(pred[0], gt[0])
inter_ymin = max(pred[1], gt[1])
inter_xmax = min(pred[2], gt[2])
inter_ymax = min(pred[3], gt[3])
inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
is_bbox_normalized)
pred_size = bbox_area(pred, is_bbox_normalized)
gt_size = bbox_area(gt, is_bbox_normalized)
overlap = float(inter_size) / (pred_size + gt_size - inter_size)
return overlap
def prune_zero_padding(gt_box, gt_label, difficult=None):
valid_cnt = 0
for i in range(len(gt_box)):
if gt_box[i, 0] == 0 and gt_box[i, 1] == 0 and \
gt_box[i, 2] == 0 and gt_box[i, 3] == 0:
break
valid_cnt += 1
return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
if difficult is not None else None)
class DetectionMAP(object):
"""
Calculate detection mean average precision.
Currently support two types: 11point and integral
Args:
class_num (int): The class number.
overlap_thresh (float): The threshold of overlap
ratio between prediction bounding box and
ground truth bounding box for deciding
true/false positive. Default 0.5.
map_type (str): Calculation method of mean average
precision, currently support '11point' and
'integral'. Default '11point'.
is_bbox_normalized (bool): Whether bounding boxes
is normalized to range[0, 1]. Default False.
evaluate_difficult (bool): Whether to evaluate
difficult bounding boxes. Default False.
catid2name (dict): Mapping between category id and category name.
classwise (bool): Whether per-category AP and draw
P-R Curve or not.
"""
def __init__(self,
class_num,
overlap_thresh=0.5,
map_type='11point',
is_bbox_normalized=False,
evaluate_difficult=False,
catid2name=None,
classwise=False):
self.class_num = class_num
self.overlap_thresh = overlap_thresh
assert map_type in ['11point', 'integral'], \
"map_type currently only support '11point' "\
"and 'integral'"
self.map_type = map_type
self.is_bbox_normalized = is_bbox_normalized
self.evaluate_difficult = evaluate_difficult
self.classwise = classwise
self.classes = []
for cname in catid2name.values():
self.classes.append(cname)
self.reset()
def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
"""
Update metric statics from given prediction and ground
truth infomations.
"""
if difficult is None:
difficult = np.zeros_like(gt_label)
# record class gt count
for gtl, diff in zip(gt_label, difficult):
if self.evaluate_difficult or int(diff) == 0:
self.class_gt_counts[int(np.array(gtl))] += 1
# record class score positive
visited = [False] * len(gt_label)
for b, s, l in zip(bbox, score, label):
xmin, ymin, xmax, ymax = b.tolist()
pred = [xmin, ymin, xmax, ymax]
max_idx = -1
max_overlap = -1.0
for i, gl in enumerate(gt_label):
if int(gl) == int(l):
overlap = jaccard_overlap(pred, gt_box[i],
self.is_bbox_normalized)
if overlap > max_overlap:
max_overlap = overlap
max_idx = i
if max_overlap > self.overlap_thresh:
if self.evaluate_difficult or \
int(np.array(difficult[max_idx])) == 0:
if not visited[max_idx]:
self.class_score_poss[int(l)].append([s, 1.0])
visited[max_idx] = True
else:
self.class_score_poss[int(l)].append([s, 0.0])
else:
self.class_score_poss[int(l)].append([s, 0.0])
def reset(self):
"""
Reset metric statics
"""
self.class_score_poss = [[] for _ in range(self.class_num)]
self.class_gt_counts = [0] * self.class_num
self.mAP = None
def accumulate(self):
"""
Accumulate metric results and calculate mAP
"""
mAP = 0.
valid_cnt = 0
eval_results = []
for score_pos, count in zip(self.class_score_poss,
self.class_gt_counts):
if count == 0: continue
if len(score_pos) == 0:
valid_cnt += 1
continue
accum_tp_list, accum_fp_list = \
self._get_tp_fp_accum(score_pos)
precision = []
recall = []
for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
precision.append(float(ac_tp) / (ac_tp + ac_fp))
recall.append(float(ac_tp) / count)
one_class_ap = 0.0
if self.map_type == '11point':
max_precisions = [0.] * 11
start_idx = len(precision) - 1
for j in range(10, -1, -1):
for i in range(start_idx, -1, -1):
if recall[i] < float(j) / 10.:
start_idx = i
if j > 0:
max_precisions[j - 1] = max_precisions[j]
break
else:
if max_precisions[j] < precision[i]:
max_precisions[j] = precision[i]
one_class_ap = sum(max_precisions) / 11.
mAP += one_class_ap
valid_cnt += 1
elif self.map_type == 'integral':
import math
prev_recall = 0.
for i in range(len(precision)):
recall_gap = math.fabs(recall[i] - prev_recall)
if recall_gap > 1e-6:
one_class_ap += precision[i] * recall_gap
prev_recall = recall[i]
mAP += one_class_ap
valid_cnt += 1
else:
logger.error("Unspported mAP type {}".format(self.map_type))
sys.exit(1)
eval_results.append({
'class': self.classes[valid_cnt - 1],
'ap': one_class_ap,
'precision': precision,
'recall': recall,
})
self.eval_results = eval_results
self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
def get_map(self):
"""
Get mAP result
"""
if self.mAP is None:
logger.error("mAP is not calculated.")
if self.classwise:
# Compute per-category AP and PR curve
try:
from terminaltables import AsciiTable
except Exception as e:
logger.error(
'terminaltables not found, plaese install terminaltables. '
'for example: `pip install terminaltables`.')
raise e
results_per_category = []
for eval_result in self.eval_results:
results_per_category.append(
(str(eval_result['class']),
'{:0.3f}'.format(float(eval_result['ap']))))
draw_pr_curve(
eval_result['precision'],
eval_result['recall'],
out_dir='voc_pr_curve',
file_name='{}_precision_recall_curve.jpg'.format(
eval_result['class']))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(
*[results_flatten[i::num_columns] for i in range(num_columns)])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('Per-category of VOC AP: \n{}'.format(table.table))
logger.info(
"per-category PR curve has output to voc_pr_curve folder.")
return self.mAP
def _get_tp_fp_accum(self, score_pos_list):
"""
Calculate accumulating true/false positive results from
[score, pos] records
"""
sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
accum_tp = 0
accum_fp = 0
accum_tp_list = []
accum_fp_list = []
for (score, pos) in sorted_list:
accum_tp += int(pos)
accum_tp_list.append(accum_tp)
accum_fp += 1 - int(pos)
accum_fp_list.append(accum_fp)
return accum_tp_list, accum_fp_list
def ap_per_class(tp, conf, pred_cls, target_cls):
"""
Computes the average precision, given the recall and precision curves.
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
Args:
tp (list): True positives.
conf (list): Objectness value from 0-1.
pred_cls (list): Predicted object classes.
target_cls (list): Target object classes.
"""
tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(
pred_cls), np.array(target_cls)
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in unique_classes:
i = pred_cls == c
n_gt = sum(target_cls == c) # Number of ground truth objects
n_p = sum(i) # Number of predicted objects
if (n_p == 0) and (n_gt == 0):
continue
elif (n_p == 0) or (n_gt == 0):
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = np.cumsum(1 - tp[i])
tpc = np.cumsum(tp[i])
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(tpc[-1] / (n_gt + 1e-16))
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(
p)
def compute_ap(recall, precision):
"""
Computes the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
Args:
recall (list): The recall curve.
precision (list): The precision curve.
Returns:
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap

View File

@ -0,0 +1,301 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import json
import paddle
import numpy as np
from .map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval
from .widerface_utils import face_eval_run
from ppdet.data.source.category import get_categories
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'Metric', 'COCOMetric', 'VOCMetric', 'WiderFaceMetric', 'get_infer_results'
]
COCO_SIGMAS = np.array([
.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87,
.89, .89
]) / 10.0
CROWD_SIGMAS = np.array(
[.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89, .79,
.79]) / 10.0
class Metric(paddle.metric.Metric):
def name(self):
return self.__class__.__name__
def reset(self):
pass
def accumulate(self):
pass
# paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
# :metch:`reset`, in ppdet, we also need following 2 methods:
# abstract method for logging metric results
def log(self):
pass
# abstract method for getting metric results
def get_results(self):
pass
class COCOMetric(Metric):
def __init__(self, anno_file, **kwargs):
assert os.path.isfile(anno_file), \
"anno_file {} not a file".format(anno_file)
self.anno_file = anno_file
self.clsid2catid = kwargs.get('clsid2catid', None)
if self.clsid2catid is None:
self.clsid2catid, _ = get_categories('COCO', anno_file)
self.classwise = kwargs.get('classwise', False)
self.output_eval = kwargs.get('output_eval', None)
# TODO: bias should be unified
self.bias = kwargs.get('bias', 0)
self.save_prediction_only = kwargs.get('save_prediction_only', False)
self.iou_type = kwargs.get('IouType', 'bbox')
self.reset()
def reset(self):
# only bbox and mask evaluation support currently
self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
self.eval_results = {}
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
im_id = inputs['im_id']
outs['im_id'] = im_id.numpy() if isinstance(im_id,
paddle.Tensor) else im_id
infer_results = get_infer_results(
outs, self.clsid2catid, bias=self.bias)
self.results['bbox'] += infer_results[
'bbox'] if 'bbox' in infer_results else []
self.results['mask'] += infer_results[
'mask'] if 'mask' in infer_results else []
self.results['segm'] += infer_results[
'segm'] if 'segm' in infer_results else []
self.results['keypoint'] += infer_results[
'keypoint'] if 'keypoint' in infer_results else []
def accumulate(self):
if len(self.results['bbox']) > 0:
output = "bbox.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['bbox'], f)
logger.info('The bbox result is saved to bbox.json.')
if self.save_prediction_only:
logger.info('The bbox result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
bbox_stats = cocoapi_eval(
output,
'bbox',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['bbox'] = bbox_stats
sys.stdout.flush()
if len(self.results['mask']) > 0:
output = "mask.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['mask'], f)
logger.info('The mask result is saved to mask.json.')
if self.save_prediction_only:
logger.info('The mask result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
seg_stats = cocoapi_eval(
output,
'segm',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['mask'] = seg_stats
sys.stdout.flush()
if len(self.results['segm']) > 0:
output = "segm.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['segm'], f)
logger.info('The segm result is saved to segm.json.')
if self.save_prediction_only:
logger.info('The segm result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
seg_stats = cocoapi_eval(
output,
'segm',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['mask'] = seg_stats
sys.stdout.flush()
if len(self.results['keypoint']) > 0:
output = "keypoint.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['keypoint'], f)
logger.info('The keypoint result is saved to keypoint.json.')
if self.save_prediction_only:
logger.info('The keypoint result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
style = 'keypoints'
use_area = True
sigmas = COCO_SIGMAS
if self.iou_type == 'keypoints_crowd':
style = 'keypoints_crowd'
use_area = False
sigmas = CROWD_SIGMAS
keypoint_stats = cocoapi_eval(
output,
style,
anno_file=self.anno_file,
classwise=self.classwise,
sigmas=sigmas,
use_area=use_area)
self.eval_results['keypoint'] = keypoint_stats
sys.stdout.flush()
def log(self):
pass
def get_results(self):
return self.eval_results
class VOCMetric(Metric):
def __init__(self,
label_list,
class_num=20,
overlap_thresh=0.5,
map_type='11point',
is_bbox_normalized=False,
evaluate_difficult=False,
classwise=False):
assert os.path.isfile(label_list), \
"label_list {} not a file".format(label_list)
self.clsid2catid, self.catid2name = get_categories('VOC', label_list)
self.overlap_thresh = overlap_thresh
self.map_type = map_type
self.evaluate_difficult = evaluate_difficult
self.detection_map = DetectionMAP(
class_num=class_num,
overlap_thresh=overlap_thresh,
map_type=map_type,
is_bbox_normalized=is_bbox_normalized,
evaluate_difficult=evaluate_difficult,
catid2name=self.catid2name,
classwise=classwise)
self.reset()
def reset(self):
self.detection_map.reset()
def update(self, inputs, outputs):
bbox_np = outputs['bbox'].numpy()
bboxes = bbox_np[:, 2:]
scores = bbox_np[:, 1]
labels = bbox_np[:, 0]
bbox_lengths = outputs['bbox_num'].numpy()
if bboxes.shape == (1, 1) or bboxes is None:
return
gt_boxes = inputs['gt_bbox']
gt_labels = inputs['gt_class']
difficults = inputs['difficult'] if not self.evaluate_difficult \
else None
scale_factor = inputs['scale_factor'].numpy(
) if 'scale_factor' in inputs else np.ones(
(gt_boxes.shape[0], 2)).astype('float32')
bbox_idx = 0
for i in range(len(gt_boxes)):
gt_box = gt_boxes[i].numpy()
h, w = scale_factor[i]
gt_box = gt_box / np.array([w, h, w, h])
gt_label = gt_labels[i].numpy()
difficult = None if difficults is None \
else difficults[i].numpy()
bbox_num = bbox_lengths[i]
bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
score = scores[bbox_idx:bbox_idx + bbox_num]
label = labels[bbox_idx:bbox_idx + bbox_num]
gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
difficult)
self.detection_map.update(bbox, score, label, gt_box, gt_label,
difficult)
bbox_idx += bbox_num
def accumulate(self):
logger.info("Accumulating evaluatation results...")
self.detection_map.accumulate()
def log(self):
map_stat = 100. * self.detection_map.get_map()
logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
self.map_type, map_stat))
def get_results(self):
return {'bbox': [self.detection_map.get_map()]}
class WiderFaceMetric(Metric):
def __init__(self, image_dir, anno_file, multi_scale=True):
self.image_dir = image_dir
self.anno_file = anno_file
self.multi_scale = multi_scale
self.clsid2catid, self.catid2name = get_categories('widerface')
def update(self, model):
face_eval_run(
model,
self.image_dir,
self.anno_file,
pred_dir='output/pred',
eval_mode='widerface',
multi_scale=self.multi_scale)

View File

@ -0,0 +1,191 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import copy
import motmetrics as mm
mm.lap.default_solver = 'lap'
__all__ = [
'read_mot_results',
'unzip_objs',
'MOTEvaluator',
]
def read_mot_results(filename, is_gt=False, is_ignore=False):
valid_labels = {1}
ignore_labels = {2, 7, 8, 12}
results_dict = dict()
if os.path.isfile(filename):
with open(filename, 'r') as f:
for line in f.readlines():
linelist = line.split(',')
if len(linelist) < 7:
continue
fid = int(linelist[0])
if fid < 1:
continue
results_dict.setdefault(fid, list())
box_size = float(linelist[4]) * float(linelist[5])
if is_gt:
if 'MOT16-' in filename or 'MOT17-' in filename or 'MOT15-' in filename or 'MOT20-' in filename:
label = int(float(linelist[7]))
mark = int(float(linelist[6]))
if mark == 0 or label not in valid_labels:
continue
score = 1
elif is_ignore:
if 'MOT16-' in filename or 'MOT17-' in filename or 'MOT15-' in filename or 'MOT20-' in filename:
label = int(float(linelist[7]))
vis_ratio = float(linelist[8])
if label not in ignore_labels and vis_ratio >= 0:
continue
else:
continue
score = 1
else:
score = float(linelist[6])
tlwh = tuple(map(float, linelist[2:6]))
target_id = int(linelist[1])
results_dict[fid].append((tlwh, target_id, score))
return results_dict
"""
labels={'ped', ... % 1
'person_on_vhcl', ... % 2
'car', ... % 3
'bicycle', ... % 4
'mbike', ... % 5
'non_mot_vhcl', ... % 6
'static_person', ... % 7
'distractor', ... % 8
'occluder', ... % 9
'occluder_on_grnd', ... % 10
'occluder_full', ... % 11
'reflection', ... % 12
'crowd' ... % 13
};
"""
def unzip_objs(objs):
if len(objs) > 0:
tlwhs, ids, scores = zip(*objs)
else:
tlwhs, ids, scores = [], [], []
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
return tlwhs, ids, scores
class MOTEvaluator(object):
def __init__(self, data_root, seq_name, data_type):
self.data_root = data_root
self.seq_name = seq_name
self.data_type = data_type
self.load_annotations()
self.reset_accumulator()
def load_annotations(self):
assert self.data_type == 'mot'
gt_filename = os.path.join(self.data_root, self.seq_name, 'gt',
'gt.txt')
self.gt_frame_dict = read_mot_results(gt_filename, is_gt=True)
self.gt_ignore_frame_dict = read_mot_results(
gt_filename, is_ignore=True)
def reset_accumulator(self):
self.acc = mm.MOTAccumulator(auto_id=True)
def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False):
# results
trk_tlwhs = np.copy(trk_tlwhs)
trk_ids = np.copy(trk_ids)
# gts
gt_objs = self.gt_frame_dict.get(frame_id, [])
gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]
# ignore boxes
ignore_objs = self.gt_ignore_frame_dict.get(frame_id, [])
ignore_tlwhs = unzip_objs(ignore_objs)[0]
# remove ignored results
keep = np.ones(len(trk_tlwhs), dtype=bool)
iou_distance = mm.distances.iou_matrix(
ignore_tlwhs, trk_tlwhs, max_iou=0.5)
if len(iou_distance) > 0:
match_is, match_js = mm.lap.linear_sum_assignment(iou_distance)
match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js])
match_ious = iou_distance[match_is, match_js]
match_js = np.asarray(match_js, dtype=int)
match_js = match_js[np.logical_not(np.isnan(match_ious))]
keep[match_js] = False
trk_tlwhs = trk_tlwhs[keep]
trk_ids = trk_ids[keep]
# get distance matrix
iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5)
# acc
self.acc.update(gt_ids, trk_ids, iou_distance)
if rtn_events and iou_distance.size > 0 and hasattr(self.acc,
'last_mot_events'):
events = self.acc.last_mot_events # only supported by https://github.com/longcw/py-motmetrics
else:
events = None
return events
def eval_file(self, filename):
self.reset_accumulator()
result_frame_dict = read_mot_results(filename, is_gt=False)
frames = sorted(list(set(result_frame_dict.keys())))
for frame_id in frames:
trk_objs = result_frame_dict.get(frame_id, [])
trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False)
return self.acc
@staticmethod
def get_summary(accs,
names,
metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1',
'precision', 'recall')):
names = copy.deepcopy(names)
if metrics is None:
metrics = mm.metrics.motchallenge_metrics
metrics = copy.deepcopy(metrics)
mh = mm.metrics.create()
summary = mh.compute_many(
accs, metrics=metrics, names=names, generate_overall=True)
return summary
@staticmethod
def save_summary(summary, filename):
import pandas as pd
writer = pd.ExcelWriter(filename)
summary.to_excel(writer)
writer.save()

View File

@ -0,0 +1,183 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import paddle
import numpy as np
from scipy import interpolate
import paddle.nn.functional as F
from .map_utils import ap_per_class
from ppdet.modeling.bbox_utils import bbox_iou_np_expand
from .mot_eval_utils import MOTEvaluator
from .metrics import Metric
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['JDEDetMetric', 'JDEReIDMetric', 'MOTMetric']
class JDEDetMetric(Metric):
def __init__(self, overlap_thresh=0.5):
self.overlap_thresh = overlap_thresh
self.reset()
def reset(self):
self.AP_accum = np.zeros(1)
self.AP_accum_count = np.zeros(1)
def update(self, inputs, outputs):
bboxes = outputs['bbox'][:, 2:].numpy()
scores = outputs['bbox'][:, 1].numpy()
labels = outputs['bbox'][:, 0].numpy()
bbox_lengths = outputs['bbox_num'].numpy()
if bboxes.shape[0] == 1 and bboxes.sum() == 0.0:
return
gt_boxes = inputs['gt_bbox'].numpy()[0]
gt_labels = inputs['gt_class'].numpy()[0]
if gt_labels.shape[0] == 0:
return
correct = []
detected = []
for i in range(bboxes.shape[0]):
obj_pred = 0
pred_bbox = bboxes[i].reshape(1, 4)
# Compute iou with target boxes
iou = bbox_iou_np_expand(pred_bbox, gt_boxes, x1y1x2y2=True)[0]
# Extract index of largest overlap
best_i = np.argmax(iou)
# If overlap exceeds threshold and classification is correct mark as correct
if iou[best_i] > self.overlap_thresh and obj_pred == gt_labels[
best_i] and best_i not in detected:
correct.append(1)
detected.append(best_i)
else:
correct.append(0)
# Compute Average Precision (AP) per class
target_cls = list(gt_labels.T[0])
AP, AP_class, R, P = ap_per_class(
tp=correct,
conf=scores,
pred_cls=np.zeros_like(scores),
target_cls=target_cls)
self.AP_accum_count += np.bincount(AP_class, minlength=1)
self.AP_accum += np.bincount(AP_class, minlength=1, weights=AP)
def accumulate(self):
logger.info("Accumulating evaluatation results...")
self.map_stat = self.AP_accum[0] / (self.AP_accum_count[0] + 1E-16)
def log(self):
map_stat = 100. * self.map_stat
logger.info("mAP({:.2f}) = {:.2f}%".format(self.overlap_thresh,
map_stat))
def get_results(self):
return self.map_stat
class JDEReIDMetric(Metric):
def __init__(self, far_levels=[1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1]):
self.far_levels = far_levels
self.reset()
def reset(self):
self.embedding = []
self.id_labels = []
self.eval_results = {}
def update(self, inputs, outputs):
for out in outputs:
feat, label = out[:-1].clone().detach(), int(out[-1])
if label != -1:
self.embedding.append(feat)
self.id_labels.append(label)
def accumulate(self):
logger.info("Computing pairwise similairity...")
assert len(self.embedding) == len(self.id_labels)
if len(self.embedding) < 1:
return None
embedding = paddle.stack(self.embedding, axis=0)
emb = F.normalize(embedding, axis=1).numpy()
pdist = np.matmul(emb, emb.T)
id_labels = np.array(self.id_labels, dtype='int32').reshape(-1, 1)
n = len(id_labels)
id_lbl = np.tile(id_labels, n).T
gt = id_lbl == id_lbl.T
up_triangle = np.where(np.triu(pdist) - np.eye(n) * pdist != 0)
pdist = pdist[up_triangle]
gt = gt[up_triangle]
# lazy import metrics here
from sklearn import metrics
far, tar, threshold = metrics.roc_curve(gt, pdist)
interp = interpolate.interp1d(far, tar)
tar_at_far = [interp(x) for x in self.far_levels]
for f, fa in enumerate(self.far_levels):
self.eval_results['TPR@FAR={:.7f}'.format(fa)] = ' {:.4f}'.format(
tar_at_far[f])
def log(self):
for k, v in self.eval_results.items():
logger.info('{}: {}'.format(k, v))
def get_results(self):
return self.eval_results
class MOTMetric(Metric):
def __init__(self, save_summary=False):
self.save_summary = save_summary
self.MOTEvaluator = MOTEvaluator
self.result_root = None
self.reset()
def reset(self):
self.accs = []
self.seqs = []
def update(self, data_root, seq, data_type, result_root, result_filename):
evaluator = self.MOTEvaluator(data_root, seq, data_type)
self.accs.append(evaluator.eval_file(result_filename))
self.seqs.append(seq)
self.result_root = result_root
def accumulate(self):
import motmetrics as mm
metrics = mm.metrics.motchallenge_metrics
mh = mm.metrics.create()
summary = self.MOTEvaluator.get_summary(self.accs, self.seqs, metrics)
self.strsummary = mm.io.render_summary(
summary,
formatters=mh.formatters,
namemap=mm.io.motchallenge_metric_names)
if self.save_summary:
self.MOTEvaluator.save_summary(
summary, os.path.join(self.result_root, 'summary.xlsx'))
def log(self):
print(self.strsummary)
def get_results(self):
return self.strsummary

View File

@ -0,0 +1,391 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cv2
import numpy as np
from collections import OrderedDict
import paddle
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['face_eval_run', 'lmk2out']
def face_eval_run(model,
image_dir,
gt_file,
pred_dir='output/pred',
eval_mode='widerface',
multi_scale=False):
# load ground truth files
with open(gt_file, 'r') as f:
gt_lines = f.readlines()
imid2path = []
pos_gt = 0
while pos_gt < len(gt_lines):
name_gt = gt_lines[pos_gt].strip('\n\t').split()[0]
imid2path.append(name_gt)
pos_gt += 1
n_gt = int(gt_lines[pos_gt].strip('\n\t').split()[0])
pos_gt += 1 + n_gt
logger.info('The ground truth file load {} images'.format(len(imid2path)))
dets_dist = OrderedDict()
for iter_id, im_path in enumerate(imid2path):
image_path = os.path.join(image_dir, im_path)
if eval_mode == 'fddb':
image_path += '.jpg'
assert os.path.exists(image_path)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if multi_scale:
shrink, max_shrink = get_shrink(image.shape[0], image.shape[1])
det0 = detect_face(model, image, shrink)
det1 = flip_test(model, image, shrink)
[det2, det3] = multi_scale_test(model, image, max_shrink)
det4 = multi_scale_test_pyramid(model, image, max_shrink)
det = np.row_stack((det0, det1, det2, det3, det4))
dets = bbox_vote(det)
else:
dets = detect_face(model, image, 1)
if eval_mode == 'widerface':
save_widerface_bboxes(image_path, dets, pred_dir)
else:
dets_dist[im_path] = dets
if iter_id % 100 == 0:
logger.info('Test iter {}'.format(iter_id))
if eval_mode == 'fddb':
save_fddb_bboxes(dets_dist, pred_dir)
logger.info("Finish evaluation.")
def detect_face(model, image, shrink):
image_shape = [image.shape[0], image.shape[1]]
if shrink != 1:
h, w = int(image_shape[0] * shrink), int(image_shape[1] * shrink)
image = cv2.resize(image, (w, h))
image_shape = [h, w]
img = face_img_process(image)
image_shape = np.asarray([image_shape])
scale_factor = np.asarray([[shrink, shrink]])
data = {
"image": paddle.to_tensor(
img, dtype='float32'),
"im_shape": paddle.to_tensor(
image_shape, dtype='float32'),
"scale_factor": paddle.to_tensor(
scale_factor, dtype='float32')
}
model.eval()
detection = model(data)
detection = detection['bbox'].numpy()
# layout: xmin, ymin, xmax. ymax, score
if np.prod(detection.shape) == 1:
logger.info("No face detected")
return np.array([[0, 0, 0, 0, 0]])
det_conf = detection[:, 1]
det_xmin = detection[:, 2]
det_ymin = detection[:, 3]
det_xmax = detection[:, 4]
det_ymax = detection[:, 5]
det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
return det
def flip_test(model, image, shrink):
img = cv2.flip(image, 1)
det_f = detect_face(model, img, shrink)
det_t = np.zeros(det_f.shape)
img_width = image.shape[1]
det_t[:, 0] = img_width - det_f[:, 2]
det_t[:, 1] = det_f[:, 1]
det_t[:, 2] = img_width - det_f[:, 0]
det_t[:, 3] = det_f[:, 3]
det_t[:, 4] = det_f[:, 4]
return det_t
def multi_scale_test(model, image, max_shrink):
# Shrink detecting is only used to detect big faces
st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink
det_s = detect_face(model, image, st)
index = np.where(
np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1)
> 30)[0]
det_s = det_s[index, :]
# Enlarge one times
bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2
det_b = detect_face(model, image, bt)
# Enlarge small image x times for small faces
if max_shrink > 2:
bt *= 2
while bt < max_shrink:
det_b = np.row_stack((det_b, detect_face(model, image, bt)))
bt *= 2
det_b = np.row_stack((det_b, detect_face(model, image, max_shrink)))
# Enlarged images are only used to detect small faces.
if bt > 1:
index = np.where(
np.minimum(det_b[:, 2] - det_b[:, 0] + 1,
det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
# Shrinked images are only used to detect big faces.
else:
index = np.where(
np.maximum(det_b[:, 2] - det_b[:, 0] + 1,
det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
return det_s, det_b
def multi_scale_test_pyramid(model, image, max_shrink):
# Use image pyramids to detect faces
det_b = detect_face(model, image, 0.25)
index = np.where(
np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
> 30)[0]
det_b = det_b[index, :]
st = [0.75, 1.25, 1.5, 1.75]
for i in range(len(st)):
if st[i] <= max_shrink:
det_temp = detect_face(model, image, st[i])
# Enlarged images are only used to detect small faces.
if st[i] > 1:
index = np.where(
np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
det_temp = det_temp[index, :]
# Shrinked images are only used to detect big faces.
else:
index = np.where(
np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
det_temp = det_temp[index, :]
det_b = np.row_stack((det_b, det_temp))
return det_b
def to_chw(image):
"""
Transpose image from HWC to CHW.
Args:
image (np.array): an image with HWC layout.
"""
# HWC to CHW
if len(image.shape) == 3:
image = np.swapaxes(image, 1, 2)
image = np.swapaxes(image, 1, 0)
return image
def face_img_process(image,
mean=[104., 117., 123.],
std=[127.502231, 127.502231, 127.502231]):
img = np.array(image)
img = to_chw(img)
img = img.astype('float32')
img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
img /= np.array(std)[:, np.newaxis, np.newaxis].astype('float32')
img = [img]
img = np.array(img)
return img
def get_shrink(height, width):
"""
Args:
height (int): image height.
width (int): image width.
"""
# avoid out of memory
max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5
def get_round(x, loc):
str_x = str(x)
if '.' in str_x:
str_before, str_after = str_x.split('.')
len_after = len(str_after)
if len_after >= 3:
str_final = str_before + '.' + str_after[0:loc]
return float(str_final)
else:
return x
max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
if max_shrink >= 1.5 and max_shrink < 2:
max_shrink = max_shrink - 0.1
elif max_shrink >= 2 and max_shrink < 3:
max_shrink = max_shrink - 0.2
elif max_shrink >= 3 and max_shrink < 4:
max_shrink = max_shrink - 0.3
elif max_shrink >= 4 and max_shrink < 5:
max_shrink = max_shrink - 0.4
elif max_shrink >= 5:
max_shrink = max_shrink - 0.5
elif max_shrink <= 0.1:
max_shrink = 0.1
shrink = max_shrink if max_shrink < 1 else 1
return shrink, max_shrink
def bbox_vote(det):
order = det[:, 4].ravel().argsort()[::-1]
det = det[order, :]
if det.shape[0] == 0:
dets = np.array([[10, 10, 20, 20, 0.002]])
det = np.empty(shape=[0, 5])
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# nms
merge_index = np.where(o >= 0.3)[0]
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
if merge_index.shape[0] <= 1:
if det.shape[0] == 0:
try:
dets = np.row_stack((dets, det_accu))
except:
dets = det_accu
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5))
det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
try:
dets = np.row_stack((dets, det_accu_sum))
except:
dets = det_accu_sum
dets = dets[0:750, :]
keep_index = np.where(dets[:, 4] >= 0.01)[0]
dets = dets[keep_index, :]
return dets
def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
image_name = image_path.split('/')[-1]
image_class = image_path.split('/')[-2]
odir = os.path.join(output_dir, image_class)
if not os.path.exists(odir):
os.makedirs(odir)
ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
f = open(ofname, 'w')
f.write('{:s}\n'.format(image_class + '/' + image_name))
f.write('{:d}\n'.format(bboxes_scores.shape[0]))
for box_score in bboxes_scores:
xmin, ymin, xmax, ymax, score = box_score
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
xmax - xmin + 1), (ymax - ymin + 1), score))
f.close()
logger.info("The predicted result is saved as {}".format(ofname))
def save_fddb_bboxes(bboxes_scores,
output_dir,
output_fname='pred_fddb_res.txt'):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
predict_file = os.path.join(output_dir, output_fname)
f = open(predict_file, 'w')
for image_path, dets in bboxes_scores.iteritems():
f.write('{:s}\n'.format(image_path))
f.write('{:d}\n'.format(dets.shape[0]))
for box_score in dets:
xmin, ymin, xmax, ymax, score = box_score
width, height = xmax - xmin, ymax - ymin
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'
.format(xmin, ymin, width, height, score))
logger.info("The predicted result is saved as {}".format(predict_file))
return predict_file
def lmk2out(results, is_bbox_normalized=False):
"""
Args:
results: request a dict, should include: `landmark`, `im_id`,
if is_bbox_normalized=True, also need `im_shape`.
is_bbox_normalized: whether or not landmark is normalized.
"""
xywh_res = []
for t in results:
bboxes = t['bbox'][0]
lengths = t['bbox'][1][0]
im_ids = np.array(t['im_id'][0]).flatten()
if bboxes.shape == (1, 1) or bboxes is None:
continue
face_index = t['face_index'][0]
prior_box = t['prior_boxes'][0]
predict_lmk = t['landmark'][0]
prior = np.reshape(prior_box, (-1, 4))
predictlmk = np.reshape(predict_lmk, (-1, 10))
k = 0
for a in range(len(lengths)):
num = lengths[a]
im_id = int(im_ids[a])
for i in range(num):
score = bboxes[k][1]
theindex = face_index[i][0]
me_prior = prior[theindex, :]
lmk_pred = predictlmk[theindex, :]
prior_w = me_prior[2] - me_prior[0]
prior_h = me_prior[3] - me_prior[1]
prior_w_center = (me_prior[2] + me_prior[0]) / 2
prior_h_center = (me_prior[3] + me_prior[1]) / 2
lmk_decode = np.zeros((10))
for j in [0, 2, 4, 6, 8]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_w_center
for j in [1, 3, 5, 7, 9]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_h_center
im_shape = t['im_shape'][0][a].tolist()
image_h, image_w = int(im_shape[0]), int(im_shape[1])
if is_bbox_normalized:
lmk_decode = lmk_decode * np.array([
image_w, image_h, image_w, image_h, image_w, image_h,
image_w, image_h, image_w, image_h
])
lmk_res = {
'image_id': im_id,
'landmark': lmk_decode,
'score': score,
}
xywh_res.append(lmk_res)
k += 1
return xywh_res

View File

@ -0,0 +1,100 @@
cascade_rcnn\cascade_mask_rcnn_r50_fpn_1x_coco
cascade_rcnn\cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco
cascade_rcnn\cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco
cascade_rcnn\cascade_rcnn_r50_fpn_1x_coco
cascade_rcnn\cascade_rcnn_r50_vd_fpn_ssld_1x_coco
cascade_rcnn\cascade_rcnn_r50_vd_fpn_ssld_2x_coco
dcn\cascade_rcnn_dcn_r50_fpn_1x_coco
dcn\cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco
dcn\faster_rcnn_dcn_r101_vd_fpn_1x_coco
dcn\faster_rcnn_dcn_r50_fpn_1x_coco
dcn\faster_rcnn_dcn_r50_vd_fpn_1x_coco
dcn\faster_rcnn_dcn_r50_vd_fpn_2x_coco
dcn\faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco
dcn\mask_rcnn_dcn_r101_vd_fpn_1x_coco
dcn\mask_rcnn_dcn_r50_fpn_1x_coco
dcn\mask_rcnn_dcn_r50_vd_fpn_2x_coco
dcn\mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco
dota\s2anet_1x_dota
dota\s2anet_conv_1x_dota
face_detection\blazeface_1000e
face_detection\blazeface_fpn_ssh_1000e
faster_rcnn\faster_rcnn_r101_1x_coco
faster_rcnn\faster_rcnn_r101_fpn_1x_coco
faster_rcnn\faster_rcnn_r101_fpn_2x_coco
faster_rcnn\faster_rcnn_r101_vd_fpn_1x_coco
faster_rcnn\faster_rcnn_r101_vd_fpn_2x_coco
faster_rcnn\faster_rcnn_r34_fpn_1x_coco
faster_rcnn\faster_rcnn_r34_vd_fpn_1x_coco
faster_rcnn\faster_rcnn_r50_1x_coco
faster_rcnn\faster_rcnn_r50_fpn_1x_coco
faster_rcnn\faster_rcnn_r50_fpn_2x_coco
faster_rcnn\faster_rcnn_r50_vd_1x_coco
faster_rcnn\faster_rcnn_r50_vd_fpn_1x_coco
faster_rcnn\faster_rcnn_r50_vd_fpn_2x_coco
faster_rcnn\faster_rcnn_r50_vd_fpn_ssld_1x_coco
faster_rcnn\faster_rcnn_r50_vd_fpn_ssld_2x_coco
faster_rcnn\faster_rcnn_x101_vd_64x4d_fpn_1x_coco
faster_rcnn\faster_rcnn_x101_vd_64x4d_fpn_2x_coco
fcos\fcos_dcn_r50_fpn_1x_coco
fcos\fcos_r50_fpn_1x_coco
fcos\fcos_r50_fpn_multiscale_2x_coco
gn\cascade_mask_rcnn_r50_fpn_gn_2x_coco
gn\cascade_rcnn_r50_fpn_gn_2x_coco
gn\faster_rcnn_r50_fpn_gn_2x_coco
gn\mask_rcnn_r50_fpn_gn_2x_coco
hrnet\faster_rcnn_hrnetv2p_w18_1x_coco
hrnet\faster_rcnn_hrnetv2p_w18_2x_coco
mask_rcnn\mask_rcnn_r101_fpn_1x_coco
mask_rcnn\mask_rcnn_r101_vd_fpn_1x_coco
mask_rcnn\mask_rcnn_r50_1x_coco
mask_rcnn\mask_rcnn_r50_2x_coco
mask_rcnn\mask_rcnn_r50_fpn_1x_coco
mask_rcnn\mask_rcnn_r50_fpn_2x_coco
mask_rcnn\mask_rcnn_r50_vd_fpn_1x_coco
mask_rcnn\mask_rcnn_r50_vd_fpn_2x_coco
mask_rcnn\mask_rcnn_r50_vd_fpn_ssld_1x_coco
mask_rcnn\mask_rcnn_r50_vd_fpn_ssld_2x_coco
mask_rcnn\mask_rcnn_x101_vd_64x4d_fpn_1x_coco
mask_rcnn\mask_rcnn_x101_vd_64x4d_fpn_2x_coco
pedestrian\pedestrian_yolov3_darknet
ppyolo\ppyolov2_r101vd_dcn_365e_coco
ppyolo\ppyolov2_r50vd_dcn_365e_coco
ppyolo\ppyolov2_r50vd_dcn_voc
ppyolo\ppyolo_mbv3_large_coco
ppyolo\ppyolo_mbv3_small_coco
ppyolo\ppyolo_r18vd_coco
ppyolo\ppyolo_r50vd_dcn_1x_coco
ppyolo\ppyolo_r50vd_dcn_1x_minicoco
ppyolo\ppyolo_r50vd_dcn_2x_coco
ppyolo\ppyolo_r50vd_dcn_voc
ppyolo\ppyolo_test
ppyolo\ppyolo_tiny_650e_coco
rcnn_enhance\faster_rcnn_enhance_3x_coco
res2net\faster_rcnn_res2net50_vb_26w_4s_fpn_1x_coco
res2net\mask_rcnn_res2net50_vb_26w_4s_fpn_2x_coco
res2net\mask_rcnn_res2net50_vd_26w_4s_fpn_2x_coco
solov2\solov2_r50_fpn_1x_coco
solov2\solov2_r50_fpn_3x_coco
ssd\ssdlite_ghostnet_320_coco
ssd\ssdlite_mobilenet_v1_300_coco
ssd\ssdlite_mobilenet_v3_large_320_coco
ssd\ssdlite_mobilenet_v3_small_320_coco
ssd\ssd_mobilenet_v1_300_120e_voc
ssd\ssd_vgg16_300_240e_voc
ttfnet\pafnet_10x_coco
ttfnet\pafnet_lite_mobilenet_v3_20x_coco
ttfnet\ttfnet_darknet53_1x_coco
vehicle\vehicle_yolov3_darknet
yolov3\yolov3_darknet53_270e_coco
yolov3\yolov3_darknet53_270e_voc
yolov3\yolov3_mobilenet_v1_270e_coco
yolov3\yolov3_mobilenet_v1_270e_voc
yolov3\yolov3_mobilenet_v1_roadsign
yolov3\yolov3_mobilenet_v1_ssld_270e_coco
yolov3\yolov3_mobilenet_v1_ssld_270e_voc
yolov3\yolov3_mobilenet_v3_large_270e_coco
yolov3\yolov3_mobilenet_v3_large_270e_voc
yolov3\yolov3_mobilenet_v3_large_ssld_270e_voc
yolov3\yolov3_r34_270e_coco
yolov3\yolov3_r50vd_dcn_270e_coco

View File

@ -0,0 +1,18 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import model_zoo
from .model_zoo import *
__all__ = model_zoo.__all__

View File

@ -0,0 +1,84 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import pkg_resources
try:
from collections.abc import Sequence
except:
from collections import Sequence
from ppdet.core.workspace import load_config, create
from ppdet.utils.checkpoint import load_weight
from ppdet.utils.download import get_config_path
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'list_model', 'get_config_file', 'get_weights_url', 'get_model',
'MODEL_ZOO_FILENAME'
]
MODEL_ZOO_FILENAME = 'MODEL_ZOO'
def list_model(filters=[]):
model_zoo_file = pkg_resources.resource_filename('ppdet.model_zoo',
MODEL_ZOO_FILENAME)
with open(model_zoo_file) as f:
model_names = f.read().splitlines()
# filter model_name
def filt(name):
for f in filters:
if name.find(f) < 0:
return False
return True
if isinstance(filters, str) or not isinstance(filters, Sequence):
filters = [filters]
model_names = [name for name in model_names if filt(name)]
if len(model_names) == 0 and len(filters) > 0:
raise ValueError("no model found, please check filters seeting, "
"filters can be set as following kinds:\n"
"\tDataset: coco, voc ...\n"
"\tArchitecture: yolo, rcnn, ssd ...\n"
"\tBackbone: resnet, vgg, darknet ...\n")
model_str = "Available Models:\n"
for model_name in model_names:
model_str += "\t{}\n".format(model_name)
logger.info(model_str)
# models and configs save on bcebos under dygraph directory
def get_config_file(model_name):
return get_config_path("ppdet://configs/{}.yml".format(model_name))
def get_weights_url(model_name):
return "ppdet://models/{}.pdparams".format(osp.split(model_name)[-1])
def get_model(model_name, pretrained=True):
cfg_file = get_config_file(model_name)
cfg = load_config(cfg_file)
model = create(cfg.architecture)
if pretrained:
load_weight(model, get_weights_url(model_name))
return model

View File

@ -0,0 +1,13 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -0,0 +1,48 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import paddle
import ppdet
import unittest
# NOTE: weights downloading costs time, we choose
# a small model for unittesting
MODEL_NAME = 'ppyolo/ppyolo_tiny_650e_coco'
class TestGetConfigFile(unittest.TestCase):
def test_main(self):
try:
cfg_file = ppdet.model_zoo.get_config_file(MODEL_NAME)
assert os.path.isfile(cfg_file)
except:
self.assertTrue(False)
class TestGetModel(unittest.TestCase):
def test_main(self):
try:
model = ppdet.model_zoo.get_model(MODEL_NAME)
assert isinstance(model, paddle.nn.Layer)
except:
self.assertTrue(False)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,68 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import ppdet
class TestListModel(unittest.TestCase):
def setUp(self):
self._filter = []
def test_main(self):
try:
ppdet.model_zoo.list_model(self._filter)
self.assertTrue(True)
except:
self.assertTrue(False)
class TestListModelYOLO(TestListModel):
def setUp(self):
self._filter = ['yolo']
class TestListModelRCNN(TestListModel):
def setUp(self):
self._filter = ['rcnn']
class TestListModelSSD(TestListModel):
def setUp(self):
self._filter = ['ssd']
class TestListModelMultiFilter(TestListModel):
def setUp(self):
self._filter = ['yolo', 'darknet']
class TestListModelError(unittest.TestCase):
def setUp(self):
self._filter = ['xxx']
def test_main(self):
try:
ppdet.model_zoo.list_model(self._filter)
self.assertTrue(False)
except ValueError:
self.assertTrue(True)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,41 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
warnings.filterwarnings(
action='ignore', category=DeprecationWarning, module='ops')
from . import ops
from . import backbones
from . import necks
from . import proposal_generator
from . import heads
from . import losses
from . import architectures
from . import post_process
from . import layers
from . import reid
from . import mot
from .ops import *
from .backbones import *
from .necks import *
from .proposal_generator import *
from .heads import *
from .losses import *
from .architectures import *
from .post_process import *
from .layers import *
from .reid import *
from .mot import *

View File

@ -0,0 +1,41 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
from . import meta_arch
from . import faster_rcnn
from . import mask_rcnn
from . import yolo
from . import cascade_rcnn
from . import ssd
from . import fcos
from . import solov2
from . import ttfnet
from . import s2anet
from . import keypoint_hrhrnet
from . import keypoint_hrnet
from . import jde
from . import deepsort
from . import fairmot
from . import centernet
from .meta_arch import *
from .faster_rcnn import *
from .mask_rcnn import *
from .yolo import *
from .cascade_rcnn import *
from .ssd import *
from .fcos import *
from .solov2 import *
from .ttfnet import *
from .s2anet import *
from .keypoint_hrhrnet import *
from .keypoint_hrnet import *
from .jde import *
from .deepsort import *
from .fairmot import *
from .centernet import *
from .blazeface import *

View File

@ -0,0 +1,91 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['BlazeFace']
@register
class BlazeFace(BaseArch):
"""
BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs,
see https://arxiv.org/abs/1907.05047
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
blaze_head (nn.Layer): `blazeHead` instance
post_process (object): `BBoxPostProcess` instance
"""
__category__ = 'architecture'
__inject__ = ['post_process']
def __init__(self, backbone, blaze_head, neck, post_process):
super(BlazeFace, self).__init__()
self.backbone = backbone
self.neck = neck
self.blaze_head = blaze_head
self.post_process = post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# fpn
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
# head
kwargs = {'input_shape': neck.out_shape}
blaze_head = create(cfg['blaze_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
'blaze_head': blaze_head,
}
def _forward(self):
# Backbone
body_feats = self.backbone(self.inputs)
# neck
neck_feats = self.neck(body_feats)
# blaze Head
if self.training:
return self.blaze_head(neck_feats, self.inputs['image'],
self.inputs['gt_bbox'],
self.inputs['gt_class'])
else:
preds, anchors = self.blaze_head(neck_feats, self.inputs['image'])
bbox, bbox_num = self.post_process(preds, anchors,
self.inputs['im_shape'],
self.inputs['scale_factor'])
return bbox, bbox_num
def get_loss(self, ):
return {"loss": self._forward()}
def get_pred(self):
bbox_pred, bbox_num = self._forward()
output = {
"bbox": bbox_pred,
"bbox_num": bbox_num,
}
return output

View File

@ -0,0 +1,143 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['CascadeRCNN']
@register
class CascadeRCNN(BaseArch):
"""
Cascade R-CNN network, see https://arxiv.org/abs/1712.00726
Args:
backbone (object): backbone instance
rpn_head (object): `RPNHead` instance
bbox_head (object): `BBoxHead` instance
bbox_post_process (object): `BBoxPostProcess` instance
neck (object): 'FPN' instance
mask_head (object): `MaskHead` instance
mask_post_process (object): `MaskPostProcess` instance
"""
__category__ = 'architecture'
__inject__ = [
'bbox_post_process',
'mask_post_process',
]
def __init__(self,
backbone,
rpn_head,
bbox_head,
bbox_post_process,
neck=None,
mask_head=None,
mask_post_process=None):
super(CascadeRCNN, self).__init__()
self.backbone = backbone
self.rpn_head = rpn_head
self.bbox_head = bbox_head
self.bbox_post_process = bbox_post_process
self.neck = neck
self.mask_head = mask_head
self.mask_post_process = mask_post_process
self.with_mask = mask_head is not None
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
out_shape = neck and neck.out_shape or backbone.out_shape
kwargs = {'input_shape': out_shape}
rpn_head = create(cfg['rpn_head'], **kwargs)
bbox_head = create(cfg['bbox_head'], **kwargs)
out_shape = neck and out_shape or bbox_head.get_head().out_shape
kwargs = {'input_shape': out_shape}
mask_head = cfg['mask_head'] and create(cfg['mask_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"rpn_head": rpn_head,
"bbox_head": bbox_head,
"mask_head": mask_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
if self.neck is not None:
body_feats = self.neck(body_feats)
if self.training:
rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
bbox_loss, bbox_feat = self.bbox_head(body_feats, rois, rois_num,
self.inputs)
rois, rois_num = self.bbox_head.get_assigned_rois()
bbox_targets = self.bbox_head.get_assigned_targets()
if self.with_mask:
mask_loss = self.mask_head(body_feats, rois, rois_num,
self.inputs, bbox_targets, bbox_feat)
return rpn_loss, bbox_loss, mask_loss
else:
return rpn_loss, bbox_loss, {}
else:
rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
preds, _ = self.bbox_head(body_feats, rois, rois_num, self.inputs)
refined_rois = self.bbox_head.get_refined_rois()
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bbox, bbox_num = self.bbox_post_process(
preds, (refined_rois, rois_num), im_shape, scale_factor)
# rescale the prediction back to origin image
bbox_pred = self.bbox_post_process.get_pred(bbox, bbox_num,
im_shape, scale_factor)
if not self.with_mask:
return bbox_pred, bbox_num, None
mask_out = self.mask_head(body_feats, bbox, bbox_num, self.inputs)
origin_shape = self.bbox_post_process.get_origin_shape()
mask_pred = self.mask_post_process(mask_out[:, 0, :, :], bbox_pred,
bbox_num, origin_shape)
return bbox_pred, bbox_num, mask_pred
def get_loss(self, ):
rpn_loss, bbox_loss, mask_loss = self._forward()
loss = {}
loss.update(rpn_loss)
loss.update(bbox_loss)
if self.with_mask:
loss.update(mask_loss)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num, mask_pred = self._forward()
output = {
'bbox': bbox_pred,
'bbox_num': bbox_num,
}
if self.with_mask:
output.update({'mask': mask_pred})
return output

View File

@ -0,0 +1,102 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['CenterNet']
@register
class CenterNet(BaseArch):
"""
CenterNet network, see http://arxiv.org/abs/1904.07850
Args:
backbone (object): backbone instance
neck (object): 'CenterDLAFPN' instance
head (object): 'CenterHead' instance
post_process (object): 'CenterNetPostProcess' instance
for_mot (bool): whether return other features used in tracking model
"""
__category__ = 'architecture'
__inject__ = ['post_process']
def __init__(self,
backbone='DLA',
neck='CenterDLAFPN',
head='CenterHead',
post_process='CenterNetPostProcess',
for_mot=False):
super(CenterNet, self).__init__()
self.backbone = backbone
self.neck = neck
self.head = head
self.post_process = post_process
self.for_mot = for_mot
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
head = create(cfg['head'], **kwargs)
return {'backbone': backbone, 'neck': neck, "head": head}
def _forward(self):
body_feats = self.backbone(self.inputs)
neck_feat = self.neck(body_feats)
head_out = self.head(neck_feat, self.inputs)
if self.for_mot:
head_out.update({'neck_feat': neck_feat})
return head_out
def get_pred(self):
head_out = self._forward()
if self.for_mot:
bbox, bbox_inds = self.post_process(
head_out['heatmap'],
head_out['size'],
head_out['offset'],
im_shape=self.inputs['im_shape'],
scale_factor=self.inputs['scale_factor'])
output = {
"bbox": bbox,
"bbox_inds": bbox_inds,
"neck_feat": head_out['neck_feat']
}
else:
bbox, bbox_num = self.post_process(
head_out['heatmap'],
head_out['size'],
head_out['offset'],
im_shape=self.inputs['im_shape'],
scale_factor=self.inputs['scale_factor'])
output = {
"bbox": bbox,
"bbox_num": bbox_num,
}
return output
def get_loss(self):
return self._forward()

View File

@ -0,0 +1,111 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
__all__ = ['DeepSORT']
@register
class DeepSORT(BaseArch):
"""
DeepSORT network, see https://arxiv.org/abs/1703.07402
Args:
detector (object): detector model instance
reid (object): reid model instance
tracker (object): tracker instance
"""
__category__ = 'architecture'
def __init__(self,
detector='YOLOv3',
reid='PCBPyramid',
tracker='DeepSORTTracker'):
super(DeepSORT, self).__init__()
self.detector = detector
self.reid = reid
self.tracker = tracker
@classmethod
def from_config(cls, cfg, *args, **kwargs):
if cfg['detector'] != 'None':
detector = create(cfg['detector'])
else:
detector = None
reid = create(cfg['reid'])
tracker = create(cfg['tracker'])
return {
"detector": detector,
"reid": reid,
"tracker": tracker,
}
def _forward(self):
assert 'ori_image' in self.inputs
load_dets = 'pred_bboxes' in self.inputs and 'pred_scores' in self.inputs
ori_image = self.inputs['ori_image']
input_shape = self.inputs['image'].shape[2:]
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
if self.detector and not load_dets:
outs = self.detector(self.inputs)
if outs['bbox_num'] > 0:
pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape,
im_shape, scale_factor)
pred_scores = outs['bbox'][:, 1:2]
else:
pred_bboxes = []
pred_scores = []
else:
pred_bboxes = self.inputs['pred_bboxes']
pred_scores = self.inputs['pred_scores']
if len(pred_bboxes) > 0:
pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape,
scale_factor)
bbox_tlwh = paddle.concat(
(pred_bboxes[:, 0:2],
pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
axis=1)
crops, pred_scores = get_crops(
pred_bboxes, ori_image, pred_scores, w=64, h=192)
if len(crops) > 0:
features = self.reid(paddle.to_tensor(crops))
detections = [Detection(bbox_tlwh[i], conf, features[i])\
for i, conf in enumerate(pred_scores)]
else:
detections = []
else:
detections = []
self.tracker.predict()
online_targets = self.tracker.update(detections)
return online_targets
def get_pred(self):
return self._forward()

View File

@ -0,0 +1,107 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['FairMOT']
@register
class FairMOT(BaseArch):
"""
FairMOT network, see http://arxiv.org/abs/2004.01888
Args:
detector (object): 'CenterNet' instance
reid (object): 'FairMOTEmbeddingHead' instance
tracker (object): 'JDETracker' instance
loss (object): 'FairMOTLoss' instance
"""
__category__ = 'architecture'
__inject__ = ['loss']
def __init__(self,
detector='CenterNet',
reid='FairMOTEmbeddingHead',
tracker='JDETracker',
loss='FairMOTLoss'):
super(FairMOT, self).__init__()
self.detector = detector
self.reid = reid
self.tracker = tracker
self.loss = loss
@classmethod
def from_config(cls, cfg, *args, **kwargs):
detector = create(cfg['detector'])
kwargs = {'input_shape': detector.neck.out_shape}
reid = create(cfg['reid'], **kwargs)
loss = create(cfg['loss'])
tracker = create(cfg['tracker'])
return {
'detector': detector,
'reid': reid,
'loss': loss,
'tracker': tracker
}
def _forward(self):
loss = dict()
# det_outs keys:
# train: det_loss, heatmap_loss, size_loss, offset_loss, neck_feat
# eval/infer: bbox, bbox_inds, neck_feat
det_outs = self.detector(self.inputs)
neck_feat = det_outs['neck_feat']
if self.training:
reid_loss = self.reid(neck_feat, self.inputs)
det_loss = det_outs['det_loss']
loss = self.loss(det_loss, reid_loss)
loss.update({
'heatmap_loss': det_outs['heatmap_loss'],
'size_loss': det_outs['size_loss'],
'offset_loss': det_outs['offset_loss'],
'reid_loss': reid_loss
})
return loss
else:
embedding = self.reid(neck_feat, self.inputs)
bbox_inds = det_outs['bbox_inds']
embedding = paddle.transpose(embedding, [0, 2, 3, 1])
embedding = paddle.reshape(embedding,
[-1, paddle.shape(embedding)[-1]])
id_feature = paddle.gather(embedding, bbox_inds)
dets = det_outs['bbox']
id_feature = id_feature
# Note: the tracker only considers batch_size=1 and num_classses=1
online_targets = self.tracker.update(dets, id_feature)
return online_targets
def get_pred(self):
output = self._forward()
return output
def get_loss(self):
loss = self._forward()
return loss

View File

@ -0,0 +1,106 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['FasterRCNN']
@register
class FasterRCNN(BaseArch):
"""
Faster R-CNN network, see https://arxiv.org/abs/1506.01497
Args:
backbone (object): backbone instance
rpn_head (object): `RPNHead` instance
bbox_head (object): `BBoxHead` instance
bbox_post_process (object): `BBoxPostProcess` instance
neck (object): 'FPN' instance
"""
__category__ = 'architecture'
__inject__ = ['bbox_post_process']
def __init__(self,
backbone,
rpn_head,
bbox_head,
bbox_post_process,
neck=None):
super(FasterRCNN, self).__init__()
self.backbone = backbone
self.neck = neck
self.rpn_head = rpn_head
self.bbox_head = bbox_head
self.bbox_post_process = bbox_post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
out_shape = neck and neck.out_shape or backbone.out_shape
kwargs = {'input_shape': out_shape}
rpn_head = create(cfg['rpn_head'], **kwargs)
bbox_head = create(cfg['bbox_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"rpn_head": rpn_head,
"bbox_head": bbox_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
if self.neck is not None:
body_feats = self.neck(body_feats)
if self.training:
rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
bbox_loss, _ = self.bbox_head(body_feats, rois, rois_num,
self.inputs)
return rpn_loss, bbox_loss
else:
rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
preds, _ = self.bbox_head(body_feats, rois, rois_num, None)
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bbox, bbox_num = self.bbox_post_process(preds, (rois, rois_num),
im_shape, scale_factor)
# rescale the prediction back to origin image
bbox_pred = self.bbox_post_process.get_pred(bbox, bbox_num,
im_shape, scale_factor)
return bbox_pred, bbox_num
def get_loss(self, ):
rpn_loss, bbox_loss = self._forward()
loss = {}
loss.update(rpn_loss)
loss.update(bbox_loss)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num = self._forward()
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
return output

View File

@ -0,0 +1,105 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['FCOS']
@register
class FCOS(BaseArch):
"""
FCOS network, see https://arxiv.org/abs/1904.01355
Args:
backbone (object): backbone instance
neck (object): 'FPN' instance
fcos_head (object): 'FCOSHead' instance
post_process (object): 'FCOSPostProcess' instance
"""
__category__ = 'architecture'
__inject__ = ['fcos_post_process']
def __init__(self,
backbone,
neck,
fcos_head='FCOSHead',
fcos_post_process='FCOSPostProcess'):
super(FCOS, self).__init__()
self.backbone = backbone
self.neck = neck
self.fcos_head = fcos_head
self.fcos_post_process = fcos_post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
fcos_head = create(cfg['fcos_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"fcos_head": fcos_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
fpn_feats = self.neck(body_feats)
fcos_head_outs = self.fcos_head(fpn_feats, self.training)
if not self.training:
scale_factor = self.inputs['scale_factor']
bboxes = self.fcos_post_process(fcos_head_outs, scale_factor)
return bboxes
else:
return fcos_head_outs
def get_loss(self, ):
loss = {}
tag_labels, tag_bboxes, tag_centerness = [], [], []
for i in range(len(self.fcos_head.fpn_stride)):
# labels, reg_target, centerness
k_lbl = 'labels{}'.format(i)
if k_lbl in self.inputs:
tag_labels.append(self.inputs[k_lbl])
k_box = 'reg_target{}'.format(i)
if k_box in self.inputs:
tag_bboxes.append(self.inputs[k_box])
k_ctn = 'centerness{}'.format(i)
if k_ctn in self.inputs:
tag_centerness.append(self.inputs[k_ctn])
fcos_head_outs = self._forward()
loss_fcos = self.fcos_head.get_loss(fcos_head_outs, tag_labels,
tag_bboxes, tag_centerness)
loss.update(loss_fcos)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num = self._forward()
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
return output

View File

@ -0,0 +1,124 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.modeling.mot.utils import scale_coords
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['JDE']
@register
class JDE(BaseArch):
__category__ = 'architecture'
__shared__ = ['metric']
"""
JDE network, see https://arxiv.org/abs/1909.12605v1
Args:
detector (object): detector model instance
reid (object): reid model instance
tracker (object): tracker instance
metric (str): 'MOTDet' for training and detection evaluation, 'ReID'
for ReID embedding evaluation, or 'MOT' for multi object tracking
evaluation
"""
def __init__(self,
detector='YOLOv3',
reid='JDEEmbeddingHead',
tracker='JDETracker',
metric='MOT'):
super(JDE, self).__init__()
self.detector = detector
self.reid = reid
self.tracker = tracker
self.metric = metric
@classmethod
def from_config(cls, cfg, *args, **kwargs):
detector = create(cfg['detector'])
kwargs = {'input_shape': detector.neck.out_shape}
reid = create(cfg['reid'], **kwargs)
tracker = create(cfg['tracker'])
return {
"detector": detector,
"reid": reid,
"tracker": tracker,
}
def _forward(self):
det_outs = self.detector(self.inputs)
if self.training:
emb_feats = det_outs['emb_feats']
loss_confs = det_outs['det_losses']['loss_confs']
loss_boxes = det_outs['det_losses']['loss_boxes']
jde_losses = self.reid(emb_feats, self.inputs, loss_confs,
loss_boxes)
return jde_losses
else:
if self.metric == 'MOTDet':
det_results = {
'bbox': det_outs['bbox'],
'bbox_num': det_outs['bbox_num'],
}
return det_results
elif self.metric == 'ReID':
emb_feats = det_outs['emb_feats']
embs_and_gts = self.reid(emb_feats, self.inputs, test_emb=True)
return embs_and_gts
elif self.metric == 'MOT':
emb_feats = det_outs['emb_feats']
emb_outs = self.reid(emb_feats, self.inputs)
boxes_idx = det_outs['boxes_idx']
bbox = det_outs['bbox']
input_shape = self.inputs['image'].shape[2:]
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bbox[:, 2:] = scale_coords(bbox[:, 2:], input_shape, im_shape,
scale_factor)
nms_keep_idx = det_outs['nms_keep_idx']
pred_dets = paddle.concat((bbox[:, 2:], bbox[:, 1:2]), axis=1)
emb_valid = paddle.gather_nd(emb_outs, boxes_idx)
pred_embs = paddle.gather_nd(emb_valid, nms_keep_idx)
online_targets = self.tracker.update(pred_dets, pred_embs)
return online_targets
else:
raise ValueError("Unknown metric {} for multi object tracking.".
format(self.metric))
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()

View File

@ -0,0 +1,286 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from scipy.optimize import linear_sum_assignment
from collections import abc, defaultdict
import numpy as np
import paddle
from ppdet.core.workspace import register, create, serializable
from .meta_arch import BaseArch
from .. import layers as L
from ..keypoint_utils import transpred
__all__ = ['HigherHRNet']
@register
class HigherHRNet(BaseArch):
__category__ = 'architecture'
def __init__(self,
backbone='HRNet',
hrhrnet_head='HigherHRNetHead',
post_process='HrHRNetPostProcess',
eval_flip=True,
flip_perm=None,
max_num_people=30):
"""
HigherHRNet network, see https://arxiv.org/abs/1908.10357
HigherHRNet+swahr, see https://arxiv.org/abs/2012.15175
Args:
backbone (nn.Layer): backbone instance
hrhrnet_head (nn.Layer): keypoint_head instance
bbox_post_process (object): `BBoxPostProcess` instance
"""
super(HigherHRNet, self).__init__()
self.backbone = backbone
self.hrhrnet_head = hrhrnet_head
self.post_process = post_process
self.flip = eval_flip
self.flip_perm = paddle.to_tensor(flip_perm)
self.deploy = False
self.interpolate = L.Upsample(2, mode='bilinear')
self.pool = L.MaxPool(5, 1, 2)
self.max_num_people = max_num_people
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# head
kwargs = {'input_shape': backbone.out_shape}
hrhrnet_head = create(cfg['hrhrnet_head'], **kwargs)
post_process = create(cfg['post_process'])
return {
'backbone': backbone,
"hrhrnet_head": hrhrnet_head,
"post_process": post_process,
}
def _forward(self):
if self.flip and not self.training and not self.deploy:
self.inputs['image'] = paddle.concat(
(self.inputs['image'], paddle.flip(self.inputs['image'], [3])))
body_feats = self.backbone(self.inputs)
if self.training:
return self.hrhrnet_head(body_feats, self.inputs)
else:
outputs = self.hrhrnet_head(body_feats)
if self.flip and not self.deploy:
outputs = [paddle.split(o, 2) for o in outputs]
output_rflip = [
paddle.flip(paddle.gather(o[1], self.flip_perm, 1), [3])
for o in outputs
]
output1 = [o[0] for o in outputs]
heatmap = (output1[0] + output_rflip[0]) / 2.
tagmaps = [output1[1], output_rflip[1]]
outputs = [heatmap] + tagmaps
outputs = self.get_topk(outputs)
if self.deploy:
return outputs
res_lst = []
h = self.inputs['im_shape'][0, 0].numpy().item()
w = self.inputs['im_shape'][0, 1].numpy().item()
kpts, scores = self.post_process(*outputs, h, w)
res_lst.append([kpts, scores])
return res_lst
def get_loss(self):
return self._forward()
def get_pred(self):
outputs = {}
res_lst = self._forward()
outputs['keypoint'] = res_lst
return outputs
def get_topk(self, outputs):
# resize to image size
outputs = [self.interpolate(x) for x in outputs]
if len(outputs) == 3:
tagmap = paddle.concat(
(outputs[1].unsqueeze(4), outputs[2].unsqueeze(4)), axis=4)
else:
tagmap = outputs[1].unsqueeze(4)
heatmap = outputs[0]
N, J = 1, self.hrhrnet_head.num_joints
heatmap_maxpool = self.pool(heatmap)
# topk
maxmap = heatmap * (heatmap == heatmap_maxpool)
maxmap = maxmap.reshape([N, J, -1])
heat_k, inds_k = maxmap.topk(self.max_num_people, axis=2)
outputs = [heatmap, tagmap, heat_k, inds_k]
return outputs
@register
@serializable
class HrHRNetPostProcess(object):
'''
HrHRNet postprocess contain:
1) get topk keypoints in the output heatmap
2) sample the tagmap's value corresponding to each of the topk coordinate
3) match different joints to combine to some people with Hungary algorithm
4) adjust the coordinate by +-0.25 to decrease error std
5) salvage missing joints by check positivity of heatmap - tagdiff_norm
Args:
max_num_people (int): max number of people support in postprocess
heat_thresh (float): value of topk below this threshhold will be ignored
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
inputs(list[heatmap]): the output list of modle, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
original_height, original_width (float): the original image size
'''
def __init__(self, max_num_people=30, heat_thresh=0.1, tag_thresh=1.):
self.max_num_people = max_num_people
self.heat_thresh = heat_thresh
self.tag_thresh = tag_thresh
def lerp(self, j, y, x, heatmap):
H, W = heatmap.shape[-2:]
left = np.clip(x - 1, 0, W - 1)
right = np.clip(x + 1, 0, W - 1)
up = np.clip(y - 1, 0, H - 1)
down = np.clip(y + 1, 0, H - 1)
offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
-0.25)
offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
-0.25)
return offset_y + 0.5, offset_x + 0.5
def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
original_width):
N, J, H, W = heatmap.shape
assert N == 1, "only support batch size 1"
heatmap = heatmap[0].cpu().detach().numpy()
tagmap = tagmap[0].cpu().detach().numpy()
heats = heat_k[0].cpu().detach().numpy()
inds_np = inds_k[0].cpu().detach().numpy()
y = inds_np // W
x = inds_np % W
tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
coords = np.stack((y, x), axis=2)
# threshold
mask = heats > self.heat_thresh
# cluster
cluster = defaultdict(lambda: {
'coords': np.zeros((J, 2), dtype=np.float32),
'scores': np.zeros(J, dtype=np.float32),
'tags': []
})
for jid, m in enumerate(mask):
num_valid = m.sum()
if num_valid == 0:
continue
valid_inds = np.where(m)[0]
valid_tags = tags[jid, m, :]
if len(cluster) == 0: # initialize
for i in valid_inds:
tag = tags[jid, i]
key = tag[0]
cluster[key]['tags'].append(tag)
cluster[key]['scores'][jid] = heats[jid, i]
cluster[key]['coords'][jid] = coords[jid, i]
continue
candidates = list(cluster.keys())[:self.max_num_people]
centroids = [
np.mean(
cluster[k]['tags'], axis=0) for k in candidates
]
num_clusters = len(centroids)
# shape is (num_valid, num_clusters, tag_dim)
dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
l2_dist = np.linalg.norm(dist, ord=2, axis=2)
# modulate dist with heat value, see `use_detection_val`
cost = np.round(l2_dist) * 100 - heats[jid, m, None]
# pad the cost matrix, otherwise new pose are ignored
if num_valid > num_clusters:
cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
constant_values=((0, 0), (0, 1e-10)))
rows, cols = linear_sum_assignment(cost)
for y, x in zip(rows, cols):
tag = tags[jid, y]
if y < num_valid and x < num_clusters and \
l2_dist[y, x] < self.tag_thresh:
key = candidates[x] # merge to cluster
else:
key = tag[0] # initialize new cluster
cluster[key]['tags'].append(tag)
cluster[key]['scores'][jid] = heats[jid, y]
cluster[key]['coords'][jid] = coords[jid, y]
# shape is [k, J, 2] and [k, J]
pose_tags = np.array([cluster[k]['tags'] for k in cluster])
pose_coords = np.array([cluster[k]['coords'] for k in cluster])
pose_scores = np.array([cluster[k]['scores'] for k in cluster])
valid = pose_scores > 0
pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
if valid.sum() == 0:
return pose_kpts, pose_kpts
# refine coords
valid_coords = pose_coords[valid].astype(np.int32)
y = valid_coords[..., 0].flatten()
x = valid_coords[..., 1].flatten()
_, j = np.nonzero(valid)
offsets = self.lerp(j, y, x, heatmap)
pose_coords[valid, 0] += offsets[0]
pose_coords[valid, 1] += offsets[1]
# mean score before salvage
mean_score = pose_scores.mean(axis=1)
pose_kpts[valid, 2] = pose_scores[valid]
# salvage missing joints
if True:
for pid, coords in enumerate(pose_coords):
tag_mean = np.array(pose_tags[pid]).mean(axis=0)
norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
score = heatmap - np.round(norm) # (J, H, W)
flat_score = score.reshape(J, -1)
max_inds = np.argmax(flat_score, axis=1)
max_scores = np.max(flat_score, axis=1)
salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
if salvage_joints.sum() == 0:
continue
y = max_inds[salvage_joints] // W
x = max_inds[salvage_joints] % W
offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
y = y.astype(np.float32) + offsets[0]
x = x.astype(np.float32) + offsets[1]
pose_coords[pid][salvage_joints, 0] = y
pose_coords[pid][salvage_joints, 1] = x
pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
original_height, original_width,
min(H, W))
return pose_kpts, mean_score

View File

@ -0,0 +1,203 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import numpy as np
import math
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from ..keypoint_utils import transform_preds
from .. import layers as L
__all__ = ['TopDownHRNet']
@register
class TopDownHRNet(BaseArch):
__category__ = 'architecture'
__inject__ = ['loss']
def __init__(self,
width,
num_joints,
backbone='HRNet',
loss='KeyPointMSELoss',
post_process='HRNetPostProcess',
flip_perm=None,
flip=True,
shift_heatmap=True):
"""
HRNnet network, see https://arxiv.org/abs/1902.09212
Args:
backbone (nn.Layer): backbone instance
post_process (object): `HRNetPostProcess` instance
flip_perm (list): The left-right joints exchange order list
"""
super(TopDownHRNet, self).__init__()
self.backbone = backbone
self.post_process = HRNetPostProcess()
self.loss = loss
self.flip_perm = flip_perm
self.flip = flip
self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True)
self.shift_heatmap = shift_heatmap
self.deploy = False
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
return {'backbone': backbone, }
def _forward(self):
feats = self.backbone(self.inputs)
hrnet_outputs = self.final_conv(feats[0])
if self.training:
return self.loss(hrnet_outputs, self.inputs)
elif self.deploy:
return hrnet_outputs
else:
if self.flip:
self.inputs['image'] = self.inputs['image'].flip([3])
feats = self.backbone(self.inputs)
output_flipped = self.final_conv(feats[0])
output_flipped = self.flip_back(output_flipped.numpy(),
self.flip_perm)
output_flipped = paddle.to_tensor(output_flipped.copy())
if self.shift_heatmap:
output_flipped[:, :, :, 1:] = output_flipped.clone(
)[:, :, :, 0:-1]
hrnet_outputs = (hrnet_outputs + output_flipped) * 0.5
imshape = (self.inputs['im_shape'].numpy()
)[:, ::-1] if 'im_shape' in self.inputs else None
center = self.inputs['center'].numpy(
) if 'center' in self.inputs else np.round(imshape / 2.)
scale = self.inputs['scale'].numpy(
) if 'scale' in self.inputs else imshape / 200.
outputs = self.post_process(hrnet_outputs, center, scale)
return outputs
def get_loss(self):
return self._forward()
def get_pred(self):
res_lst = self._forward()
outputs = {'keypoint': res_lst}
return outputs
def flip_back(self, output_flipped, matched_parts):
assert output_flipped.ndim == 4,\
'output_flipped should be [batch_size, num_joints, height, width]'
output_flipped = output_flipped[:, :, :, ::-1]
for pair in matched_parts:
tmp = output_flipped[:, pair[0], :, :].copy()
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
output_flipped[:, pair[1], :, :] = tmp
return output_flipped
class HRNetPostProcess(object):
def get_max_preds(self, heatmaps):
'''get predictions from score maps
Args:
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
'''
assert isinstance(heatmaps,
np.ndarray), 'heatmaps should be numpy.ndarray'
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = heatmaps.shape[0]
num_joints = heatmaps.shape[1]
width = heatmaps.shape[3]
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def get_final_preds(self, heatmaps, center, scale):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
Args:
heatmaps (numpy.ndarray): The predicted heatmaps
center (numpy.ndarray): The boxes center
scale (numpy.ndarray): The scale factor
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
"""
coords, maxvals = self.get_max_preds(heatmaps)
heatmap_height = heatmaps.shape[2]
heatmap_width = heatmaps.shape[3]
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
hm = heatmaps[n][p]
px = int(math.floor(coords[n][p][0] + 0.5))
py = int(math.floor(coords[n][p][1] + 0.5))
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
diff = np.array([
hm[py][px + 1] - hm[py][px - 1],
hm[py + 1][px] - hm[py - 1][px]
])
coords[n][p] += np.sign(diff) * .25
preds = coords.copy()
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(coords[i], center[i], scale[i],
[heatmap_width, heatmap_height])
return preds, maxvals
def __call__(self, output, center, scale):
preds, maxvals = self.get_final_preds(output.numpy(), center, scale)
outputs = [[
np.concatenate(
(preds, maxvals), axis=-1), np.mean(
maxvals, axis=1)
]]
return outputs

View File

@ -0,0 +1,135 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['MaskRCNN']
@register
class MaskRCNN(BaseArch):
"""
Mask R-CNN network, see https://arxiv.org/abs/1703.06870
Args:
backbone (object): backbone instance
rpn_head (object): `RPNHead` instance
bbox_head (object): `BBoxHead` instance
mask_head (object): `MaskHead` instance
bbox_post_process (object): `BBoxPostProcess` instance
mask_post_process (object): `MaskPostProcess` instance
neck (object): 'FPN' instance
"""
__category__ = 'architecture'
__inject__ = [
'bbox_post_process',
'mask_post_process',
]
def __init__(self,
backbone,
rpn_head,
bbox_head,
mask_head,
bbox_post_process,
mask_post_process,
neck=None):
super(MaskRCNN, self).__init__()
self.backbone = backbone
self.neck = neck
self.rpn_head = rpn_head
self.bbox_head = bbox_head
self.mask_head = mask_head
self.bbox_post_process = bbox_post_process
self.mask_post_process = mask_post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
out_shape = neck and neck.out_shape or backbone.out_shape
kwargs = {'input_shape': out_shape}
rpn_head = create(cfg['rpn_head'], **kwargs)
bbox_head = create(cfg['bbox_head'], **kwargs)
out_shape = neck and out_shape or bbox_head.get_head().out_shape
kwargs = {'input_shape': out_shape}
mask_head = create(cfg['mask_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"rpn_head": rpn_head,
"bbox_head": bbox_head,
"mask_head": mask_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
if self.neck is not None:
body_feats = self.neck(body_feats)
if self.training:
rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
bbox_loss, bbox_feat = self.bbox_head(body_feats, rois, rois_num,
self.inputs)
rois, rois_num = self.bbox_head.get_assigned_rois()
bbox_targets = self.bbox_head.get_assigned_targets()
# Mask Head needs bbox_feat in Mask RCNN
mask_loss = self.mask_head(body_feats, rois, rois_num, self.inputs,
bbox_targets, bbox_feat)
return rpn_loss, bbox_loss, mask_loss
else:
rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
preds, feat_func = self.bbox_head(body_feats, rois, rois_num, None)
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bbox, bbox_num = self.bbox_post_process(preds, (rois, rois_num),
im_shape, scale_factor)
mask_out = self.mask_head(
body_feats, bbox, bbox_num, self.inputs, feat_func=feat_func)
# rescale the prediction back to origin image
bbox_pred = self.bbox_post_process.get_pred(bbox, bbox_num,
im_shape, scale_factor)
origin_shape = self.bbox_post_process.get_origin_shape()
mask_pred = self.mask_post_process(mask_out[:, 0, :, :], bbox_pred,
bbox_num, origin_shape)
return bbox_pred, bbox_num, mask_pred
def get_loss(self, ):
bbox_loss, mask_loss, rpn_loss = self._forward()
loss = {}
loss.update(rpn_loss)
loss.update(bbox_loss)
loss.update(mask_loss)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num, mask_pred = self._forward()
output = {'bbox': bbox_pred, 'bbox_num': bbox_num, 'mask': mask_pred}
return output

View File

@ -0,0 +1,44 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
from ppdet.core.workspace import register
__all__ = ['BaseArch']
@register
class BaseArch(nn.Layer):
def __init__(self, data_format='NCHW'):
super(BaseArch, self).__init__()
self.data_format = data_format
def forward(self, inputs):
if self.data_format == 'NHWC':
image = inputs['image']
inputs['image'] = paddle.transpose(image, [0, 2, 3, 1])
self.inputs = inputs
self.model_arch()
if self.training:
out = self.get_loss()
else:
out = self.get_pred()
return out
def build_inputs(self, data, input_def):
inputs = {}
for i, k in enumerate(input_def):
inputs[k] = data[i]
return inputs
def model_arch(self, ):
pass
def get_loss(self, ):
raise NotImplementedError("Should implement get_loss method!")
def get_pred(self, ):
raise NotImplementedError("Should implement get_pred method!")

View File

@ -0,0 +1,102 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['S2ANet']
@register
class S2ANet(BaseArch):
__category__ = 'architecture'
__inject__ = [
's2anet_head',
's2anet_bbox_post_process',
]
def __init__(self, backbone, neck, s2anet_head, s2anet_bbox_post_process):
"""
S2ANet, see https://arxiv.org/pdf/2008.09397.pdf
Args:
backbone (object): backbone instance
neck (object): `FPN` instance
s2anet_head (object): `S2ANetHead` instance
s2anet_bbox_post_process (object): `S2ANetBBoxPostProcess` instance
"""
super(S2ANet, self).__init__()
self.backbone = backbone
self.neck = neck
self.s2anet_head = s2anet_head
self.s2anet_bbox_post_process = s2anet_bbox_post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
out_shape = neck and neck.out_shape or backbone.out_shape
kwargs = {'input_shape': out_shape}
s2anet_head = create(cfg['s2anet_head'], **kwargs)
s2anet_bbox_post_process = create(cfg['s2anet_bbox_post_process'],
**kwargs)
return {
'backbone': backbone,
'neck': neck,
"s2anet_head": s2anet_head,
"s2anet_bbox_post_process": s2anet_bbox_post_process,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
if self.neck is not None:
body_feats = self.neck(body_feats)
self.s2anet_head(body_feats)
if self.training:
loss = self.s2anet_head.get_loss(self.inputs)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
else:
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
nms_pre = self.s2anet_bbox_post_process.nms_pre
pred_scores, pred_bboxes = self.s2anet_head.get_prediction(nms_pre)
# post_process
pred_bboxes, bbox_num = self.s2anet_bbox_post_process(pred_scores,
pred_bboxes)
# rescale the prediction back to origin image
pred_bboxes = self.s2anet_bbox_post_process.get_pred(
pred_bboxes, bbox_num, im_shape, scale_factor)
# output
output = {'bbox': pred_bboxes, 'bbox_num': bbox_num}
return output
def get_loss(self, ):
loss = self._forward()
return loss
def get_pred(self):
output = self._forward()
return output

View File

@ -0,0 +1,110 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['SOLOv2']
@register
class SOLOv2(BaseArch):
"""
SOLOv2 network, see https://arxiv.org/abs/2003.10152
Args:
backbone (object): an backbone instance
solov2_head (object): an `SOLOv2Head` instance
mask_head (object): an `SOLOv2MaskHead` instance
neck (object): neck of network, such as feature pyramid network instance
"""
__category__ = 'architecture'
def __init__(self, backbone, solov2_head, mask_head, neck=None):
super(SOLOv2, self).__init__()
self.backbone = backbone
self.neck = neck
self.solov2_head = solov2_head
self.mask_head = mask_head
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
solov2_head = create(cfg['solov2_head'], **kwargs)
mask_head = create(cfg['mask_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
'solov2_head': solov2_head,
'mask_head': mask_head,
}
def model_arch(self):
body_feats = self.backbone(self.inputs)
body_feats = self.neck(body_feats)
self.seg_pred = self.mask_head(body_feats)
self.cate_pred_list, self.kernel_pred_list = self.solov2_head(
body_feats)
def get_loss(self, ):
loss = {}
# get gt_ins_labels, gt_cate_labels, etc.
gt_ins_labels, gt_cate_labels, gt_grid_orders = [], [], []
fg_num = self.inputs['fg_num']
for i in range(len(self.solov2_head.seg_num_grids)):
ins_label = 'ins_label{}'.format(i)
if ins_label in self.inputs:
gt_ins_labels.append(self.inputs[ins_label])
cate_label = 'cate_label{}'.format(i)
if cate_label in self.inputs:
gt_cate_labels.append(self.inputs[cate_label])
grid_order = 'grid_order{}'.format(i)
if grid_order in self.inputs:
gt_grid_orders.append(self.inputs[grid_order])
loss_solov2 = self.solov2_head.get_loss(
self.cate_pred_list, self.kernel_pred_list, self.seg_pred,
gt_ins_labels, gt_cate_labels, gt_grid_orders, fg_num)
loss.update(loss_solov2)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
seg_masks, cate_labels, cate_scores, bbox_num = self.solov2_head.get_prediction(
self.cate_pred_list, self.kernel_pred_list, self.seg_pred,
self.inputs['im_shape'], self.inputs['scale_factor'])
outs = {
"segm": seg_masks,
"bbox_num": bbox_num,
'cate_label': cate_labels,
'cate_score': cate_scores
}
return outs

View File

@ -0,0 +1,84 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['SSD']
@register
class SSD(BaseArch):
"""
Single Shot MultiBox Detector, see https://arxiv.org/abs/1512.02325
Args:
backbone (nn.Layer): backbone instance
ssd_head (nn.Layer): `SSDHead` instance
post_process (object): `BBoxPostProcess` instance
"""
__category__ = 'architecture'
__inject__ = ['post_process']
def __init__(self, backbone, ssd_head, post_process):
super(SSD, self).__init__()
self.backbone = backbone
self.ssd_head = ssd_head
self.post_process = post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# head
kwargs = {'input_shape': backbone.out_shape}
ssd_head = create(cfg['ssd_head'], **kwargs)
return {
'backbone': backbone,
"ssd_head": ssd_head,
}
def _forward(self):
# Backbone
body_feats = self.backbone(self.inputs)
# SSD Head
if self.training:
return self.ssd_head(body_feats, self.inputs['image'],
self.inputs['gt_bbox'],
self.inputs['gt_class'])
else:
preds, anchors = self.ssd_head(body_feats, self.inputs['image'])
bbox, bbox_num = self.post_process(preds, anchors,
self.inputs['im_shape'],
self.inputs['scale_factor'])
return bbox, bbox_num
def get_loss(self, ):
return {"loss": self._forward()}
def get_pred(self):
bbox_pred, bbox_num = self._forward()
output = {
"bbox": bbox_pred,
"bbox_num": bbox_num,
}
return output

View File

@ -0,0 +1,98 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['TTFNet']
@register
class TTFNet(BaseArch):
"""
TTFNet network, see https://arxiv.org/abs/1909.00700
Args:
backbone (object): backbone instance
neck (object): 'TTFFPN' instance
ttf_head (object): 'TTFHead' instance
post_process (object): 'BBoxPostProcess' instance
"""
__category__ = 'architecture'
__inject__ = ['post_process']
def __init__(self,
backbone='DarkNet',
neck='TTFFPN',
ttf_head='TTFHead',
post_process='BBoxPostProcess'):
super(TTFNet, self).__init__()
self.backbone = backbone
self.neck = neck
self.ttf_head = ttf_head
self.post_process = post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
ttf_head = create(cfg['ttf_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"ttf_head": ttf_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
body_feats = self.neck(body_feats)
hm, wh = self.ttf_head(body_feats)
if self.training:
return hm, wh
else:
bbox, bbox_num = self.post_process(hm, wh, self.inputs['im_shape'],
self.inputs['scale_factor'])
return bbox, bbox_num
def get_loss(self, ):
loss = {}
heatmap = self.inputs['ttf_heatmap']
box_target = self.inputs['ttf_box_target']
reg_weight = self.inputs['ttf_reg_weight']
hm, wh = self._forward()
head_loss = self.ttf_head.get_loss(hm, wh, heatmap, box_target,
reg_weight)
loss.update(head_loss)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num = self._forward()
output = {
"bbox": bbox_pred,
"bbox_num": bbox_num,
}
return output

View File

@ -0,0 +1,104 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['YOLOv3']
@register
class YOLOv3(BaseArch):
__category__ = 'architecture'
__shared__ = ['data_format']
__inject__ = ['post_process']
def __init__(self,
backbone='DarkNet',
neck='YOLOv3FPN',
yolo_head='YOLOv3Head',
post_process='BBoxPostProcess',
data_format='NCHW',
for_mot=False):
"""
YOLOv3 network, see https://arxiv.org/abs/1804.02767
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
yolo_head (nn.Layer): anchor_head instance
bbox_post_process (object): `BBoxPostProcess` instance
data_format (str): data format, NCHW or NHWC
for_mot (bool): whether return other features for multi-object tracking
models, default False in pure object detection models.
"""
super(YOLOv3, self).__init__(data_format=data_format)
self.backbone = backbone
self.neck = neck
self.yolo_head = yolo_head
self.post_process = post_process
self.for_mot = for_mot
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# fpn
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
# head
kwargs = {'input_shape': neck.out_shape}
yolo_head = create(cfg['yolo_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"yolo_head": yolo_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
neck_feats = self.neck(body_feats, self.for_mot)
if isinstance(neck_feats, dict):
assert self.for_mot == True
emb_feats = neck_feats['emb_feats']
neck_feats = neck_feats['yolo_feats']
if self.training:
yolo_losses = self.yolo_head(neck_feats, self.inputs)
if self.for_mot:
return {'det_losses': yolo_losses, 'emb_feats': emb_feats}
else:
return yolo_losses
else:
yolo_head_outs = self.yolo_head(neck_feats)
if self.for_mot:
boxes_idx, bbox, bbox_num, nms_keep_idx = self.post_process(
yolo_head_outs, self.yolo_head.mask_anchors)
output = {
'bbox': bbox,
'bbox_num': bbox_num,
'boxes_idx': boxes_idx,
'nms_keep_idx': nms_keep_idx,
'emb_feats': emb_feats,
}
else:
bbox, bbox_num = self.post_process(
yolo_head_outs, self.yolo_head.mask_anchors,
self.inputs['im_shape'], self.inputs['scale_factor'])
output = {'bbox': bbox, 'bbox_num': bbox_num}
return output
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()

View File

@ -0,0 +1,37 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import vgg
from . import resnet
from . import darknet
from . import mobilenet_v1
from . import mobilenet_v3
from . import hrnet
from . import blazenet
from . import ghostnet
from . import senet
from . import res2net
from . import dla
from .vgg import *
from .resnet import *
from .darknet import *
from .mobilenet_v1 import *
from .mobilenet_v3 import *
from .hrnet import *
from .blazenet import *
from .ghostnet import *
from .senet import *
from .res2net import *
from .dla import *

View File

@ -0,0 +1,333 @@
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['BlazeNet']
def hard_swish(x):
return x * F.relu6(x + 3) / 6.
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
num_groups=1,
act='relu',
conv_lr=0.1,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(ConvBNLayer, self).__init__()
self.act = act
self._conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
learning_rate=conv_lr,
initializer=KaimingNormal(),
name=name + "_weights"),
bias_attr=False)
param_attr = ParamAttr(name=name + "_bn_scale")
bias_attr = ParamAttr(name=name + "_bn_offset")
if norm_type == 'sync_bn':
self._batch_norm = nn.SyncBatchNorm(
out_channels, weight_attr=param_attr, bias_attr=bias_attr)
else:
self._batch_norm = nn.BatchNorm(
out_channels,
act=None,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=False,
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
if self.act == "relu":
x = F.relu(x)
elif self.act == "relu6":
x = F.relu6(x)
elif self.act == 'leaky':
x = F.leaky_relu(x)
elif self.act == 'hard_swish':
x = hard_swish(x)
return x
class BlazeBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels1,
out_channels2,
double_channels=None,
stride=1,
use_5x5kernel=True,
act='relu',
name=None):
super(BlazeBlock, self).__init__()
assert stride in [1, 2]
self.use_pool = not stride == 1
self.use_double_block = double_channels is not None
self.conv_dw = []
if use_5x5kernel:
self.conv_dw.append(
self.add_sublayer(
name + "1_dw",
ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels1,
kernel_size=5,
stride=stride,
padding=2,
num_groups=out_channels1,
name=name + "1_dw")))
else:
self.conv_dw.append(
self.add_sublayer(
name + "1_dw_1",
ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels1,
kernel_size=3,
stride=1,
padding=1,
num_groups=out_channels1,
name=name + "1_dw_1")))
self.conv_dw.append(
self.add_sublayer(
name + "1_dw_2",
ConvBNLayer(
in_channels=out_channels1,
out_channels=out_channels1,
kernel_size=3,
stride=stride,
padding=1,
num_groups=out_channels1,
name=name + "1_dw_2")))
self.act = act if self.use_double_block else None
self.conv_pw = ConvBNLayer(
in_channels=out_channels1,
out_channels=out_channels2,
kernel_size=1,
stride=1,
padding=0,
act=self.act,
name=name + "1_sep")
if self.use_double_block:
self.conv_dw2 = []
if use_5x5kernel:
self.conv_dw2.append(
self.add_sublayer(
name + "2_dw",
ConvBNLayer(
in_channels=out_channels2,
out_channels=out_channels2,
kernel_size=5,
stride=1,
padding=2,
num_groups=out_channels2,
name=name + "2_dw")))
else:
self.conv_dw2.append(
self.add_sublayer(
name + "2_dw_1",
ConvBNLayer(
in_channels=out_channels2,
out_channels=out_channels2,
kernel_size=3,
stride=1,
padding=1,
num_groups=out_channels2,
name=name + "1_dw_1")))
self.conv_dw2.append(
self.add_sublayer(
name + "2_dw_2",
ConvBNLayer(
in_channels=out_channels2,
out_channels=out_channels2,
kernel_size=3,
stride=1,
padding=1,
num_groups=out_channels2,
name=name + "2_dw_2")))
self.conv_pw2 = ConvBNLayer(
in_channels=out_channels2,
out_channels=double_channels,
kernel_size=1,
stride=1,
padding=0,
name=name + "2_sep")
# shortcut
if self.use_pool:
shortcut_channel = double_channels or out_channels2
self._shortcut = []
self._shortcut.append(
self.add_sublayer(
name + '_shortcut_pool',
nn.MaxPool2D(
kernel_size=stride, stride=stride, ceil_mode=True)))
self._shortcut.append(
self.add_sublayer(
name + '_shortcut_conv',
ConvBNLayer(
in_channels=in_channels,
out_channels=shortcut_channel,
kernel_size=1,
stride=1,
padding=0,
name="shortcut" + name)))
def forward(self, x):
y = x
for conv_dw_block in self.conv_dw:
y = conv_dw_block(y)
y = self.conv_pw(y)
if self.use_double_block:
for conv_dw2_block in self.conv_dw2:
y = conv_dw2_block(y)
y = self.conv_pw2(y)
if self.use_pool:
for shortcut in self._shortcut:
x = shortcut(x)
return F.relu(paddle.add(x, y))
@register
@serializable
class BlazeNet(nn.Layer):
"""
BlazeFace, see https://arxiv.org/abs/1907.05047
Args:
blaze_filters (list): number of filter for each blaze block.
double_blaze_filters (list): number of filter for each double_blaze block.
use_5x5kernel (bool): whether or not filter size is 5x5 in depth-wise conv.
"""
def __init__(
self,
blaze_filters=[[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]],
double_blaze_filters=[[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
[96, 24, 96, 2], [96, 24, 96], [96, 24, 96]],
use_5x5kernel=True,
act=None):
super(BlazeNet, self).__init__()
conv1_num_filters = blaze_filters[0][0]
self.conv1 = ConvBNLayer(
in_channels=3,
out_channels=conv1_num_filters,
kernel_size=3,
stride=2,
padding=1,
name="conv1")
in_channels = conv1_num_filters
self.blaze_block = []
self._out_channels = []
for k, v in enumerate(blaze_filters):
assert len(v) in [2, 3], \
"blaze_filters {} not in [2, 3]"
if len(v) == 2:
self.blaze_block.append(
self.add_sublayer(
'blaze_{}'.format(k),
BlazeBlock(
in_channels,
v[0],
v[1],
use_5x5kernel=use_5x5kernel,
act=act,
name='blaze_{}'.format(k))))
elif len(v) == 3:
self.blaze_block.append(
self.add_sublayer(
'blaze_{}'.format(k),
BlazeBlock(
in_channels,
v[0],
v[1],
stride=v[2],
use_5x5kernel=use_5x5kernel,
act=act,
name='blaze_{}'.format(k))))
in_channels = v[1]
for k, v in enumerate(double_blaze_filters):
assert len(v) in [3, 4], \
"blaze_filters {} not in [3, 4]"
if len(v) == 3:
self.blaze_block.append(
self.add_sublayer(
'double_blaze_{}'.format(k),
BlazeBlock(
in_channels,
v[0],
v[1],
double_channels=v[2],
use_5x5kernel=use_5x5kernel,
act=act,
name='double_blaze_{}'.format(k))))
elif len(v) == 4:
self.blaze_block.append(
self.add_sublayer(
'double_blaze_{}'.format(k),
BlazeBlock(
in_channels,
v[0],
v[1],
double_channels=v[2],
stride=v[3],
use_5x5kernel=use_5x5kernel,
act=act,
name='double_blaze_{}'.format(k))))
in_channels = v[2]
self._out_channels.append(in_channels)
def forward(self, inputs):
outs = []
y = self.conv1(inputs['image'])
for block in self.blaze_block:
y = block(y)
outs.append(y)
return [outs[-4], outs[-1]]
@property
def out_shape(self):
return [
ShapeSpec(channels=c)
for c in [self._out_channels[-4], self._out_channels[-1]]
]

View File

@ -0,0 +1,340 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.ops import batch_norm, mish
from ..shape_spec import ShapeSpec
__all__ = ['DarkNet', 'ConvBNLayer']
class ConvBNLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size=3,
stride=1,
groups=1,
padding=0,
norm_type='bn',
norm_decay=0.,
act="leaky",
freeze_norm=False,
data_format='NCHW',
name=''):
"""
conv + bn + activation layer
Args:
ch_in (int): input channel
ch_out (int): output channel
filter_size (int): filter size, default 3
stride (int): stride, default 1
groups (int): number of groups of conv layer, default 1
padding (int): padding size, default 0
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
act (str): activation function type, default 'leaky', which means leaky_relu
freeze_norm (bool): whether to freeze norm, default False
data_format (str): data format, NCHW or NHWC
"""
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
data_format=data_format,
bias_attr=False)
self.batch_norm = batch_norm(
ch_out,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format)
self.act = act
def forward(self, inputs):
out = self.conv(inputs)
out = self.batch_norm(out)
if self.act == 'leaky':
out = F.leaky_relu(out, 0.1)
elif self.act == 'mish':
out = mish(out)
return out
class DownSample(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size=3,
stride=2,
padding=1,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
data_format='NCHW'):
"""
downsample layer
Args:
ch_in (int): input channel
ch_out (int): output channel
filter_size (int): filter size, default 3
stride (int): stride, default 2
padding (int): padding size, default 1
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
freeze_norm (bool): whether to freeze norm, default False
data_format (str): data format, NCHW or NHWC
"""
super(DownSample, self).__init__()
self.conv_bn_layer = ConvBNLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format)
self.ch_out = ch_out
def forward(self, inputs):
out = self.conv_bn_layer(inputs)
return out
class BasicBlock(nn.Layer):
def __init__(self,
ch_in,
ch_out,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
data_format='NCHW'):
"""
BasicBlock layer of DarkNet
Args:
ch_in (int): input channel
ch_out (int): output channel
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
freeze_norm (bool): whether to freeze norm, default False
data_format (str): data format, NCHW or NHWC
"""
super(BasicBlock, self).__init__()
self.conv1 = ConvBNLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=1,
padding=0,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format)
self.conv2 = ConvBNLayer(
ch_in=ch_out,
ch_out=ch_out * 2,
filter_size=3,
stride=1,
padding=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format)
def forward(self, inputs):
conv1 = self.conv1(inputs)
conv2 = self.conv2(conv1)
out = paddle.add(x=inputs, y=conv2)
return out
class Blocks(nn.Layer):
def __init__(self,
ch_in,
ch_out,
count,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
name=None,
data_format='NCHW'):
"""
Blocks layer, which consist of some BaickBlock layers
Args:
ch_in (int): input channel
ch_out (int): output channel
count (int): number of BasicBlock layer
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
freeze_norm (bool): whether to freeze norm, default False
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(Blocks, self).__init__()
self.basicblock0 = BasicBlock(
ch_in,
ch_out,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format)
self.res_out_list = []
for i in range(1, count):
block_name = '{}.{}'.format(name, i)
res_out = self.add_sublayer(
block_name,
BasicBlock(
ch_out * 2,
ch_out,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format))
self.res_out_list.append(res_out)
self.ch_out = ch_out
def forward(self, inputs):
y = self.basicblock0(inputs)
for basic_block_i in self.res_out_list:
y = basic_block_i(y)
return y
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
@register
@serializable
class DarkNet(nn.Layer):
__shared__ = ['norm_type', 'data_format']
def __init__(self,
depth=53,
freeze_at=-1,
return_idx=[2, 3, 4],
num_stages=5,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
data_format='NCHW'):
"""
Darknet, see https://pjreddie.com/darknet/yolo/
Args:
depth (int): depth of network
freeze_at (int): freeze the backbone at which stage
filter_size (int): filter size, default 3
return_idx (list): index of stages whose feature maps are returned
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
data_format (str): data format, NCHW or NHWC
"""
super(DarkNet, self).__init__()
self.depth = depth
self.freeze_at = freeze_at
self.return_idx = return_idx
self.num_stages = num_stages
self.stages = DarkNet_cfg[self.depth][0:num_stages]
self.conv0 = ConvBNLayer(
ch_in=3,
ch_out=32,
filter_size=3,
stride=1,
padding=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format)
self.downsample0 = DownSample(
ch_in=32,
ch_out=32 * 2,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format)
self._out_channels = []
self.darknet_conv_block_list = []
self.downsample_list = []
ch_in = [64, 128, 256, 512, 1024]
for i, stage in enumerate(self.stages):
name = 'stage.{}'.format(i)
conv_block = self.add_sublayer(
name,
Blocks(
int(ch_in[i]),
32 * (2**i),
stage,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format,
name=name))
self.darknet_conv_block_list.append(conv_block)
if i in return_idx:
self._out_channels.append(64 * (2**i))
for i in range(num_stages - 1):
down_name = 'stage.{}.downsample'.format(i)
downsample = self.add_sublayer(
down_name,
DownSample(
ch_in=32 * (2**(i + 1)),
ch_out=32 * (2**(i + 2)),
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
data_format=data_format))
self.downsample_list.append(downsample)
def forward(self, inputs):
x = inputs['image']
out = self.conv0(x)
out = self.downsample0(out)
blocks = []
for i, conv_block_i in enumerate(self.darknet_conv_block_list):
out = conv_block_i(out)
if i == self.freeze_at:
out.stop_gradient = True
if i in self.return_idx:
blocks.append(out)
if i < self.num_stages - 1:
out = self.downsample_list[i](out)
return blocks
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]

View File

@ -0,0 +1,243 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec
DLA_cfg = {34: ([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512])}
class BasicBlock(nn.Layer):
def __init__(self, ch_in, ch_out, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = ConvNormLayer(
ch_in,
ch_out,
filter_size=3,
stride=stride,
bias_on=False,
norm_decay=None)
self.conv2 = ConvNormLayer(
ch_out,
ch_out,
filter_size=3,
stride=1,
bias_on=False,
norm_decay=None)
def forward(self, inputs, residual=None):
if residual is None:
residual = inputs
out = self.conv1(inputs)
out = F.relu(out)
out = self.conv2(out)
out = paddle.add(x=out, y=residual)
out = F.relu(out)
return out
class Root(nn.Layer):
def __init__(self, ch_in, ch_out, kernel_size, residual):
super(Root, self).__init__()
self.conv = ConvNormLayer(
ch_in,
ch_out,
filter_size=1,
stride=1,
bias_on=False,
norm_decay=None)
self.residual = residual
def forward(self, inputs):
children = inputs
out = self.conv(paddle.concat(inputs, axis=1))
if self.residual:
out = paddle.add(x=out, y=children[0])
out = F.relu(out)
return out
class Tree(nn.Layer):
def __init__(self,
level,
block,
ch_in,
ch_out,
stride=1,
level_root=False,
root_dim=0,
root_kernel_size=1,
root_residual=False):
super(Tree, self).__init__()
if root_dim == 0:
root_dim = 2 * ch_out
if level_root:
root_dim += ch_in
if level == 1:
self.tree1 = block(ch_in, ch_out, stride)
self.tree2 = block(ch_out, ch_out, 1)
else:
self.tree1 = Tree(
level - 1,
block,
ch_in,
ch_out,
stride,
root_dim=0,
root_kernel_size=root_kernel_size,
root_residual=root_residual)
self.tree2 = Tree(
level - 1,
block,
ch_out,
ch_out,
1,
root_dim=root_dim + ch_out,
root_kernel_size=root_kernel_size,
root_residual=root_residual)
if level == 1:
self.root = Root(root_dim, ch_out, root_kernel_size, root_residual)
self.level_root = level_root
self.root_dim = root_dim
self.downsample = None
self.project = None
self.level = level
if stride > 1:
self.downsample = nn.MaxPool2D(stride, stride=stride)
if ch_in != ch_out:
self.project = ConvNormLayer(
ch_in,
ch_out,
filter_size=1,
stride=1,
bias_on=False,
norm_decay=None)
def forward(self, x, residual=None, children=None):
children = [] if children is None else children
bottom = self.downsample(x) if self.downsample else x
residual = self.project(bottom) if self.project else bottom
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, residual)
if self.level == 1:
x2 = self.tree2(x1)
x = self.root([x2, x1] + children)
else:
children.append(x1)
x = self.tree2(x1, children=children)
return x
@register
@serializable
class DLA(nn.Layer):
"""
DLA, see https://arxiv.org/pdf/1707.06484.pdf
Args:
depth (int): DLA depth, should be 34.
residual_root (bool): whether use a reidual layer in the root block
"""
def __init__(self, depth=34, residual_root=False):
super(DLA, self).__init__()
levels, channels = DLA_cfg[depth]
if depth == 34:
block = BasicBlock
self.channels = channels
self.base_layer = nn.Sequential(
ConvNormLayer(
3,
channels[0],
filter_size=7,
stride=1,
bias_on=False,
norm_decay=None),
nn.ReLU())
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(
channels[0], channels[1], levels[1], stride=2)
self.level2 = Tree(
levels[2],
block,
channels[1],
channels[2],
2,
level_root=False,
root_residual=residual_root)
self.level3 = Tree(
levels[3],
block,
channels[2],
channels[3],
2,
level_root=True,
root_residual=residual_root)
self.level4 = Tree(
levels[4],
block,
channels[3],
channels[4],
2,
level_root=True,
root_residual=residual_root)
self.level5 = Tree(
levels[5],
block,
channels[4],
channels[5],
2,
level_root=True,
root_residual=residual_root)
def _make_conv_level(self, ch_in, ch_out, conv_num, stride=1):
modules = []
for i in range(conv_num):
modules.extend([
ConvNormLayer(
ch_in,
ch_out,
filter_size=3,
stride=stride if i == 0 else 1,
bias_on=False,
norm_decay=None), nn.ReLU()
])
ch_in = ch_out
return nn.Sequential(*modules)
@property
def out_shape(self):
return [ShapeSpec(channels=self.channels[i]) for i in range(6)]
def forward(self, inputs):
outs = []
im = inputs['image']
feats = self.base_layer(im)
for i in range(6):
feats = getattr(self, 'level{}'.format(i))(feats)
outs.append(feats)
return outs

View File

@ -0,0 +1,476 @@
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, Linear
from paddle.nn.initializer import Uniform
from ppdet.core.workspace import register, serializable
from numbers import Integral
from ..shape_spec import ShapeSpec
from .mobilenet_v3 import make_divisible, ConvBNLayer
__all__ = ['GhostNet']
class ExtraBlockDW(nn.Layer):
def __init__(self,
in_c,
ch_1,
ch_2,
stride,
lr_mult,
conv_decay=0.,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
name=None):
super(ExtraBlockDW, self).__init__()
self.pointwise_conv = ConvBNLayer(
in_c=in_c,
out_c=ch_1,
filter_size=1,
stride=1,
padding=0,
act='relu6',
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_extra1")
self.depthwise_conv = ConvBNLayer(
in_c=ch_1,
out_c=ch_2,
filter_size=3,
stride=stride,
padding=1, #
num_groups=int(ch_1),
act='relu6',
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_extra2_dw")
self.normal_conv = ConvBNLayer(
in_c=ch_2,
out_c=ch_2,
filter_size=1,
stride=1,
padding=0,
act='relu6',
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_extra2_sep")
def forward(self, inputs):
x = self.pointwise_conv(inputs)
x = self.depthwise_conv(x)
x = self.normal_conv(x)
return x
class SEBlock(nn.Layer):
def __init__(self, num_channels, lr_mult, reduction_ratio=4, name=None):
super(SEBlock, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self._num_channels = num_channels
stdv = 1.0 / math.sqrt(num_channels * 1.0)
med_ch = num_channels // reduction_ratio
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
learning_rate=lr_mult,
initializer=Uniform(-stdv, stdv),
name=name + "_1_weights"),
bias_attr=ParamAttr(
learning_rate=lr_mult, name=name + "_1_offset"))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_channels,
weight_attr=ParamAttr(
learning_rate=lr_mult,
initializer=Uniform(-stdv, stdv),
name=name + "_2_weights"),
bias_attr=ParamAttr(
learning_rate=lr_mult, name=name + "_2_offset"))
def forward(self, inputs):
pool = self.pool2d_gap(inputs)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = paddle.clip(x=excitation, min=0, max=1)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = paddle.multiply(inputs, excitation)
return out
class GhostModule(nn.Layer):
def __init__(self,
in_channels,
output_channels,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
relu=True,
lr_mult=1.,
conv_decay=0.,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
name=None):
super(GhostModule, self).__init__()
init_channels = int(math.ceil(output_channels / ratio))
new_channels = int(init_channels * (ratio - 1))
self.primary_conv = ConvBNLayer(
in_c=in_channels,
out_c=init_channels,
filter_size=kernel_size,
stride=stride,
padding=int((kernel_size - 1) // 2),
num_groups=1,
act="relu" if relu else None,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_primary_conv")
self.cheap_operation = ConvBNLayer(
in_c=init_channels,
out_c=new_channels,
filter_size=dw_size,
stride=1,
padding=int((dw_size - 1) // 2),
num_groups=init_channels,
act="relu" if relu else None,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_cheap_operation")
def forward(self, inputs):
x = self.primary_conv(inputs)
y = self.cheap_operation(x)
out = paddle.concat([x, y], axis=1)
return out
class GhostBottleneck(nn.Layer):
def __init__(self,
in_channels,
hidden_dim,
output_channels,
kernel_size,
stride,
use_se,
lr_mult,
conv_decay=0.,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
return_list=False,
name=None):
super(GhostBottleneck, self).__init__()
self._stride = stride
self._use_se = use_se
self._num_channels = in_channels
self._output_channels = output_channels
self.return_list = return_list
self.ghost_module_1 = GhostModule(
in_channels=in_channels,
output_channels=hidden_dim,
kernel_size=1,
stride=1,
relu=True,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_ghost_module_1")
if stride == 2:
self.depthwise_conv = ConvBNLayer(
in_c=hidden_dim,
out_c=hidden_dim,
filter_size=kernel_size,
stride=stride,
padding=int((kernel_size - 1) // 2),
num_groups=hidden_dim,
act=None,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name +
"_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
)
if use_se:
self.se_block = SEBlock(hidden_dim, lr_mult, name=name + "_se")
self.ghost_module_2 = GhostModule(
in_channels=hidden_dim,
output_channels=output_channels,
kernel_size=1,
relu=False,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_ghost_module_2")
if stride != 1 or in_channels != output_channels:
self.shortcut_depthwise = ConvBNLayer(
in_c=in_channels,
out_c=in_channels,
filter_size=kernel_size,
stride=stride,
padding=int((kernel_size - 1) // 2),
num_groups=in_channels,
act=None,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name +
"_shortcut_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
)
self.shortcut_conv = ConvBNLayer(
in_c=in_channels,
out_c=output_channels,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
act=None,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_shortcut_conv")
def forward(self, inputs):
y = self.ghost_module_1(inputs)
x = y
if self._stride == 2:
x = self.depthwise_conv(x)
if self._use_se:
x = self.se_block(x)
x = self.ghost_module_2(x)
if self._stride == 1 and self._num_channels == self._output_channels:
shortcut = inputs
else:
shortcut = self.shortcut_depthwise(inputs)
shortcut = self.shortcut_conv(shortcut)
x = paddle.add(x=x, y=shortcut)
if self.return_list:
return [y, x]
else:
return x
@register
@serializable
class GhostNet(nn.Layer):
__shared__ = ['norm_type']
def __init__(
self,
scale=1.3,
feature_maps=[6, 12, 15],
with_extra_blocks=False,
extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
conv_decay=0.,
norm_type='bn',
norm_decay=0.0,
freeze_norm=False):
super(GhostNet, self).__init__()
if isinstance(feature_maps, Integral):
feature_maps = [feature_maps]
if norm_type == 'sync_bn' and freeze_norm:
raise ValueError(
"The norm_type should not be sync_bn when freeze_norm is True")
self.feature_maps = feature_maps
self.with_extra_blocks = with_extra_blocks
self.extra_block_filters = extra_block_filters
inplanes = 16
self.cfgs = [
# k, t, c, SE, s
[3, 16, 16, 0, 1],
[3, 48, 24, 0, 2],
[3, 72, 24, 0, 1],
[5, 72, 40, 1, 2],
[5, 120, 40, 1, 1],
[3, 240, 80, 0, 2],
[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 1, 1],
[3, 672, 112, 1, 1],
[5, 672, 160, 1, 2], # SSDLite output
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1]
]
self.scale = scale
conv1_out_ch = int(make_divisible(inplanes * self.scale, 4))
self.conv1 = ConvBNLayer(
in_c=3,
out_c=conv1_out_ch,
filter_size=3,
stride=2,
padding=1,
num_groups=1,
act="relu",
lr_mult=1.,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="conv1")
# build inverted residual blocks
self._out_channels = []
self.ghost_bottleneck_list = []
idx = 0
inplanes = conv1_out_ch
for k, exp_size, c, use_se, s in self.cfgs:
lr_idx = min(idx // 3, len(lr_mult_list) - 1)
lr_mult = lr_mult_list[lr_idx]
# for SSD/SSDLite, first head input is after ResidualUnit expand_conv
return_list = self.with_extra_blocks and idx + 2 in self.feature_maps
ghost_bottleneck = self.add_sublayer(
"_ghostbottleneck_" + str(idx),
sublayer=GhostBottleneck(
in_channels=inplanes,
hidden_dim=int(make_divisible(exp_size * self.scale, 4)),
output_channels=int(make_divisible(c * self.scale, 4)),
kernel_size=k,
stride=s,
use_se=use_se,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
return_list=return_list,
name="_ghostbottleneck_" + str(idx)))
self.ghost_bottleneck_list.append(ghost_bottleneck)
inplanes = int(make_divisible(c * self.scale, 4))
idx += 1
self._update_out_channels(
int(make_divisible(exp_size * self.scale, 4))
if return_list else inplanes, idx + 1, feature_maps)
if self.with_extra_blocks:
self.extra_block_list = []
extra_out_c = int(make_divisible(self.scale * self.cfgs[-1][1], 4))
lr_idx = min(idx // 3, len(lr_mult_list) - 1)
lr_mult = lr_mult_list[lr_idx]
conv_extra = self.add_sublayer(
"conv" + str(idx + 2),
sublayer=ConvBNLayer(
in_c=inplanes,
out_c=extra_out_c,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
act="relu6",
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="conv" + str(idx + 2)))
self.extra_block_list.append(conv_extra)
idx += 1
self._update_out_channels(extra_out_c, idx + 1, feature_maps)
for j, block_filter in enumerate(self.extra_block_filters):
in_c = extra_out_c if j == 0 else self.extra_block_filters[j -
1][1]
conv_extra = self.add_sublayer(
"conv" + str(idx + 2),
sublayer=ExtraBlockDW(
in_c,
block_filter[0],
block_filter[1],
stride=2,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name='conv' + str(idx + 2)))
self.extra_block_list.append(conv_extra)
idx += 1
self._update_out_channels(block_filter[1], idx + 1,
feature_maps)
def _update_out_channels(self, channel, feature_idx, feature_maps):
if feature_idx in feature_maps:
self._out_channels.append(channel)
def forward(self, inputs):
x = self.conv1(inputs['image'])
outs = []
for idx, ghost_bottleneck in enumerate(self.ghost_bottleneck_list):
x = ghost_bottleneck(x)
if idx + 2 in self.feature_maps:
if isinstance(x, list):
outs.append(x[0])
x = x[1]
else:
outs.append(x)
if not self.with_extra_blocks:
return outs
for i, block in enumerate(self.extra_block_list):
idx = i + len(self.ghost_bottleneck_list)
x = block(x)
if idx + 2 in self.feature_maps:
outs.append(x)
return outs
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]

View File

@ -0,0 +1,724 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from paddle.nn.initializer import Normal
from numbers import Integral
import math
from ppdet.core.workspace import register
from ..shape_spec import ShapeSpec
__all__ = ['HRNet']
class ConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride=1,
norm_type='bn',
norm_groups=32,
use_dcn=False,
norm_decay=0.,
freeze_norm=False,
act=None,
name=None):
super(ConvNormLayer, self).__init__()
assert norm_type in ['bn', 'sync_bn', 'gn']
self.act = act
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=1,
weight_attr=ParamAttr(
name=name + "_weights", initializer=Normal(
mean=0., std=0.01)),
bias_attr=False)
norm_lr = 0. if freeze_norm else 1.
norm_name = name + '_bn'
param_attr = ParamAttr(
name=norm_name + "_scale",
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
bias_attr = ParamAttr(
name=norm_name + "_offset",
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
global_stats = True if freeze_norm else False
if norm_type in ['bn', 'sync_bn']:
self.norm = nn.BatchNorm(
ch_out,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats,
moving_mean_name=norm_name + '_mean',
moving_variance_name=norm_name + '_variance')
elif norm_type == 'gn':
self.norm = nn.GroupNorm(
num_groups=norm_groups,
num_channels=ch_out,
weight_attr=param_attr,
bias_attr=bias_attr)
norm_params = self.norm.parameters()
if freeze_norm:
for param in norm_params:
param.stop_gradient = True
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
if self.act == 'relu':
out = F.relu(out)
return out
class Layer1(nn.Layer):
def __init__(self,
num_channels,
has_se=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(Layer1, self).__init__()
self.bottleneck_block_list = []
for i in range(4):
bottleneck_block = self.add_sublayer(
"block_{}_{}".format(name, i + 1),
BottleneckBlock(
num_channels=num_channels if i == 0 else 256,
num_filters=64,
has_se=has_se,
stride=1,
downsample=True if i == 0 else False,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_' + str(i + 1)))
self.bottleneck_block_list.append(bottleneck_block)
def forward(self, input):
conv = input
for block_func in self.bottleneck_block_list:
conv = block_func(conv)
return conv
class TransitionLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
norm_decay=0.,
freeze_norm=True,
name=None):
super(TransitionLayer, self).__init__()
num_in = len(in_channels)
num_out = len(out_channels)
out = []
self.conv_bn_func_list = []
for i in range(num_out):
residual = None
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvNormLayer(
ch_in=in_channels[i],
ch_out=out_channels[i],
filter_size=3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name=name + '_layer_' + str(i + 1)))
else:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvNormLayer(
ch_in=in_channels[-1],
ch_out=out_channels[i],
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name=name + '_layer_' + str(i + 1)))
self.conv_bn_func_list.append(residual)
def forward(self, input):
outs = []
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
if conv_bn_func is None:
outs.append(input[idx])
else:
if idx < len(input):
outs.append(conv_bn_func(input[idx]))
else:
outs.append(conv_bn_func(input[-1]))
return outs
class Branches(nn.Layer):
def __init__(self,
block_num,
in_channels,
out_channels,
has_se=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(Branches, self).__init__()
self.basic_block_list = []
for i in range(len(out_channels)):
self.basic_block_list.append([])
for j in range(block_num):
in_ch = in_channels[i] if j == 0 else out_channels[i]
basic_block_func = self.add_sublayer(
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
BasicBlock(
num_channels=in_ch,
num_filters=out_channels[i],
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_branch_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.basic_block_list[i].append(basic_block_func)
def forward(self, inputs):
outs = []
for idx, input in enumerate(inputs):
conv = input
basic_block_list = self.basic_block_list[idx]
for basic_block_func in basic_block_list:
conv = basic_block_func(conv)
outs.append(conv)
return outs
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se,
stride=1,
downsample=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(BottleneckBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + "_conv1")
self.conv2 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters,
filter_size=3,
stride=stride,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + "_conv2")
self.conv3 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters * 4,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_conv3")
if self.downsample:
self.conv_down = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters * 4,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_downsample")
if self.has_se:
self.se = SELayer(
num_channels=num_filters * 4,
num_filters=num_filters * 4,
reduction_ratio=16,
name='fc' + name)
def forward(self, input):
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
if self.downsample:
residual = self.conv_down(input)
if self.has_se:
conv3 = self.se(conv3)
y = paddle.add(x=residual, y=conv3)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride=1,
has_se=False,
downsample=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(BasicBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters,
filter_size=3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
stride=stride,
act="relu",
name=name + "_conv1")
self.conv2 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters,
filter_size=3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
stride=1,
act=None,
name=name + "_conv2")
if self.downsample:
self.conv_down = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters * 4,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_downsample")
if self.has_se:
self.se = SELayer(
num_channels=num_filters,
num_filters=num_filters,
reduction_ratio=16,
name='fc' + name)
def forward(self, input):
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
if self.downsample:
residual = self.conv_down(input)
if self.has_se:
conv2 = self.se(conv2)
y = paddle.add(x=residual, y=conv2)
y = F.relu(y)
return y
class SELayer(nn.Layer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
super(SELayer, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_filters,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
bias_attr=ParamAttr(name=name + '_exc_offset'))
def forward(self, input):
pool = self.pool2d_gap(input)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = F.sigmoid(excitation)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = input * excitation
return out
class Stage(nn.Layer):
def __init__(self,
num_channels,
num_modules,
num_filters,
has_se=False,
norm_decay=0.,
freeze_norm=True,
multi_scale_output=True,
name=None):
super(Stage, self).__init__()
self._num_modules = num_modules
self.stage_func_list = []
for i in range(num_modules):
if i == num_modules - 1 and not multi_scale_output:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
multi_scale_output=False,
name=name + '_' + str(i + 1)))
else:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_' + str(i + 1)))
self.stage_func_list.append(stage_func)
def forward(self, input):
out = input
for idx in range(self._num_modules):
out = self.stage_func_list[idx](out)
return out
class HighResolutionModule(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se=False,
multi_scale_output=True,
norm_decay=0.,
freeze_norm=True,
name=None):
super(HighResolutionModule, self).__init__()
self.branches_func = Branches(
block_num=4,
in_channels=num_channels,
out_channels=num_filters,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name)
self.fuse_func = FuseLayers(
in_channels=num_filters,
out_channels=num_filters,
multi_scale_output=multi_scale_output,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name)
def forward(self, input):
out = self.branches_func(input)
out = self.fuse_func(out)
return out
class FuseLayers(nn.Layer):
def __init__(self,
in_channels,
out_channels,
multi_scale_output=True,
norm_decay=0.,
freeze_norm=True,
name=None):
super(FuseLayers, self).__init__()
self._actual_ch = len(in_channels) if multi_scale_output else 1
self._in_channels = in_channels
self.residual_func_list = []
for i in range(self._actual_ch):
for j in range(len(in_channels)):
residual_func = None
if j > i:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
ConvNormLayer(
ch_in=in_channels[j],
ch_out=out_channels[i],
filter_size=1,
stride=1,
act=None,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.residual_func_list.append(residual_func)
elif j < i:
pre_num_filters = in_channels[j]
for k in range(i - j):
if k == i - j - 1:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvNormLayer(
ch_in=pre_num_filters,
ch_out=out_channels[i],
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
pre_num_filters = out_channels[i]
else:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvNormLayer(
ch_in=pre_num_filters,
ch_out=out_channels[j],
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
pre_num_filters = out_channels[j]
self.residual_func_list.append(residual_func)
def forward(self, input):
outs = []
residual_func_idx = 0
for i in range(self._actual_ch):
residual = input[i]
for j in range(len(self._in_channels)):
if j > i:
y = self.residual_func_list[residual_func_idx](input[j])
residual_func_idx += 1
y = F.interpolate(y, scale_factor=2**(j - i))
residual = paddle.add(x=residual, y=y)
elif j < i:
y = input[j]
for k in range(i - j):
y = self.residual_func_list[residual_func_idx](y)
residual_func_idx += 1
residual = paddle.add(x=residual, y=y)
residual = F.relu(residual)
outs.append(residual)
return outs
@register
class HRNet(nn.Layer):
"""
HRNet, see https://arxiv.org/abs/1908.07919
Args:
width (int): the width of HRNet
has_se (bool): whether to add SE block for each stage
freeze_at (int): the stage to freeze
freeze_norm (bool): whether to freeze norm in HRNet
norm_decay (float): weight decay for normalization layer weights
return_idx (List): the stage to return
"""
def __init__(self,
width=18,
has_se=False,
freeze_at=0,
freeze_norm=True,
norm_decay=0.,
return_idx=[0, 1, 2, 3]):
super(HRNet, self).__init__()
self.width = width
self.has_se = has_se
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert len(return_idx) > 0, "need one or more return index"
self.freeze_at = freeze_at
self.return_idx = return_idx
self.channels = {
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
}
channels_2, channels_3, channels_4 = self.channels[width]
num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3
self._out_channels = channels_4
self._out_strides = [4, 8, 16, 32]
self.conv_layer1_1 = ConvNormLayer(
ch_in=3,
ch_out=64,
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name="layer1_1")
self.conv_layer1_2 = ConvNormLayer(
ch_in=64,
ch_out=64,
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name="layer1_2")
self.la1 = Layer1(
num_channels=64,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="layer2")
self.tr1 = TransitionLayer(
in_channels=[256],
out_channels=channels_2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr1")
self.st2 = Stage(
num_channels=channels_2,
num_modules=num_modules_2,
num_filters=channels_2,
has_se=self.has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="st2")
self.tr2 = TransitionLayer(
in_channels=channels_2,
out_channels=channels_3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr2")
self.st3 = Stage(
num_channels=channels_3,
num_modules=num_modules_3,
num_filters=channels_3,
has_se=self.has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="st3")
self.tr3 = TransitionLayer(
in_channels=channels_3,
out_channels=channels_4,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr3")
self.st4 = Stage(
num_channels=channels_4,
num_modules=num_modules_4,
num_filters=channels_4,
has_se=self.has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
multi_scale_output=len(return_idx) > 1,
name="st4")
def forward(self, inputs):
x = inputs['image']
conv1 = self.conv_layer1_1(x)
conv2 = self.conv_layer1_2(conv1)
la1 = self.la1(conv2)
tr1 = self.tr1([la1])
st2 = self.st2(tr1)
tr2 = self.tr2(st2)
st3 = self.st3(tr2)
tr3 = self.tr3(st3)
st4 = self.st4(tr3)
res = []
for i, layer in enumerate(st4):
if i == self.freeze_at:
layer.stop_gradient = True
if i in self.return_idx:
res.append(layer)
return res
@property
def out_shape(self):
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]

View File

@ -0,0 +1,409 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable
from numbers import Integral
from ..shape_spec import ShapeSpec
__all__ = ['MobileNet']
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
num_groups=1,
act='relu',
conv_lr=1.,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(ConvBNLayer, self).__init__()
self.act = act
self._conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
learning_rate=conv_lr,
initializer=KaimingNormal(),
regularizer=L2Decay(conv_decay)),
bias_attr=False)
param_attr = ParamAttr(regularizer=L2Decay(norm_decay))
bias_attr = ParamAttr(regularizer=L2Decay(norm_decay))
if norm_type == 'sync_bn':
self._batch_norm = nn.SyncBatchNorm(
out_channels, weight_attr=param_attr, bias_attr=bias_attr)
else:
self._batch_norm = nn.BatchNorm(
out_channels,
act=None,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=False)
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
if self.act == "relu":
x = F.relu(x)
elif self.act == "relu6":
x = F.relu6(x)
return x
class DepthwiseSeparable(nn.Layer):
def __init__(self,
in_channels,
out_channels1,
out_channels2,
num_groups,
stride,
scale,
conv_lr=1.,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer(
in_channels,
int(out_channels1 * scale),
kernel_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups * scale),
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_dw")
self._pointwise_conv = ConvBNLayer(
int(out_channels1 * scale),
int(out_channels2 * scale),
kernel_size=1,
stride=1,
padding=0,
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_sep")
def forward(self, x):
x = self._depthwise_conv(x)
x = self._pointwise_conv(x)
return x
class ExtraBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels1,
out_channels2,
num_groups=1,
stride=2,
conv_lr=1.,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(ExtraBlock, self).__init__()
self.pointwise_conv = ConvBNLayer(
in_channels,
int(out_channels1),
kernel_size=1,
stride=1,
padding=0,
num_groups=int(num_groups),
act='relu6',
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_extra1")
self.normal_conv = ConvBNLayer(
int(out_channels1),
int(out_channels2),
kernel_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups),
act='relu6',
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_extra2")
def forward(self, x):
x = self.pointwise_conv(x)
x = self.normal_conv(x)
return x
@register
@serializable
class MobileNet(nn.Layer):
__shared__ = ['norm_type']
def __init__(self,
norm_type='bn',
norm_decay=0.,
conv_decay=0.,
scale=1,
conv_learning_rate=1.0,
feature_maps=[4, 6, 13],
with_extra_blocks=False,
extra_block_filters=[[256, 512], [128, 256], [128, 256],
[64, 128]]):
super(MobileNet, self).__init__()
if isinstance(feature_maps, Integral):
feature_maps = [feature_maps]
self.feature_maps = feature_maps
self.with_extra_blocks = with_extra_blocks
self.extra_block_filters = extra_block_filters
self._out_channels = []
self.conv1 = ConvBNLayer(
in_channels=3,
out_channels=int(32 * scale),
kernel_size=3,
stride=2,
padding=1,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv1")
self.dwsl = []
dws21 = self.add_sublayer(
"conv2_1",
sublayer=DepthwiseSeparable(
in_channels=int(32 * scale),
out_channels1=32,
out_channels2=64,
num_groups=32,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv2_1"))
self.dwsl.append(dws21)
self._update_out_channels(64, len(self.dwsl), feature_maps)
dws22 = self.add_sublayer(
"conv2_2",
sublayer=DepthwiseSeparable(
in_channels=int(64 * scale),
out_channels1=64,
out_channels2=128,
num_groups=64,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv2_2"))
self.dwsl.append(dws22)
self._update_out_channels(128, len(self.dwsl), feature_maps)
# 1/4
dws31 = self.add_sublayer(
"conv3_1",
sublayer=DepthwiseSeparable(
in_channels=int(128 * scale),
out_channels1=128,
out_channels2=128,
num_groups=128,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv3_1"))
self.dwsl.append(dws31)
self._update_out_channels(128, len(self.dwsl), feature_maps)
dws32 = self.add_sublayer(
"conv3_2",
sublayer=DepthwiseSeparable(
in_channels=int(128 * scale),
out_channels1=128,
out_channels2=256,
num_groups=128,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv3_2"))
self.dwsl.append(dws32)
self._update_out_channels(256, len(self.dwsl), feature_maps)
# 1/8
dws41 = self.add_sublayer(
"conv4_1",
sublayer=DepthwiseSeparable(
in_channels=int(256 * scale),
out_channels1=256,
out_channels2=256,
num_groups=256,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv4_1"))
self.dwsl.append(dws41)
self._update_out_channels(256, len(self.dwsl), feature_maps)
dws42 = self.add_sublayer(
"conv4_2",
sublayer=DepthwiseSeparable(
in_channels=int(256 * scale),
out_channels1=256,
out_channels2=512,
num_groups=256,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv4_2"))
self.dwsl.append(dws42)
self._update_out_channels(512, len(self.dwsl), feature_maps)
# 1/16
for i in range(5):
tmp = self.add_sublayer(
"conv5_" + str(i + 1),
sublayer=DepthwiseSeparable(
in_channels=512,
out_channels1=512,
out_channels2=512,
num_groups=512,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv5_" + str(i + 1)))
self.dwsl.append(tmp)
self._update_out_channels(512, len(self.dwsl), feature_maps)
dws56 = self.add_sublayer(
"conv5_6",
sublayer=DepthwiseSeparable(
in_channels=int(512 * scale),
out_channels1=512,
out_channels2=1024,
num_groups=512,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv5_6"))
self.dwsl.append(dws56)
self._update_out_channels(1024, len(self.dwsl), feature_maps)
# 1/32
dws6 = self.add_sublayer(
"conv6",
sublayer=DepthwiseSeparable(
in_channels=int(1024 * scale),
out_channels1=1024,
out_channels2=1024,
num_groups=1024,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv6"))
self.dwsl.append(dws6)
self._update_out_channels(1024, len(self.dwsl), feature_maps)
if self.with_extra_blocks:
self.extra_blocks = []
for i, block_filter in enumerate(self.extra_block_filters):
in_c = 1024 if i == 0 else self.extra_block_filters[i - 1][1]
conv_extra = self.add_sublayer(
"conv7_" + str(i + 1),
sublayer=ExtraBlock(
in_c,
block_filter[0],
block_filter[1],
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv7_" + str(i + 1)))
self.extra_blocks.append(conv_extra)
self._update_out_channels(
block_filter[1],
len(self.dwsl) + len(self.extra_blocks), feature_maps)
def _update_out_channels(self, channel, feature_idx, feature_maps):
if feature_idx in feature_maps:
self._out_channels.append(channel)
def forward(self, inputs):
outs = []
y = self.conv1(inputs['image'])
for i, block in enumerate(self.dwsl):
y = block(y)
if i + 1 in self.feature_maps:
outs.append(y)
if not self.with_extra_blocks:
return outs
y = outs[-1]
for i, block in enumerate(self.extra_blocks):
idx = i + len(self.dwsl)
y = block(y)
if idx + 1 in self.feature_maps:
outs.append(y)
return outs
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]

View File

@ -0,0 +1,496 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, serializable
from numbers import Integral
from ..shape_spec import ShapeSpec
__all__ = ['MobileNetV3']
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNLayer(nn.Layer):
def __init__(self,
in_c,
out_c,
filter_size,
stride,
padding,
num_groups=1,
act=None,
lr_mult=1.,
conv_decay=0.,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
name=""):
super(ConvBNLayer, self).__init__()
self.act = act
self.conv = nn.Conv2D(
in_channels=in_c,
out_channels=out_c,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(conv_decay),
name=name + "_weights"),
bias_attr=False)
norm_lr = 0. if freeze_norm else lr_mult
param_attr = ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
name=name + "_bn_scale",
trainable=False if freeze_norm else True)
bias_attr = ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
name=name + "_bn_offset",
trainable=False if freeze_norm else True)
global_stats = True if freeze_norm else False
if norm_type == 'sync_bn':
self.bn = nn.SyncBatchNorm(
out_c, weight_attr=param_attr, bias_attr=bias_attr)
else:
self.bn = nn.BatchNorm(
out_c,
act=None,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats,
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
norm_params = self.bn.parameters()
if freeze_norm:
for param in norm_params:
param.stop_gradient = True
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.act is not None:
if self.act == "relu":
x = F.relu(x)
elif self.act == "relu6":
x = F.relu6(x)
elif self.act == "hard_swish":
x = F.hardswish(x)
else:
raise NotImplementedError(
"The activation function is selected incorrectly.")
return x
class ResidualUnit(nn.Layer):
def __init__(self,
in_c,
mid_c,
out_c,
filter_size,
stride,
use_se,
lr_mult,
conv_decay=0.,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
act=None,
return_list=False,
name=''):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_c == out_c
self.use_se = use_se
self.return_list = return_list
self.expand_conv = ConvBNLayer(
in_c=in_c,
out_c=mid_c,
filter_size=1,
stride=1,
padding=0,
act=act,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_expand")
self.bottleneck_conv = ConvBNLayer(
in_c=mid_c,
out_c=mid_c,
filter_size=filter_size,
stride=stride,
padding=int((filter_size - 1) // 2),
num_groups=mid_c,
act=act,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_depthwise")
if self.use_se:
self.mid_se = SEModule(
mid_c, lr_mult, conv_decay, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_c=mid_c,
out_c=out_c,
filter_size=1,
stride=1,
padding=0,
act=None,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_linear")
def forward(self, inputs):
y = self.expand_conv(inputs)
x = self.bottleneck_conv(y)
if self.use_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = paddle.add(inputs, x)
if self.return_list:
return [y, x]
else:
return x
class SEModule(nn.Layer):
def __init__(self, channel, lr_mult, conv_decay, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
mid_channels = int(channel // reduction)
self.conv1 = nn.Conv2D(
in_channels=channel,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(conv_decay),
name=name + "_1_weights"),
bias_attr=ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(conv_decay),
name=name + "_1_offset"))
self.conv2 = nn.Conv2D(
in_channels=mid_channels,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(conv_decay),
name=name + "_2_weights"),
bias_attr=ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(conv_decay),
name=name + "_2_offset"))
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)
return paddle.multiply(x=inputs, y=outputs)
class ExtraBlockDW(nn.Layer):
def __init__(self,
in_c,
ch_1,
ch_2,
stride,
lr_mult,
conv_decay=0.,
norm_type='bn',
norm_decay=0.,
freeze_norm=False,
name=None):
super(ExtraBlockDW, self).__init__()
self.pointwise_conv = ConvBNLayer(
in_c=in_c,
out_c=ch_1,
filter_size=1,
stride=1,
padding='SAME',
act='relu6',
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_extra1")
self.depthwise_conv = ConvBNLayer(
in_c=ch_1,
out_c=ch_2,
filter_size=3,
stride=stride,
padding='SAME',
num_groups=int(ch_1),
act='relu6',
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_extra2_dw")
self.normal_conv = ConvBNLayer(
in_c=ch_2,
out_c=ch_2,
filter_size=1,
stride=1,
padding='SAME',
act='relu6',
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + "_extra2_sep")
def forward(self, inputs):
x = self.pointwise_conv(inputs)
x = self.depthwise_conv(x)
x = self.normal_conv(x)
return x
@register
@serializable
class MobileNetV3(nn.Layer):
__shared__ = ['norm_type']
def __init__(
self,
scale=1.0,
model_name="large",
feature_maps=[6, 12, 15],
with_extra_blocks=False,
extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
conv_decay=0.0,
multiplier=1.0,
norm_type='bn',
norm_decay=0.0,
freeze_norm=False):
super(MobileNetV3, self).__init__()
if isinstance(feature_maps, Integral):
feature_maps = [feature_maps]
if norm_type == 'sync_bn' and freeze_norm:
raise ValueError(
"The norm_type should not be sync_bn when freeze_norm is True")
self.feature_maps = feature_maps
self.with_extra_blocks = with_extra_blocks
self.extra_block_filters = extra_block_filters
inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, "relu", 1],
[3, 64, 24, False, "relu", 2],
[3, 72, 24, False, "relu", 1],
[5, 72, 40, True, "relu", 2], # RCNN output
[5, 120, 40, True, "relu", 1],
[5, 120, 40, True, "relu", 1], # YOLOv3 output
[3, 240, 80, False, "hard_swish", 2], # RCNN output
[3, 200, 80, False, "hard_swish", 1],
[3, 184, 80, False, "hard_swish", 1],
[3, 184, 80, False, "hard_swish", 1],
[3, 480, 112, True, "hard_swish", 1],
[3, 672, 112, True, "hard_swish", 1], # YOLOv3 output
[5, 672, 160, True, "hard_swish", 2], # SSD/SSDLite/RCNN output
[5, 960, 160, True, "hard_swish", 1],
[5, 960, 160, True, "hard_swish", 1], # YOLOv3 output
]
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, "relu", 2],
[3, 72, 24, False, "relu", 2], # RCNN output
[3, 88, 24, False, "relu", 1], # YOLOv3 output
[5, 96, 40, True, "hard_swish", 2], # RCNN output
[5, 240, 40, True, "hard_swish", 1],
[5, 240, 40, True, "hard_swish", 1],
[5, 120, 48, True, "hard_swish", 1],
[5, 144, 48, True, "hard_swish", 1], # YOLOv3 output
[5, 288, 96, True, "hard_swish", 2], # SSD/SSDLite/RCNN output
[5, 576, 96, True, "hard_swish", 1],
[5, 576, 96, True, "hard_swish", 1], # YOLOv3 output
]
else:
raise NotImplementedError(
"mode[{}_model] is not implemented!".format(model_name))
if multiplier != 1.0:
self.cfg[-3][2] = int(self.cfg[-3][2] * multiplier)
self.cfg[-2][1] = int(self.cfg[-2][1] * multiplier)
self.cfg[-2][2] = int(self.cfg[-2][2] * multiplier)
self.cfg[-1][1] = int(self.cfg[-1][1] * multiplier)
self.cfg[-1][2] = int(self.cfg[-1][2] * multiplier)
self.conv1 = ConvBNLayer(
in_c=3,
out_c=make_divisible(inplanes * scale),
filter_size=3,
stride=2,
padding=1,
num_groups=1,
act="hard_swish",
lr_mult=lr_mult_list[0],
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="conv1")
self._out_channels = []
self.block_list = []
i = 0
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in self.cfg:
lr_idx = min(i // 3, len(lr_mult_list) - 1)
lr_mult = lr_mult_list[lr_idx]
# for SSD/SSDLite, first head input is after ResidualUnit expand_conv
return_list = self.with_extra_blocks and i + 2 in self.feature_maps
block = self.add_sublayer(
"conv" + str(i + 2),
sublayer=ResidualUnit(
in_c=inplanes,
mid_c=make_divisible(scale * exp),
out_c=make_divisible(scale * c),
filter_size=k,
stride=s,
use_se=se,
act=nl,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
return_list=return_list,
name="conv" + str(i + 2)))
self.block_list.append(block)
inplanes = make_divisible(scale * c)
i += 1
self._update_out_channels(
make_divisible(scale * exp)
if return_list else inplanes, i + 1, feature_maps)
if self.with_extra_blocks:
self.extra_block_list = []
extra_out_c = make_divisible(scale * self.cfg[-1][1])
lr_idx = min(i // 3, len(lr_mult_list) - 1)
lr_mult = lr_mult_list[lr_idx]
conv_extra = self.add_sublayer(
"conv" + str(i + 2),
sublayer=ConvBNLayer(
in_c=inplanes,
out_c=extra_out_c,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
act="hard_swish",
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="conv" + str(i + 2)))
self.extra_block_list.append(conv_extra)
i += 1
self._update_out_channels(extra_out_c, i + 1, feature_maps)
for j, block_filter in enumerate(self.extra_block_filters):
in_c = extra_out_c if j == 0 else self.extra_block_filters[j -
1][1]
conv_extra = self.add_sublayer(
"conv" + str(i + 2),
sublayer=ExtraBlockDW(
in_c,
block_filter[0],
block_filter[1],
stride=2,
lr_mult=lr_mult,
conv_decay=conv_decay,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name='conv' + str(i + 2)))
self.extra_block_list.append(conv_extra)
i += 1
self._update_out_channels(block_filter[1], i + 1, feature_maps)
def _update_out_channels(self, channel, feature_idx, feature_maps):
if feature_idx in feature_maps:
self._out_channels.append(channel)
def forward(self, inputs):
x = self.conv1(inputs['image'])
outs = []
for idx, block in enumerate(self.block_list):
x = block(x)
if idx + 2 in self.feature_maps:
if isinstance(x, list):
outs.append(x[0])
x = x[1]
else:
outs.append(x)
if not self.with_extra_blocks:
return outs
for i, block in enumerate(self.extra_block_list):
idx = i + len(self.block_list)
x = block(x)
if idx + 2 in self.feature_maps:
outs.append(x)
return outs
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]

View File

@ -0,0 +1,69 @@
class NameAdapter(object):
"""Fix the backbones variable names for pretrained weight"""
def __init__(self, model):
super(NameAdapter, self).__init__()
self.model = model
@property
def model_type(self):
return getattr(self.model, '_model_type', '')
@property
def variant(self):
return getattr(self.model, 'variant', '')
def fix_conv_norm_name(self, name):
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
# the naming rule is same as pretrained weight
if self.model_type == 'SEResNeXt':
bn_name = name + "_bn"
return bn_name
def fix_shortcut_name(self, name):
if self.model_type == 'SEResNeXt':
name = 'conv' + name + '_prj'
return name
def fix_bottleneck_name(self, name):
if self.model_type == 'SEResNeXt':
conv_name1 = 'conv' + name + '_x1'
conv_name2 = 'conv' + name + '_x2'
conv_name3 = 'conv' + name + '_x3'
shortcut_name = name
else:
conv_name1 = name + "_branch2a"
conv_name2 = name + "_branch2b"
conv_name3 = name + "_branch2c"
shortcut_name = name + "_branch1"
return conv_name1, conv_name2, conv_name3, shortcut_name
def fix_basicblock_name(self, name):
if self.model_type == 'SEResNeXt':
conv_name1 = 'conv' + name + '_x1'
conv_name2 = 'conv' + name + '_x2'
shortcut_name = name
else:
conv_name1 = name + "_branch2a"
conv_name2 = name + "_branch2b"
shortcut_name = name + "_branch1"
return conv_name1, conv_name2, shortcut_name
def fix_layer_warp_name(self, stage_num, count, i):
name = 'res' + str(stage_num)
if count > 10 and stage_num == 4:
if i == 0:
conv_name = name + "a"
else:
conv_name = name + "b" + str(i)
else:
conv_name = name + chr(ord("a") + i)
if self.model_type == 'SEResNeXt':
conv_name = str(stage_num + 2) + '_' + str(i + 1)
return conv_name
def fix_c1_stage_name(self):
return "res_conv1" if self.model_type == 'ResNeXt' else "conv1"

View File

@ -0,0 +1,357 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from numbers import Integral
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
from .resnet import ConvNormLayer
__all__ = ['Res2Net', 'Res2NetC5']
Res2Net_cfg = {
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [3, 12, 48, 3]
}
class BottleNeck(nn.Layer):
def __init__(self,
ch_in,
ch_out,
stride,
shortcut,
width,
scales=4,
variant='b',
groups=1,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False):
super(BottleNeck, self).__init__()
self.shortcut = shortcut
self.scales = scales
self.stride = stride
if not shortcut:
if variant == 'd' and stride == 2:
self.branch1 = nn.Sequential()
self.branch1.add_sublayer(
'pool',
nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True))
self.branch1.add_sublayer(
'conv',
ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr))
else:
self.branch1 = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=stride,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2a = ConvNormLayer(
ch_in=ch_in,
ch_out=width * scales,
filter_size=1,
stride=stride if variant == 'a' else 1,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2b = nn.LayerList([
ConvNormLayer(
ch_in=width,
ch_out=width,
filter_size=3,
stride=1 if variant == 'a' else stride,
groups=groups,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
dcn_v2=dcn_v2) for _ in range(self.scales - 1)
])
self.branch2c = ConvNormLayer(
ch_in=width * scales,
ch_out=ch_out,
filter_size=1,
stride=1,
groups=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
def forward(self, inputs):
out = self.branch2a(inputs)
feature_split = paddle.split(out, self.scales, 1)
out_split = []
for i in range(self.scales - 1):
if i == 0 or self.stride == 2:
out_split.append(self.branch2b[i](feature_split[i]))
else:
out_split.append(self.branch2b[i](paddle.add(feature_split[i],
out_split[-1])))
if self.stride == 1:
out_split.append(feature_split[-1])
else:
out_split.append(F.avg_pool2d(feature_split[-1], 3, self.stride, 1))
out = self.branch2c(paddle.concat(out_split, 1))
if self.shortcut:
short = inputs
else:
short = self.branch1(inputs)
out = paddle.add(out, short)
out = F.relu(out)
return out
class Blocks(nn.Layer):
def __init__(self,
ch_in,
ch_out,
count,
stage_num,
width,
scales=4,
variant='b',
groups=1,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False):
super(Blocks, self).__init__()
self.blocks = nn.Sequential()
for i in range(count):
self.blocks.add_sublayer(
str(i),
BottleNeck(
ch_in=ch_in if i == 0 else ch_out,
ch_out=ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
shortcut=False if i == 0 else True,
width=width * (2**(stage_num - 2)),
scales=scales,
variant=variant,
groups=groups,
lr=lr,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=dcn_v2))
def forward(self, inputs):
return self.blocks(inputs)
@register
@serializable
class Res2Net(nn.Layer):
"""
Res2Net, see https://arxiv.org/abs/1904.01169
Args:
depth (int): Res2Net depth, should be 50, 101, 152, 200.
width (int): Res2Net width
scales (int): Res2Net scale
variant (str): Res2Net variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): The groups number of the Conv Layer.
norm_type (str): normalization type, 'bn' or 'sync_bn'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of stages whose feature maps are returned,
index 0 stands for res2
dcn_v2_stages (list): index of stages who select deformable conv v2
num_stages (int): number of stages created
"""
__shared__ = ['norm_type']
def __init__(self,
depth=50,
width=26,
scales=4,
variant='b',
lr_mult_list=[1.0, 1.0, 1.0, 1.0],
groups=1,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
freeze_at=0,
return_idx=[0, 1, 2, 3],
dcn_v2_stages=[-1],
num_stages=4):
super(Res2Net, self).__init__()
self._model_type = 'Res2Net' if groups == 1 else 'Res2NeXt'
assert depth in [50, 101, 152, 200], \
"depth {} not in [50, 101, 152, 200]"
assert variant in ['a', 'b', 'c', 'd'], "invalid Res2Net variant"
assert num_stages >= 1 and num_stages <= 4
self.depth = depth
self.variant = variant
self.norm_type = norm_type
self.norm_decay = norm_decay
self.freeze_norm = freeze_norm
self.freeze_at = freeze_at
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert max(return_idx) < num_stages, \
'the maximum return index must smaller than num_stages, ' \
'but received maximum return index is {} and num_stages ' \
'is {}'.format(max(return_idx), num_stages)
self.return_idx = return_idx
self.num_stages = num_stages
assert len(lr_mult_list) == 4, \
"lr_mult_list length must be 4 but got {}".format(len(lr_mult_list))
if isinstance(dcn_v2_stages, Integral):
dcn_v2_stages = [dcn_v2_stages]
assert max(dcn_v2_stages) < num_stages
self.dcn_v2_stages = dcn_v2_stages
block_nums = Res2Net_cfg[depth]
# C1 stage
if self.variant in ['c', 'd']:
conv_def = [
[3, 32, 3, 2, "conv1_1"],
[32, 32, 3, 1, "conv1_2"],
[32, 64, 3, 1, "conv1_3"],
]
else:
conv_def = [[3, 64, 7, 2, "conv1"]]
self.res1 = nn.Sequential()
for (c_in, c_out, k, s, _name) in conv_def:
self.res1.add_sublayer(
_name,
ConvNormLayer(
ch_in=c_in,
ch_out=c_out,
filter_size=k,
stride=s,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=1.0))
self._in_channels = [64, 256, 512, 1024]
self._out_channels = [256, 512, 1024, 2048]
self._out_strides = [4, 8, 16, 32]
# C2-C5 stages
self.res_layers = []
for i in range(num_stages):
lr_mult = lr_mult_list[i]
stage_num = i + 2
self.res_layers.append(
self.add_sublayer(
"res{}".format(stage_num),
Blocks(
self._in_channels[i],
self._out_channels[i],
count=block_nums[i],
stage_num=stage_num,
width=width,
scales=scales,
groups=groups,
lr=lr_mult,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=(i in self.dcn_v2_stages))))
@property
def out_shape(self):
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]
def forward(self, inputs):
x = inputs['image']
res1 = self.res1(x)
x = F.max_pool2d(res1, kernel_size=3, stride=2, padding=1)
outs = []
for idx, stage in enumerate(self.res_layers):
x = stage(x)
if idx == self.freeze_at:
x.stop_gradient = True
if idx in self.return_idx:
outs.append(x)
return outs
@register
class Res2NetC5(nn.Layer):
def __init__(self, depth=50, width=26, scales=4, variant='b'):
super(Res2NetC5, self).__init__()
feat_in, feat_out = [1024, 2048]
self.res5 = Blocks(
feat_in,
feat_out,
count=3,
stage_num=5,
width=width,
scales=scales,
variant=variant)
self.feat_out = feat_out
@property
def out_shape(self):
return [ShapeSpec(
channels=self.feat_out,
stride=32, )]
def forward(self, roi_feat, stage=0):
y = self.res5(roi_feat)
return y

View File

@ -0,0 +1,606 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from numbers import Integral
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Uniform
from paddle import ParamAttr
from paddle.nn.initializer import Constant
from paddle.vision.ops import DeformConv2D
from .name_adapter import NameAdapter
from ..shape_spec import ShapeSpec
__all__ = ['ResNet', 'Res5Head', 'Blocks', 'BasicBlock', 'BottleNeck']
ResNet_cfg = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
}
class ConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride,
groups=1,
act=None,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
lr=1.0,
dcn_v2=False):
super(ConvNormLayer, self).__init__()
assert norm_type in ['bn', 'sync_bn']
self.norm_type = norm_type
self.act = act
self.dcn_v2 = dcn_v2
if not self.dcn_v2:
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(learning_rate=lr),
bias_attr=False)
else:
self.offset_channel = 2 * filter_size**2
self.mask_channel = filter_size**2
self.conv_offset = nn.Conv2D(
in_channels=ch_in,
out_channels=3 * filter_size**2,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
weight_attr=ParamAttr(initializer=Constant(0.)),
bias_attr=ParamAttr(initializer=Constant(0.)))
self.conv = DeformConv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
dilation=1,
groups=groups,
weight_attr=ParamAttr(learning_rate=lr),
bias_attr=False)
norm_lr = 0. if freeze_norm else lr
param_attr = ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
trainable=False if freeze_norm else True)
bias_attr = ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
trainable=False if freeze_norm else True)
global_stats = True if freeze_norm else False
if norm_type == 'sync_bn':
self.norm = nn.SyncBatchNorm(
ch_out, weight_attr=param_attr, bias_attr=bias_attr)
else:
self.norm = nn.BatchNorm(
ch_out,
act=None,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats)
norm_params = self.norm.parameters()
if freeze_norm:
for param in norm_params:
param.stop_gradient = True
def forward(self, inputs):
if not self.dcn_v2:
out = self.conv(inputs)
else:
offset_mask = self.conv_offset(inputs)
offset, mask = paddle.split(
offset_mask,
num_or_sections=[self.offset_channel, self.mask_channel],
axis=1)
mask = F.sigmoid(mask)
out = self.conv(inputs, offset, mask=mask)
if self.norm_type in ['bn', 'sync_bn']:
out = self.norm(out)
if self.act:
out = getattr(F, self.act)(out)
return out
class SELayer(nn.Layer):
def __init__(self, ch, reduction_ratio=16):
super(SELayer, self).__init__()
self.pool = nn.AdaptiveAvgPool2D(1)
stdv = 1.0 / math.sqrt(ch)
c_ = ch // reduction_ratio
self.squeeze = nn.Linear(
ch,
c_,
weight_attr=paddle.ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=True)
stdv = 1.0 / math.sqrt(c_)
self.extract = nn.Linear(
c_,
ch,
weight_attr=paddle.ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=True)
def forward(self, inputs):
out = self.pool(inputs)
out = paddle.squeeze(out, axis=[2, 3])
out = self.squeeze(out)
out = F.relu(out)
out = self.extract(out)
out = F.sigmoid(out)
out = paddle.unsqueeze(out, axis=[2, 3])
scale = out * inputs
return scale
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self,
ch_in,
ch_out,
stride,
shortcut,
variant='b',
groups=1,
base_width=64,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False,
std_senet=False):
super(BasicBlock, self).__init__()
assert dcn_v2 is False, "Not implemented yet."
assert groups == 1 and base_width == 64, 'BasicBlock only supports groups=1 and base_width=64'
self.shortcut = shortcut
if not shortcut:
if variant == 'd' and stride == 2:
self.short = nn.Sequential()
self.short.add_sublayer(
'pool',
nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True))
self.short.add_sublayer(
'conv',
ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr))
else:
self.short = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=stride,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2a = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=3,
stride=stride,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2b = ConvNormLayer(
ch_in=ch_out,
ch_out=ch_out,
filter_size=3,
stride=1,
act=None,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.std_senet = std_senet
if self.std_senet:
self.se = SELayer(ch_out)
def forward(self, inputs):
out = self.branch2a(inputs)
out = self.branch2b(out)
if self.std_senet:
out = self.se(out)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
out = paddle.add(x=out, y=short)
out = F.relu(out)
return out
class BottleNeck(nn.Layer):
expansion = 4
def __init__(self,
ch_in,
ch_out,
stride,
shortcut,
variant='b',
groups=1,
base_width=4,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False,
std_senet=False):
super(BottleNeck, self).__init__()
if variant == 'a':
stride1, stride2 = stride, 1
else:
stride1, stride2 = 1, stride
# ResNeXt
width = int(ch_out * (base_width / 64.)) * groups
self.shortcut = shortcut
if not shortcut:
if variant == 'd' and stride == 2:
self.short = nn.Sequential()
self.short.add_sublayer(
'pool',
nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True))
self.short.add_sublayer(
'conv',
ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out * self.expansion,
filter_size=1,
stride=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr))
else:
self.short = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out * self.expansion,
filter_size=1,
stride=stride,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2a = ConvNormLayer(
ch_in=ch_in,
ch_out=width,
filter_size=1,
stride=stride1,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2b = ConvNormLayer(
ch_in=width,
ch_out=width,
filter_size=3,
stride=stride2,
groups=groups,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
dcn_v2=dcn_v2)
self.branch2c = ConvNormLayer(
ch_in=width,
ch_out=ch_out * self.expansion,
filter_size=1,
stride=1,
groups=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.std_senet = std_senet
if self.std_senet:
self.se = SELayer(ch_out * self.expansion)
def forward(self, inputs):
out = self.branch2a(inputs)
out = self.branch2b(out)
out = self.branch2c(out)
if self.std_senet:
out = self.se(out)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
out = paddle.add(x=out, y=short)
out = F.relu(out)
return out
class Blocks(nn.Layer):
def __init__(self,
block,
ch_in,
ch_out,
count,
name_adapter,
stage_num,
variant='b',
groups=1,
base_width=64,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False,
std_senet=False):
super(Blocks, self).__init__()
self.blocks = []
for i in range(count):
conv_name = name_adapter.fix_layer_warp_name(stage_num, count, i)
layer = self.add_sublayer(
conv_name,
block(
ch_in=ch_in,
ch_out=ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
shortcut=False if i == 0 else True,
variant=variant,
groups=groups,
base_width=base_width,
lr=lr,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=dcn_v2,
std_senet=std_senet))
self.blocks.append(layer)
if i == 0:
ch_in = ch_out * block.expansion
def forward(self, inputs):
block_out = inputs
for block in self.blocks:
block_out = block(block_out)
return block_out
@register
@serializable
class ResNet(nn.Layer):
__shared__ = ['norm_type']
def __init__(self,
depth=50,
ch_in=64,
variant='b',
lr_mult_list=[1.0, 1.0, 1.0, 1.0],
groups=1,
base_width=64,
norm_type='bn',
norm_decay=0,
freeze_norm=True,
freeze_at=0,
return_idx=[0, 1, 2, 3],
dcn_v2_stages=[-1],
num_stages=4,
std_senet=False):
"""
Residual Network, see https://arxiv.org/abs/1512.03385
Args:
depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
ch_in (int): output channel of first stage, default 64
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of the stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
num_stages (int): total num of stages
std_senet (bool): whether use senet, default True
"""
super(ResNet, self).__init__()
self._model_type = 'ResNet' if groups == 1 else 'ResNeXt'
assert num_stages >= 1 and num_stages <= 4
self.depth = depth
self.variant = variant
self.groups = groups
self.base_width = base_width
self.norm_type = norm_type
self.norm_decay = norm_decay
self.freeze_norm = freeze_norm
self.freeze_at = freeze_at
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert max(return_idx) < num_stages, \
'the maximum return index must smaller than num_stages, ' \
'but received maximum return index is {} and num_stages ' \
'is {}'.format(max(return_idx), num_stages)
self.return_idx = return_idx
self.num_stages = num_stages
assert len(lr_mult_list) == 4, \
"lr_mult_list length must be 4 but got {}".format(len(lr_mult_list))
if isinstance(dcn_v2_stages, Integral):
dcn_v2_stages = [dcn_v2_stages]
assert max(dcn_v2_stages) < num_stages
if isinstance(dcn_v2_stages, Integral):
dcn_v2_stages = [dcn_v2_stages]
assert max(dcn_v2_stages) < num_stages
self.dcn_v2_stages = dcn_v2_stages
block_nums = ResNet_cfg[depth]
na = NameAdapter(self)
conv1_name = na.fix_c1_stage_name()
if variant in ['c', 'd']:
conv_def = [
[3, ch_in // 2, 3, 2, "conv1_1"],
[ch_in // 2, ch_in // 2, 3, 1, "conv1_2"],
[ch_in // 2, ch_in, 3, 1, "conv1_3"],
]
else:
conv_def = [[3, ch_in, 7, 2, conv1_name]]
self.conv1 = nn.Sequential()
for (c_in, c_out, k, s, _name) in conv_def:
self.conv1.add_sublayer(
_name,
ConvNormLayer(
ch_in=c_in,
ch_out=c_out,
filter_size=k,
stride=s,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=1.0))
self.ch_in = ch_in
ch_out_list = [64, 128, 256, 512]
block = BottleNeck if depth >= 50 else BasicBlock
self._out_channels = [block.expansion * v for v in ch_out_list]
self._out_strides = [4, 8, 16, 32]
self.res_layers = []
for i in range(num_stages):
lr_mult = lr_mult_list[i]
stage_num = i + 2
res_name = "res{}".format(stage_num)
res_layer = self.add_sublayer(
res_name,
Blocks(
block,
self.ch_in,
ch_out_list[i],
count=block_nums[i],
name_adapter=na,
stage_num=stage_num,
variant=variant,
groups=groups,
base_width=base_width,
lr=lr_mult,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=(i in self.dcn_v2_stages),
std_senet=std_senet))
self.res_layers.append(res_layer)
self.ch_in = self._out_channels[i]
@property
def out_shape(self):
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]
def forward(self, inputs):
x = inputs['image']
conv1 = self.conv1(x)
x = F.max_pool2d(conv1, kernel_size=3, stride=2, padding=1)
outs = []
for idx, stage in enumerate(self.res_layers):
x = stage(x)
if idx == self.freeze_at:
x.stop_gradient = True
if idx in self.return_idx:
outs.append(x)
return outs
@register
class Res5Head(nn.Layer):
def __init__(self, depth=50):
super(Res5Head, self).__init__()
feat_in, feat_out = [1024, 512]
if depth < 50:
feat_in = 256
na = NameAdapter(self)
block = BottleNeck if depth >= 50 else BasicBlock
self.res5 = Blocks(
block, feat_in, feat_out, count=3, name_adapter=na, stage_num=5)
self.feat_out = feat_out if depth < 50 else feat_out * 4
@property
def out_shape(self):
return [ShapeSpec(
channels=self.feat_out,
stride=16, )]
def forward(self, roi_feat, stage=0):
y = self.res5(roi_feat)
return y

View File

@ -0,0 +1,139 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
from ppdet.core.workspace import register, serializable
from .resnet import ResNet, Blocks, BasicBlock, BottleNeck
__all__ = ['SENet', 'SERes5Head']
@register
@serializable
class SENet(ResNet):
__shared__ = ['norm_type']
def __init__(self,
depth=50,
variant='b',
lr_mult_list=[1.0, 1.0, 1.0, 1.0],
groups=1,
base_width=64,
norm_type='bn',
norm_decay=0,
freeze_norm=True,
freeze_at=0,
return_idx=[0, 1, 2, 3],
dcn_v2_stages=[-1],
std_senet=True,
num_stages=4):
"""
Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507
Args:
depth (int): SENet depth, should be 50, 101, 152
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of the stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
std_senet (bool): whether use senet, default True
num_stages (int): total num of stages
"""
super(SENet, self).__init__(
depth=depth,
variant=variant,
lr_mult_list=lr_mult_list,
ch_in=128,
groups=groups,
base_width=base_width,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
freeze_at=freeze_at,
return_idx=return_idx,
dcn_v2_stages=dcn_v2_stages,
std_senet=std_senet,
num_stages=num_stages)
@register
class SERes5Head(nn.Layer):
def __init__(self,
depth=50,
variant='b',
lr_mult=1.0,
groups=1,
base_width=64,
norm_type='bn',
norm_decay=0,
dcn_v2=False,
freeze_norm=False,
std_senet=True):
"""
SERes5Head layer
Args:
depth (int): SENet depth, should be 50, 101, 152
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult (list): learning rate ratio of SERes5Head, default as 1.0.
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
dcn_v2_stages (list): index of stages who select deformable conv v2
std_senet (bool): whether use senet, default True
"""
super(SERes5Head, self).__init__()
ch_out = 512
ch_in = 256 if depth < 50 else 1024
na = NameAdapter(self)
block = BottleNeck if depth >= 50 else BasicBlock
self.res5 = Blocks(
block,
ch_in,
ch_out,
count=3,
name_adapter=na,
stage_num=5,
variant=variant,
groups=groups,
base_width=base_width,
lr=lr_mult,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=dcn_v2,
std_senet=std_senet)
self.ch_out = ch_out * block.expansion
@property
def out_shape(self):
return [ShapeSpec(
channels=self.ch_out,
stride=16, )]
def forward(self, roi_feat):
y = self.res5(roi_feat)
return y

View File

@ -0,0 +1,215 @@
from __future__ import division
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import Conv2D, MaxPool2D
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['VGG']
VGG_cfg = {16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4]}
class ConvBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
groups,
pool_size=2,
pool_stride=2,
pool_padding=0,
name=None):
super(ConvBlock, self).__init__()
self.groups = groups
self.conv0 = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "1_weights"),
bias_attr=ParamAttr(name=name + "1_bias"))
self.conv_out_list = []
for i in range(1, groups):
conv_out = self.add_sublayer(
'conv{}'.format(i),
Conv2D(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(
name=name + "{}_weights".format(i + 1)),
bias_attr=ParamAttr(name=name + "{}_bias".format(i + 1))))
self.conv_out_list.append(conv_out)
self.pool = MaxPool2D(
kernel_size=pool_size,
stride=pool_stride,
padding=pool_padding,
ceil_mode=True)
def forward(self, inputs):
out = self.conv0(inputs)
out = F.relu(out)
for conv_i in self.conv_out_list:
out = conv_i(out)
out = F.relu(out)
pool = self.pool(out)
return out, pool
class ExtraBlock(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
padding,
stride,
kernel_size,
name=None):
super(ExtraBlock, self).__init__()
self.conv0 = Conv2D(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0)
self.conv1 = Conv2D(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding)
def forward(self, inputs):
out = self.conv0(inputs)
out = F.relu(out)
out = self.conv1(out)
out = F.relu(out)
return out
class L2NormScale(nn.Layer):
def __init__(self, num_channels, scale=1.0):
super(L2NormScale, self).__init__()
self.scale = self.create_parameter(
attr=ParamAttr(initializer=paddle.nn.initializer.Constant(scale)),
shape=[num_channels])
def forward(self, inputs):
out = F.normalize(inputs, axis=1, epsilon=1e-10)
# out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(
# out) * out
out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3) * out
return out
@register
@serializable
class VGG(nn.Layer):
def __init__(self,
depth=16,
normalizations=[20., -1, -1, -1, -1, -1],
extra_block_filters=[[256, 512, 1, 2, 3], [128, 256, 1, 2, 3],
[128, 256, 0, 1, 3],
[128, 256, 0, 1, 3]]):
super(VGG, self).__init__()
assert depth in [16, 19], \
"depth as 16/19 supported currently, but got {}".format(depth)
self.depth = depth
self.groups = VGG_cfg[depth]
self.normalizations = normalizations
self.extra_block_filters = extra_block_filters
self._out_channels = []
self.conv_block_0 = ConvBlock(
3, 64, self.groups[0], 2, 2, 0, name="conv1_")
self.conv_block_1 = ConvBlock(
64, 128, self.groups[1], 2, 2, 0, name="conv2_")
self.conv_block_2 = ConvBlock(
128, 256, self.groups[2], 2, 2, 0, name="conv3_")
self.conv_block_3 = ConvBlock(
256, 512, self.groups[3], 2, 2, 0, name="conv4_")
self.conv_block_4 = ConvBlock(
512, 512, self.groups[4], 3, 1, 1, name="conv5_")
self._out_channels.append(512)
self.fc6 = Conv2D(
in_channels=512,
out_channels=1024,
kernel_size=3,
stride=1,
padding=6,
dilation=6)
self.fc7 = Conv2D(
in_channels=1024,
out_channels=1024,
kernel_size=1,
stride=1,
padding=0)
self._out_channels.append(1024)
# extra block
self.extra_convs = []
last_channels = 1024
for i, v in enumerate(self.extra_block_filters):
assert len(v) == 5, "extra_block_filters size not fix"
extra_conv = self.add_sublayer("conv{}".format(6 + i),
ExtraBlock(last_channels, v[0], v[1],
v[2], v[3], v[4]))
last_channels = v[1]
self.extra_convs.append(extra_conv)
self._out_channels.append(last_channels)
self.norms = []
for i, n in enumerate(self.normalizations):
if n != -1:
norm = self.add_sublayer("norm{}".format(i),
L2NormScale(
self.extra_block_filters[i][1], n))
else:
norm = None
self.norms.append(norm)
def forward(self, inputs):
outputs = []
conv, pool = self.conv_block_0(inputs['image'])
conv, pool = self.conv_block_1(pool)
conv, pool = self.conv_block_2(pool)
conv, pool = self.conv_block_3(pool)
outputs.append(conv)
conv, pool = self.conv_block_4(pool)
out = self.fc6(pool)
out = F.relu(out)
out = self.fc7(out)
out = F.relu(out)
outputs.append(out)
if not self.extra_block_filters:
return outputs
# extra block
for extra_conv in self.extra_convs:
out = extra_conv(out)
outputs.append(out)
for i, n in enumerate(self.normalizations):
if n != -1:
outputs[i] = self.norms[i](outputs[i])
return outputs
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]

View File

@ -0,0 +1,459 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import numpy as np
def bbox2delta(src_boxes, tgt_boxes, weights):
src_w = src_boxes[:, 2] - src_boxes[:, 0]
src_h = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
src_ctr_y = src_boxes[:, 1] + 0.5 * src_h
tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h
wx, wy, ww, wh = weights
dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
dw = ww * paddle.log(tgt_w / src_w)
dh = wh * paddle.log(tgt_h / src_h)
deltas = paddle.stack((dx, dy, dw, dh), axis=1)
return deltas
def delta2bbox(deltas, boxes, weights):
clip_scale = math.log(1000.0 / 16)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into paddle.exp()
dw = paddle.clip(dw, max=clip_scale)
dh = paddle.clip(dh, max=clip_scale)
pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
pred_w = paddle.exp(dw) * widths.unsqueeze(1)
pred_h = paddle.exp(dh) * heights.unsqueeze(1)
pred_boxes = []
pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
pred_boxes = paddle.stack(pred_boxes, axis=-1)
return pred_boxes
def expand_bbox(bboxes, scale):
w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
w_half *= scale
h_half *= scale
bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
bboxes_exp[:, 0] = x_c - w_half
bboxes_exp[:, 2] = x_c + w_half
bboxes_exp[:, 1] = y_c - h_half
bboxes_exp[:, 3] = y_c + h_half
return bboxes_exp
def clip_bbox(boxes, im_shape):
h, w = im_shape[0], im_shape[1]
x1 = boxes[:, 0].clip(0, w)
y1 = boxes[:, 1].clip(0, h)
x2 = boxes[:, 2].clip(0, w)
y2 = boxes[:, 3].clip(0, h)
return paddle.stack([x1, y1, x2, y2], axis=1)
def nonempty_bbox(boxes, min_size=0, return_mask=False):
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
mask = paddle.logical_and(w > min_size, w > min_size)
if return_mask:
return mask
keep = paddle.nonzero(mask).flatten()
return keep
def bbox_area(boxes):
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def bbox_overlaps(boxes1, boxes2):
"""
Calculate overlaps between boxes1 and boxes2
Args:
boxes1 (Tensor): boxes with shape [M, 4]
boxes2 (Tensor): boxes with shape [N, 4]
Return:
overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
"""
M = boxes1.shape[0]
N = boxes2.shape[0]
if M * N == 0:
return paddle.zeros([M, N], dtype='float32')
area1 = bbox_area(boxes1)
area2 = bbox_area(boxes2)
xy_max = paddle.minimum(
paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
xy_min = paddle.maximum(
paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
width_height = xy_max - xy_min
width_height = width_height.clip(min=0)
inter = width_height.prod(axis=2)
overlaps = paddle.where(inter > 0, inter /
(paddle.unsqueeze(area1, 1) + area2 - inter),
paddle.zeros_like(inter))
return overlaps
def xywh2xyxy(box):
x, y, w, h = box
x1 = x - w * 0.5
y1 = y - h * 0.5
x2 = x + w * 0.5
y2 = y + h * 0.5
return [x1, y1, x2, y2]
def make_grid(h, w, dtype):
yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
return paddle.stack((xv, yv), 2).cast(dtype=dtype)
def decode_yolo(box, anchor, downsample_ratio):
"""decode yolo box
Args:
box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
anchor (list): anchor with the shape [na, 2]
downsample_ratio (int): downsample ratio, default 32
scale (float): scale, default 1.
Return:
box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
"""
x, y, w, h = box
na, grid_h, grid_w = x.shape[1:4]
grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
y1 = (y + grid[:, :, :, :, 1:2]) / grid_h
anchor = paddle.to_tensor(anchor)
anchor = paddle.cast(anchor, x.dtype)
anchor = anchor.reshape((1, na, 1, 1, 2))
w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)
return [x1, y1, w1, h1]
def iou_similarity(box1, box2, eps=1e-9):
"""Calculate iou of box1 and box2
Args:
box1 (Tensor): box with the shape [N, M1, 4]
box2 (Tensor): box with the shape [N, M2, 4]
Return:
iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
"""
box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
x1y1 = paddle.maximum(px1y1, gx1y1)
x2y2 = paddle.minimum(px2y2, gx2y2)
overlap = (x2y2 - x1y1).clip(0).prod(-1)
area1 = (px2y2 - px1y1).clip(0).prod(-1)
area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
union = area1 + area2 - overlap + eps
return overlap / union
def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
"""calculate the iou of box1 and box2
Args:
box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
giou (bool): whether use giou or not, default False
diou (bool): whether use diou or not, default False
ciou (bool): whether use ciou or not, default False
eps (float): epsilon to avoid divide by zero
Return:
iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
"""
px1, py1, px2, py2 = box1
gx1, gy1, gx2, gy2 = box2
x1 = paddle.maximum(px1, gx1)
y1 = paddle.maximum(py1, gy1)
x2 = paddle.minimum(px2, gx2)
y2 = paddle.minimum(py2, gy2)
overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))
area1 = (px2 - px1) * (py2 - py1)
area1 = area1.clip(0)
area2 = (gx2 - gx1) * (gy2 - gy1)
area2 = area2.clip(0)
union = area1 + area2 - overlap + eps
iou = overlap / union
if giou or ciou or diou:
# convex w, h
cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
if giou:
c_area = cw * ch + eps
return iou - (c_area - union) / c_area
else:
# convex diagonal squared
c2 = cw**2 + ch**2 + eps
# center distance
rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
if diou:
return iou - rho2 / c2
else:
w1, h1 = px2 - px1, py2 - py1 + eps
w2, h2 = gx2 - gx1, gy2 - gy1 + eps
delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
v = (4 / math.pi**2) * paddle.pow(delta, 2)
alpha = v / (1 + eps - iou + v)
alpha.stop_gradient = True
return iou - (rho2 / c2 + v * alpha)
else:
return iou
def poly2rbox(polys):
"""
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
to
rotated_boxes:[x_ctr,y_ctr,w,h,angle]
"""
rotated_boxes = []
for poly in polys:
poly = np.array(poly[:8], dtype=np.float32)
pt1 = (poly[0], poly[1])
pt2 = (poly[2], poly[3])
pt3 = (poly[4], poly[5])
pt4 = (poly[6], poly[7])
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[
1]) * (pt1[1] - pt2[1]))
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[
1]) * (pt2[1] - pt3[1]))
width = max(edge1, edge2)
height = min(edge1, edge2)
rbox_angle = 0
if edge1 > edge2:
rbox_angle = np.arctan2(
np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0]))
elif edge2 >= edge1:
rbox_angle = np.arctan2(
np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0]))
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
return (angle - range[0]) % range[1] + range[0]
rbox_angle = norm_angle(rbox_angle)
x_ctr = np.float(pt1[0] + pt3[0]) / 2
y_ctr = np.float(pt1[1] + pt3[1]) / 2
rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle])
rotated_boxes.append(rotated_box)
ret_rotated_boxes = np.array(rotated_boxes)
assert ret_rotated_boxes.shape[1] == 5
return ret_rotated_boxes
def cal_line_length(point1, point2):
import math
return math.sqrt(
math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
def get_best_begin_point_single(coordinate):
x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
xmin = min(x1, x2, x3, x4)
ymin = min(y1, y2, y3, y4)
xmax = max(x1, x2, x3, x4)
ymax = max(y1, y2, y3, y4)
combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
[[x4, y4], [x1, y1], [x2, y2], [x3, y3]],
[[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
[[x2, y2], [x3, y3], [x4, y4], [x1, y1]]]
dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
force = 100000000.0
force_flag = 0
for i in range(4):
temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \
+ cal_line_length(combinate[i][1], dst_coordinate[1]) \
+ cal_line_length(combinate[i][2], dst_coordinate[2]) \
+ cal_line_length(combinate[i][3], dst_coordinate[3])
if temp_force < force:
force = temp_force
force_flag = i
if force_flag != 0:
pass
return np.array(combinate[force_flag]).reshape(8)
def rbox2poly_np(rrects):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
polys = []
for i in range(rrects.shape[0]):
rrect = rrects[i]
# x_ctr, y_ctr, width, height, angle = rrect[:5]
x_ctr = rrect[0]
y_ctr = rrect[1]
width = rrect[2]
height = rrect[3]
angle = rrect[4]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
poly = get_best_begin_point_single(poly)
polys.append(poly)
polys = np.array(polys)
return polys
def rbox2poly(rrects):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
N = paddle.shape(rrects)[0]
x_ctr = rrects[:, 0]
y_ctr = rrects[:, 1]
width = rrects[:, 2]
height = rrects[:, 3]
angle = rrects[:, 4]
tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5
normal_rects = paddle.stack(
[tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0)
normal_rects = paddle.reshape(normal_rects, [2, 4, N])
normal_rects = paddle.transpose(normal_rects, [2, 0, 1])
sin, cos = paddle.sin(angle), paddle.cos(angle)
# M.shape=[N,2,2]
M = paddle.stack([cos, -sin, sin, cos], axis=0)
M = paddle.reshape(M, [2, 2, N])
M = paddle.transpose(M, [2, 0, 1])
# polys:[N,8]
polys = paddle.matmul(M, normal_rects)
polys = paddle.transpose(polys, [2, 1, 0])
polys = paddle.reshape(polys, [-1, N])
polys = paddle.transpose(polys, [1, 0])
tmp = paddle.stack(
[x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1)
polys = polys + tmp
return polys
def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
"""
Calculate the iou of box1 and box2 with numpy.
Args:
box1 (ndarray): [N, 4]
box2 (ndarray): [M, 4], usually N != M
x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True
eps (float): epsilon to avoid divide by zero
Return:
iou (ndarray): iou of box1 and box2, [N, M]
"""
N, M = len(box1), len(box2) # usually N != M
if x1y1x2y2:
b1_x1, b1_y1 = box1[:, 0], box1[:, 1]
b1_x2, b1_y2 = box1[:, 2], box1[:, 3]
b2_x1, b2_y1 = box2[:, 0], box2[:, 1]
b2_x2, b2_y2 = box2[:, 2], box2[:, 3]
else:
# cxcywh style
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
# get the coordinates of the intersection rectangle
inter_rect_x1 = np.zeros((N, M), dtype=np.float32)
inter_rect_y1 = np.zeros((N, M), dtype=np.float32)
inter_rect_x2 = np.zeros((N, M), dtype=np.float32)
inter_rect_y2 = np.zeros((N, M), dtype=np.float32)
for i in range(len(box2)):
inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i])
inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i])
inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i])
inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i])
# Intersection area
inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum(
inter_rect_y2 - inter_rect_y1, 0)
# Union Area
b1_area = np.repeat(
((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1)
b2_area = np.repeat(
((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0)
ious = inter_area / (b1_area + b2_area - inter_area + eps)
return ious

View File

@ -0,0 +1,41 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import bbox_head
from . import mask_head
from . import yolo_head
from . import roi_extractor
from . import ssd_head
from . import fcos_head
from . import solov2_head
from . import ttf_head
from . import cascade_head
from . import face_head
from . import s2anet_head
from . import keypoint_hrhrnet_head
from . import centernet_head
from .bbox_head import *
from .mask_head import *
from .yolo_head import *
from .roi_extractor import *
from .ssd_head import *
from .fcos_head import *
from .solov2_head import *
from .ttf_head import *
from .cascade_head import *
from .face_head import *
from .s2anet_head import *
from .keypoint_hrhrnet_head import *
from .centernet_head import *

View File

@ -0,0 +1,376 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, XavierUniform, KaimingNormal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, create
from .roi_extractor import RoIAlign
from ..shape_spec import ShapeSpec
from ..bbox_utils import bbox2delta
from ppdet.modeling.layers import ConvNormLayer
__all__ = ['TwoFCHead', 'XConvNormHead', 'BBoxHead']
@register
class TwoFCHead(nn.Layer):
"""
RCNN bbox head with Two fc layers to extract feature
Args:
in_channel (int): Input channel which can be derived by from_config
out_channel (int): Output channel
resolution (int): Resolution of input feature map, default 7
"""
def __init__(self, in_channel=256, out_channel=1024, resolution=7):
super(TwoFCHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
fan = in_channel * resolution * resolution
self.fc6 = nn.Linear(
in_channel * resolution * resolution,
out_channel,
weight_attr=paddle.ParamAttr(
initializer=XavierUniform(fan_out=fan)))
self.fc6.skip_quant = True
self.fc7 = nn.Linear(
out_channel,
out_channel,
weight_attr=paddle.ParamAttr(initializer=XavierUniform()))
self.fc7.skip_quant = True
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat):
rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
fc6 = self.fc6(rois_feat)
fc6 = F.relu(fc6)
fc7 = self.fc7(fc6)
fc7 = F.relu(fc7)
return fc7
@register
class XConvNormHead(nn.Layer):
__shared__ = ['norm_type', 'freeze_norm']
"""
RCNN bbox head with serveral convolution layers
Args:
in_channel (int): Input channels which can be derived by from_config
num_convs (int): The number of conv layers
conv_dim (int): The number of channels for the conv layers
out_channel (int): Output channels
resolution (int): Resolution of input feature map
norm_type (string): Norm type, bn, gn, sync_bn are available,
default `gn`
freeze_norm (bool): Whether to freeze the norm
stage_name (string): Prefix name for conv layer, '' by default
"""
def __init__(self,
in_channel=256,
num_convs=4,
conv_dim=256,
out_channel=1024,
resolution=7,
norm_type='gn',
freeze_norm=False,
stage_name=''):
super(XConvNormHead, self).__init__()
self.in_channel = in_channel
self.num_convs = num_convs
self.conv_dim = conv_dim
self.out_channel = out_channel
self.norm_type = norm_type
self.freeze_norm = freeze_norm
self.bbox_head_convs = []
fan = conv_dim * 3 * 3
initializer = KaimingNormal(fan_in=fan)
for i in range(self.num_convs):
in_c = in_channel if i == 0 else conv_dim
head_conv_name = stage_name + 'bbox_head_conv{}'.format(i)
head_conv = self.add_sublayer(
head_conv_name,
ConvNormLayer(
ch_in=in_c,
ch_out=conv_dim,
filter_size=3,
stride=1,
norm_type=self.norm_type,
freeze_norm=self.freeze_norm,
initializer=initializer))
self.bbox_head_convs.append(head_conv)
fan = conv_dim * resolution * resolution
self.fc6 = nn.Linear(
conv_dim * resolution * resolution,
out_channel,
weight_attr=paddle.ParamAttr(
initializer=XavierUniform(fan_out=fan)),
bias_attr=paddle.ParamAttr(
learning_rate=2., regularizer=L2Decay(0.)))
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat):
for i in range(self.num_convs):
rois_feat = F.relu(self.bbox_head_convs[i](rois_feat))
rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
fc6 = F.relu(self.fc6(rois_feat))
return fc6
@register
class BBoxHead(nn.Layer):
__shared__ = ['num_classes']
__inject__ = ['bbox_assigner', 'bbox_loss']
"""
RCNN bbox head
Args:
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
with_pool (bool): Whether to use pooling for the RoI feature.
num_classes (int): The number of classes
bbox_weight (List[float]): The weight to get the decode box
"""
def __init__(self,
head,
in_channel,
roi_extractor=RoIAlign().__dict__,
bbox_assigner='BboxAssigner',
with_pool=False,
num_classes=80,
bbox_weight=[10., 10., 5., 5.],
bbox_loss=None):
super(BBoxHead, self).__init__()
self.head = head
self.roi_extractor = roi_extractor
if isinstance(roi_extractor, dict):
self.roi_extractor = RoIAlign(**roi_extractor)
self.bbox_assigner = bbox_assigner
self.with_pool = with_pool
self.num_classes = num_classes
self.bbox_weight = bbox_weight
self.bbox_loss = bbox_loss
self.bbox_score = nn.Linear(
in_channel,
self.num_classes + 1,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.01)))
self.bbox_score.skip_quant = True
self.bbox_delta = nn.Linear(
in_channel,
4 * self.num_classes,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.001)))
self.bbox_delta.skip_quant = True
self.assigned_label = None
self.assigned_rois = None
@classmethod
def from_config(cls, cfg, input_shape):
roi_pooler = cfg['roi_extractor']
assert isinstance(roi_pooler, dict)
kwargs = RoIAlign.from_config(cfg, input_shape)
roi_pooler.update(kwargs)
kwargs = {'input_shape': input_shape}
head = create(cfg['head'], **kwargs)
return {
'roi_extractor': roi_pooler,
'head': head,
'in_channel': head.out_shape[0].channels
}
def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None):
"""
body_feats (list[Tensor]): Feature maps from backbone
rois (list[Tensor]): RoIs generated from RPN module
rois_num (Tensor): The number of RoIs in each image
inputs (dict{Tensor}): The ground-truth of image
"""
if self.training:
rois, rois_num, targets = self.bbox_assigner(rois, rois_num, inputs)
self.assigned_rois = (rois, rois_num)
self.assigned_targets = targets
rois_feat = self.roi_extractor(body_feats, rois, rois_num)
bbox_feat = self.head(rois_feat)
if self.with_pool:
feat = F.adaptive_avg_pool2d(bbox_feat, output_size=1)
feat = paddle.squeeze(feat, axis=[2, 3])
else:
feat = bbox_feat
scores = self.bbox_score(feat)
deltas = self.bbox_delta(feat)
if self.training:
loss = self.get_loss(scores, deltas, targets, rois,
self.bbox_weight)
return loss, bbox_feat
else:
pred = self.get_prediction(scores, deltas)
return pred, self.head
def get_loss(self, scores, deltas, targets, rois, bbox_weight):
"""
scores (Tensor): scores from bbox head outputs
deltas (Tensor): deltas from bbox head outputs
targets (list[List[Tensor]]): bbox targets containing tgt_labels, tgt_bboxes and tgt_gt_inds
rois (List[Tensor]): RoIs generated in each batch
"""
cls_name = 'loss_bbox_cls'
reg_name = 'loss_bbox_reg'
loss_bbox = {}
# TODO: better pass args
tgt_labels, tgt_bboxes, tgt_gt_inds = targets
# bbox cls
tgt_labels = paddle.concat(tgt_labels) if len(
tgt_labels) > 1 else tgt_labels[0]
valid_inds = paddle.nonzero(tgt_labels >= 0).flatten()
if valid_inds.shape[0] == 0:
loss_bbox[cls_name] = paddle.zeros([1], dtype='float32')
else:
tgt_labels = tgt_labels.cast('int64')
tgt_labels.stop_gradient = True
loss_bbox_cls = F.cross_entropy(
input=scores, label=tgt_labels, reduction='mean')
loss_bbox[cls_name] = loss_bbox_cls
# bbox reg
cls_agnostic_bbox_reg = deltas.shape[1] == 4
fg_inds = paddle.nonzero(
paddle.logical_and(tgt_labels >= 0, tgt_labels <
self.num_classes)).flatten()
if fg_inds.numel() == 0:
loss_bbox[reg_name] = paddle.zeros([1], dtype='float32')
return loss_bbox
if cls_agnostic_bbox_reg:
reg_delta = paddle.gather(deltas, fg_inds)
else:
fg_gt_classes = paddle.gather(tgt_labels, fg_inds)
reg_row_inds = paddle.arange(fg_gt_classes.shape[0]).unsqueeze(1)
reg_row_inds = paddle.tile(reg_row_inds, [1, 4]).reshape([-1, 1])
reg_col_inds = 4 * fg_gt_classes.unsqueeze(1) + paddle.arange(4)
reg_col_inds = reg_col_inds.reshape([-1, 1])
reg_inds = paddle.concat([reg_row_inds, reg_col_inds], axis=1)
reg_delta = paddle.gather(deltas, fg_inds)
reg_delta = paddle.gather_nd(reg_delta, reg_inds).reshape([-1, 4])
rois = paddle.concat(rois) if len(rois) > 1 else rois[0]
tgt_bboxes = paddle.concat(tgt_bboxes) if len(
tgt_bboxes) > 1 else tgt_bboxes[0]
reg_target = bbox2delta(rois, tgt_bboxes, bbox_weight)
reg_target = paddle.gather(reg_target, fg_inds)
reg_target.stop_gradient = True
if self.bbox_loss is not None:
reg_delta = self.bbox_transform(reg_delta)
reg_target = self.bbox_transform(reg_target)
loss_bbox_reg = self.bbox_loss(
reg_delta, reg_target).sum() / tgt_labels.shape[0]
loss_bbox_reg *= self.num_classes
else:
loss_bbox_reg = paddle.abs(reg_delta - reg_target).sum(
) / tgt_labels.shape[0]
loss_bbox[reg_name] = loss_bbox_reg
return loss_bbox
def bbox_transform(self, deltas, weights=[0.1, 0.1, 0.2, 0.2]):
wx, wy, ww, wh = weights
deltas = paddle.reshape(deltas, shape=(0, -1, 4))
dx = paddle.slice(deltas, axes=[2], starts=[0], ends=[1]) * wx
dy = paddle.slice(deltas, axes=[2], starts=[1], ends=[2]) * wy
dw = paddle.slice(deltas, axes=[2], starts=[2], ends=[3]) * ww
dh = paddle.slice(deltas, axes=[2], starts=[3], ends=[4]) * wh
dw = paddle.clip(dw, -1.e10, np.log(1000. / 16))
dh = paddle.clip(dh, -1.e10, np.log(1000. / 16))
pred_ctr_x = dx
pred_ctr_y = dy
pred_w = paddle.exp(dw)
pred_h = paddle.exp(dh)
x1 = pred_ctr_x - 0.5 * pred_w
y1 = pred_ctr_y - 0.5 * pred_h
x2 = pred_ctr_x + 0.5 * pred_w
y2 = pred_ctr_y + 0.5 * pred_h
x1 = paddle.reshape(x1, shape=(-1, ))
y1 = paddle.reshape(y1, shape=(-1, ))
x2 = paddle.reshape(x2, shape=(-1, ))
y2 = paddle.reshape(y2, shape=(-1, ))
return paddle.concat([x1, y1, x2, y2])
def get_prediction(self, score, delta):
bbox_prob = F.softmax(score)
return delta, bbox_prob
def get_head(self, ):
return self.head
def get_assigned_targets(self, ):
return self.assigned_targets
def get_assigned_rois(self, ):
return self.assigned_rois

View File

@ -0,0 +1,281 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal
from ppdet.core.workspace import register
from .bbox_head import BBoxHead, TwoFCHead, XConvNormHead
from .roi_extractor import RoIAlign
from ..shape_spec import ShapeSpec
from ..bbox_utils import delta2bbox, clip_bbox, nonempty_bbox
__all__ = ['CascadeTwoFCHead', 'CascadeXConvNormHead', 'CascadeHead']
@register
class CascadeTwoFCHead(nn.Layer):
__shared__ = ['num_cascade_stage']
"""
Cascade RCNN bbox head with Two fc layers to extract feature
Args:
in_channel (int): Input channel which can be derived by from_config
out_channel (int): Output channel
resolution (int): Resolution of input feature map, default 7
num_cascade_stage (int): The number of cascade stage, default 3
"""
def __init__(self,
in_channel=256,
out_channel=1024,
resolution=7,
num_cascade_stage=3):
super(CascadeTwoFCHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.head_list = []
for stage in range(num_cascade_stage):
head_per_stage = self.add_sublayer(
str(stage), TwoFCHead(in_channel, out_channel, resolution))
self.head_list.append(head_per_stage)
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat, stage=0):
out = self.head_list[stage](rois_feat)
return out
@register
class CascadeXConvNormHead(nn.Layer):
__shared__ = ['norm_type', 'freeze_norm', 'num_cascade_stage']
"""
Cascade RCNN bbox head with serveral convolution layers
Args:
in_channel (int): Input channels which can be derived by from_config
num_convs (int): The number of conv layers
conv_dim (int): The number of channels for the conv layers
out_channel (int): Output channels
resolution (int): Resolution of input feature map
norm_type (string): Norm type, bn, gn, sync_bn are available,
default `gn`
freeze_norm (bool): Whether to freeze the norm
num_cascade_stage (int): The number of cascade stage, default 3
"""
def __init__(self,
in_channel=256,
num_convs=4,
conv_dim=256,
out_channel=1024,
resolution=7,
norm_type='gn',
freeze_norm=False,
num_cascade_stage=3):
super(CascadeXConvNormHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.head_list = []
for stage in range(num_cascade_stage):
head_per_stage = self.add_sublayer(
str(stage),
XConvNormHead(
in_channel,
num_convs,
conv_dim,
out_channel,
resolution,
norm_type,
freeze_norm,
stage_name='stage{}_'.format(stage)))
self.head_list.append(head_per_stage)
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat, stage=0):
out = self.head_list[stage](rois_feat)
return out
@register
class CascadeHead(BBoxHead):
__shared__ = ['num_classes', 'num_cascade_stages']
__inject__ = ['bbox_assigner', 'bbox_loss']
"""
Cascade RCNN bbox head
Args:
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
num_classes (int): The number of classes
bbox_weight (List[List[float]]): The weight to get the decode box and the
length of weight is the number of cascade stage
num_cascade_stages (int): THe number of stage to refine the box
"""
def __init__(self,
head,
in_channel,
roi_extractor=RoIAlign().__dict__,
bbox_assigner='BboxAssigner',
num_classes=80,
bbox_weight=[[10., 10., 5., 5.], [20.0, 20.0, 10.0, 10.0],
[30.0, 30.0, 15.0, 15.0]],
num_cascade_stages=3,
bbox_loss=None):
nn.Layer.__init__(self, )
self.head = head
self.roi_extractor = roi_extractor
if isinstance(roi_extractor, dict):
self.roi_extractor = RoIAlign(**roi_extractor)
self.bbox_assigner = bbox_assigner
self.num_classes = num_classes
self.bbox_weight = bbox_weight
self.num_cascade_stages = num_cascade_stages
self.bbox_loss = bbox_loss
self.bbox_score_list = []
self.bbox_delta_list = []
for i in range(num_cascade_stages):
score_name = 'bbox_score_stage{}'.format(i)
delta_name = 'bbox_delta_stage{}'.format(i)
bbox_score = self.add_sublayer(
score_name,
nn.Linear(
in_channel,
self.num_classes + 1,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.01))))
bbox_delta = self.add_sublayer(
delta_name,
nn.Linear(
in_channel,
4,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.001))))
self.bbox_score_list.append(bbox_score)
self.bbox_delta_list.append(bbox_delta)
self.assigned_label = None
self.assigned_rois = None
def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None):
"""
body_feats (list[Tensor]): Feature maps from backbone
rois (Tensor): RoIs generated from RPN module
rois_num (Tensor): The number of RoIs in each image
inputs (dict{Tensor}): The ground-truth of image
"""
targets = []
if self.training:
rois, rois_num, targets = self.bbox_assigner(rois, rois_num, inputs)
targets_list = [targets]
self.assigned_rois = (rois, rois_num)
self.assigned_targets = targets
pred_bbox = None
head_out_list = []
for i in range(self.num_cascade_stages):
if i > 0:
rois, rois_num = self._get_rois_from_boxes(pred_bbox,
inputs['im_shape'])
if self.training:
rois, rois_num, targets = self.bbox_assigner(
rois, rois_num, inputs, i, is_cascade=True)
targets_list.append(targets)
rois_feat = self.roi_extractor(body_feats, rois, rois_num)
bbox_feat = self.head(rois_feat, i)
scores = self.bbox_score_list[i](bbox_feat)
deltas = self.bbox_delta_list[i](bbox_feat)
head_out_list.append([scores, deltas, rois])
pred_bbox = self._get_pred_bbox(deltas, rois, self.bbox_weight[i])
if self.training:
loss = {}
for stage, value in enumerate(zip(head_out_list, targets_list)):
(scores, deltas, rois), targets = value
loss_stage = self.get_loss(scores, deltas, targets, rois,
self.bbox_weight[stage])
for k, v in loss_stage.items():
loss[k + "_stage{}".format(
stage)] = v / self.num_cascade_stages
return loss, bbox_feat
else:
scores, deltas, self.refined_rois = self.get_prediction(
head_out_list)
return (deltas, scores), self.head
def _get_rois_from_boxes(self, boxes, im_shape):
rois = []
for i, boxes_per_image in enumerate(boxes):
clip_box = clip_bbox(boxes_per_image, im_shape[i])
if self.training:
keep = nonempty_bbox(clip_box)
if keep.shape[0] == 0:
keep = paddle.zeros([1], dtype='int32')
clip_box = paddle.gather(clip_box, keep)
rois.append(clip_box)
rois_num = paddle.concat([paddle.shape(r)[0] for r in rois])
return rois, rois_num
def _get_pred_bbox(self, deltas, proposals, weights):
pred_proposals = paddle.concat(proposals) if len(
proposals) > 1 else proposals[0]
pred_bbox = delta2bbox(deltas, pred_proposals, weights)
pred_bbox = paddle.reshape(pred_bbox, [-1, deltas.shape[-1]])
num_prop = [p.shape[0] for p in proposals]
return pred_bbox.split(num_prop)
def get_prediction(self, head_out_list):
"""
head_out_list(List[Tensor]): scores, deltas, rois
"""
pred_list = []
scores_list = [F.softmax(head[0]) for head in head_out_list]
scores = paddle.add_n(scores_list) / self.num_cascade_stages
# Get deltas and rois from the last stage
_, deltas, rois = head_out_list[-1]
return scores, deltas, rois
def get_refined_rois(self, ):
return self.refined_rois

View File

@ -0,0 +1,192 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingUniform
from ppdet.core.workspace import register
from ppdet.modeling.losses import CTFocalLoss
class ConvLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False):
super(ConvLayer, self).__init__()
bias_attr = False
fan_in = ch_in * kernel_size**2
bound = 1 / math.sqrt(fan_in)
param_attr = paddle.ParamAttr(initializer=KaimingUniform())
if bias:
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.Uniform(-bound, bound))
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
weight_attr=param_attr,
bias_attr=bias_attr)
def forward(self, inputs):
out = self.conv(inputs)
return out
@register
class CenterNetHead(nn.Layer):
"""
Args:
in_channels (int): the channel number of input to CenterNetHead.
num_classes (int): the number of classes, 80 by default.
head_planes (int): the channel number in all head, 256 by default.
heatmap_weight (float): the weight of heatmap loss, 1 by default.
regress_ltrb (bool): whether to regress left/top/right/bottom or
width/height for a box, true by default
size_weight (float): the weight of box size loss, 0.1 by default.
offset_weight (float): the weight of center offset loss, 1 by default.
"""
__shared__ = ['num_classes']
def __init__(self,
in_channels,
num_classes=80,
head_planes=256,
heatmap_weight=1,
regress_ltrb=True,
size_weight=0.1,
offset_weight=1):
super(CenterNetHead, self).__init__()
self.weights = {
'heatmap': heatmap_weight,
'size': size_weight,
'offset': offset_weight
}
self.heatmap = nn.Sequential(
ConvLayer(
in_channels, head_planes, kernel_size=3, padding=1, bias=True),
nn.ReLU(),
ConvLayer(
head_planes,
num_classes,
kernel_size=1,
stride=1,
padding=0,
bias=True))
self.heatmap[2].conv.bias[:] = -2.19
self.size = nn.Sequential(
ConvLayer(
in_channels, head_planes, kernel_size=3, padding=1, bias=True),
nn.ReLU(),
ConvLayer(
head_planes,
4 if regress_ltrb else 2,
kernel_size=1,
stride=1,
padding=0,
bias=True))
self.offset = nn.Sequential(
ConvLayer(
in_channels, head_planes, kernel_size=3, padding=1, bias=True),
nn.ReLU(),
ConvLayer(
head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True))
self.focal_loss = CTFocalLoss()
@classmethod
def from_config(cls, cfg, input_shape):
if isinstance(input_shape, (list, tuple)):
input_shape = input_shape[0]
return {'in_channels': input_shape.channels}
def forward(self, feat, inputs):
heatmap = self.heatmap(feat)
size = self.size(feat)
offset = self.offset(feat)
if self.training:
loss = self.get_loss(heatmap, size, offset, self.weights, inputs)
return loss
else:
heatmap = F.sigmoid(heatmap)
return {'heatmap': heatmap, 'size': size, 'offset': offset}
def get_loss(self, heatmap, size, offset, weights, inputs):
heatmap_target = inputs['heatmap']
size_target = inputs['size']
offset_target = inputs['offset']
index = inputs['index']
mask = inputs['index_mask']
heatmap = paddle.clip(F.sigmoid(heatmap), 1e-4, 1 - 1e-4)
heatmap_loss = self.focal_loss(heatmap, heatmap_target)
size = paddle.transpose(size, perm=[0, 2, 3, 1])
size_n, size_h, size_w, size_c = size.shape
size = paddle.reshape(size, shape=[size_n, -1, size_c])
index = paddle.unsqueeze(index, 2)
batch_inds = list()
for i in range(size_n):
batch_ind = paddle.full(
shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
batch_inds.append(batch_ind)
batch_inds = paddle.concat(batch_inds, axis=0)
index = paddle.concat(x=[batch_inds, index], axis=2)
pos_size = paddle.gather_nd(size, index=index)
mask = paddle.unsqueeze(mask, axis=2)
size_mask = paddle.expand_as(mask, pos_size)
size_mask = paddle.cast(size_mask, dtype=pos_size.dtype)
pos_num = size_mask.sum()
size_mask.stop_gradient = True
size_target.stop_gradient = True
size_loss = F.l1_loss(
pos_size * size_mask, size_target * size_mask, reduction='sum')
size_loss = size_loss / (pos_num + 1e-4)
offset = paddle.transpose(offset, perm=[0, 2, 3, 1])
offset_n, offset_h, offset_w, offset_c = offset.shape
offset = paddle.reshape(offset, shape=[offset_n, -1, offset_c])
pos_offset = paddle.gather_nd(offset, index=index)
offset_mask = paddle.expand_as(mask, pos_offset)
offset_mask = paddle.cast(offset_mask, dtype=pos_offset.dtype)
pos_num = offset_mask.sum()
offset_mask.stop_gradient = True
offset_target.stop_gradient = True
offset_loss = F.l1_loss(
pos_offset * offset_mask,
offset_target * offset_mask,
reduction='sum')
offset_loss = offset_loss / (pos_num + 1e-4)
det_loss = weights['heatmap'] * heatmap_loss + weights[
'size'] * size_loss + weights['offset'] * offset_loss
return {
'det_loss': det_loss,
'heatmap_loss': heatmap_loss,
'size_loss': size_loss,
'offset_loss': offset_loss
}

View File

@ -0,0 +1,110 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from ppdet.core.workspace import register
from ..layers import AnchorGeneratorSSD
@register
class FaceHead(nn.Layer):
"""
Head block for Face detection network
Args:
num_classes (int): Number of output classes.
in_channels (int): Number of input channels.
anchor_generator(object): instance of anchor genertor method.
kernel_size (int): kernel size of Conv2D in FaceHead.
padding (int): padding of Conv2D in FaceHead.
conv_decay (float): norm_decay (float): weight decay for conv layer weights.
loss (object): loss of face detection model.
"""
__shared__ = ['num_classes']
__inject__ = ['anchor_generator', 'loss']
def __init__(self,
num_classes=80,
in_channels=[96, 96],
anchor_generator=AnchorGeneratorSSD().__dict__,
kernel_size=3,
padding=1,
conv_decay=0.,
loss='SSDLoss'):
super(FaceHead, self).__init__()
# add background class
self.num_classes = num_classes + 1
self.in_channels = in_channels
self.anchor_generator = anchor_generator
self.loss = loss
if isinstance(anchor_generator, dict):
self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)
self.num_priors = self.anchor_generator.num_priors
self.box_convs = []
self.score_convs = []
for i, num_prior in enumerate(self.num_priors):
box_conv_name = "boxes{}".format(i)
box_conv = self.add_sublayer(
box_conv_name,
nn.Conv2D(
in_channels=self.in_channels[i],
out_channels=num_prior * 4,
kernel_size=kernel_size,
padding=padding))
self.box_convs.append(box_conv)
score_conv_name = "scores{}".format(i)
score_conv = self.add_sublayer(
score_conv_name,
nn.Conv2D(
in_channels=self.in_channels[i],
out_channels=num_prior * self.num_classes,
kernel_size=kernel_size,
padding=padding))
self.score_convs.append(score_conv)
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
def forward(self, feats, image, gt_bbox=None, gt_class=None):
box_preds = []
cls_scores = []
prior_boxes = []
for feat, box_conv, score_conv in zip(feats, self.box_convs,
self.score_convs):
box_pred = box_conv(feat)
box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
box_pred = paddle.reshape(box_pred, [0, -1, 4])
box_preds.append(box_pred)
cls_score = score_conv(feat)
cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
cls_scores.append(cls_score)
prior_boxes = self.anchor_generator(feats, image)
if self.training:
return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
prior_boxes)
else:
return (box_preds, cls_scores), prior_boxes
def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)

View File

@ -0,0 +1,269 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
from ppdet.modeling.layers import ConvNormLayer
class ScaleReg(nn.Layer):
"""
Parameter for scaling the regression outputs.
"""
def __init__(self):
super(ScaleReg, self).__init__()
self.scale_reg = self.create_parameter(
shape=[1],
attr=ParamAttr(initializer=Constant(value=1.)),
dtype="float32")
def forward(self, inputs):
out = inputs * self.scale_reg
return out
@register
class FCOSFeat(nn.Layer):
"""
FCOSFeat of FCOS
Args:
feat_in (int): The channel number of input Tensor.
feat_out (int): The channel number of output Tensor.
num_convs (int): The convolution number of the FCOSFeat.
norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
use_dcn (bool): Whether to use dcn in tower or not.
"""
def __init__(self,
feat_in=256,
feat_out=256,
num_convs=4,
norm_type='bn',
use_dcn=False):
super(FCOSFeat, self).__init__()
self.num_convs = num_convs
self.norm_type = norm_type
self.cls_subnet_convs = []
self.reg_subnet_convs = []
for i in range(self.num_convs):
in_c = feat_in if i == 0 else feat_out
cls_conv_name = 'fcos_head_cls_tower_conv_{}'.format(i)
cls_conv = self.add_sublayer(
cls_conv_name,
ConvNormLayer(
ch_in=in_c,
ch_out=feat_out,
filter_size=3,
stride=1,
norm_type=norm_type,
use_dcn=use_dcn,
bias_on=True,
lr_scale=2.))
self.cls_subnet_convs.append(cls_conv)
reg_conv_name = 'fcos_head_reg_tower_conv_{}'.format(i)
reg_conv = self.add_sublayer(
reg_conv_name,
ConvNormLayer(
ch_in=in_c,
ch_out=feat_out,
filter_size=3,
stride=1,
norm_type=norm_type,
use_dcn=use_dcn,
bias_on=True,
lr_scale=2.))
self.reg_subnet_convs.append(reg_conv)
def forward(self, fpn_feat):
cls_feat = fpn_feat
reg_feat = fpn_feat
for i in range(self.num_convs):
cls_feat = F.relu(self.cls_subnet_convs[i](cls_feat))
reg_feat = F.relu(self.reg_subnet_convs[i](reg_feat))
return cls_feat, reg_feat
@register
class FCOSHead(nn.Layer):
"""
FCOSHead
Args:
fcos_feat (object): Instance of 'FCOSFeat'
num_classes (int): Number of classes
fpn_stride (list): The stride of each FPN Layer
prior_prob (float): Used to set the bias init for the class prediction layer
fcos_loss (object): Instance of 'FCOSLoss'
norm_reg_targets (bool): Normalization the regression target if true
centerness_on_reg (bool): The prediction of centerness on regression or clssification branch
"""
__inject__ = ['fcos_feat', 'fcos_loss']
__shared__ = ['num_classes']
def __init__(self,
fcos_feat,
num_classes=80,
fpn_stride=[8, 16, 32, 64, 128],
prior_prob=0.01,
fcos_loss='FCOSLoss',
norm_reg_targets=True,
centerness_on_reg=True):
super(FCOSHead, self).__init__()
self.fcos_feat = fcos_feat
self.num_classes = num_classes
self.fpn_stride = fpn_stride
self.prior_prob = prior_prob
self.fcos_loss = fcos_loss
self.norm_reg_targets = norm_reg_targets
self.centerness_on_reg = centerness_on_reg
conv_cls_name = "fcos_head_cls"
bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
self.fcos_head_cls = self.add_sublayer(
conv_cls_name,
nn.Conv2D(
in_channels=256,
out_channels=self.num_classes,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(
name=conv_cls_name + "_weights",
initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(
name=conv_cls_name + "_bias",
initializer=Constant(value=bias_init_value))))
conv_reg_name = "fcos_head_reg"
self.fcos_head_reg = self.add_sublayer(
conv_reg_name,
nn.Conv2D(
in_channels=256,
out_channels=4,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(
name=conv_reg_name + "_weights",
initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(
name=conv_reg_name + "_bias",
initializer=Constant(value=0))))
conv_centerness_name = "fcos_head_centerness"
self.fcos_head_centerness = self.add_sublayer(
conv_centerness_name,
nn.Conv2D(
in_channels=256,
out_channels=1,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(
name=conv_centerness_name + "_weights",
initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(
name=conv_centerness_name + "_bias",
initializer=Constant(value=0))))
self.scales_regs = []
for i in range(len(self.fpn_stride)):
lvl = int(math.log(int(self.fpn_stride[i]), 2))
feat_name = 'p{}_feat'.format(lvl)
scale_reg = self.add_sublayer(feat_name, ScaleReg())
self.scales_regs.append(scale_reg)
def _compute_locations_by_level(self, fpn_stride, feature):
"""
Compute locations of anchor points of each FPN layer
Args:
fpn_stride (int): The stride of current FPN feature map
feature (Tensor): Tensor of current FPN feature map
Return:
Anchor points locations of current FPN feature map
"""
shape_fm = paddle.shape(feature)
shape_fm.stop_gradient = True
h, w = shape_fm[2], shape_fm[3]
shift_x = paddle.arange(0, w * fpn_stride, fpn_stride)
shift_y = paddle.arange(0, h * fpn_stride, fpn_stride)
shift_x = paddle.unsqueeze(shift_x, axis=0)
shift_y = paddle.unsqueeze(shift_y, axis=1)
shift_x = paddle.expand(shift_x, shape=[h, w])
shift_y = paddle.expand(shift_y, shape=[h, w])
shift_x.stop_gradient = True
shift_y.stop_gradient = True
shift_x = paddle.reshape(shift_x, shape=[-1])
shift_y = paddle.reshape(shift_y, shape=[-1])
location = paddle.stack(
[shift_x, shift_y], axis=-1) + float(fpn_stride) / 2
location.stop_gradient = True
return location
def forward(self, fpn_feats, is_training):
assert len(fpn_feats) == len(
self.fpn_stride
), "The size of fpn_feats is not equal to size of fpn_stride"
cls_logits_list = []
bboxes_reg_list = []
centerness_list = []
for scale_reg, fpn_stride, fpn_feat in zip(self.scales_regs,
self.fpn_stride, fpn_feats):
fcos_cls_feat, fcos_reg_feat = self.fcos_feat(fpn_feat)
cls_logits = self.fcos_head_cls(fcos_cls_feat)
bbox_reg = scale_reg(self.fcos_head_reg(fcos_reg_feat))
if self.centerness_on_reg:
centerness = self.fcos_head_centerness(fcos_reg_feat)
else:
centerness = self.fcos_head_centerness(fcos_cls_feat)
if self.norm_reg_targets:
bbox_reg = F.relu(bbox_reg)
if not is_training:
bbox_reg = bbox_reg * fpn_stride
else:
bbox_reg = paddle.exp(bbox_reg)
cls_logits_list.append(cls_logits)
bboxes_reg_list.append(bbox_reg)
centerness_list.append(centerness)
if not is_training:
locations_list = []
for fpn_stride, feature in zip(self.fpn_stride, fpn_feats):
location = self._compute_locations_by_level(fpn_stride, feature)
locations_list.append(location)
return locations_list, cls_logits_list, bboxes_reg_list, centerness_list
else:
return cls_logits_list, bboxes_reg_list, centerness_list
def get_loss(self, fcos_head_outs, tag_labels, tag_bboxes, tag_centerness):
cls_logits, bboxes_reg, centerness = fcos_head_outs
return self.fcos_loss(cls_logits, bboxes_reg, centerness, tag_labels,
tag_bboxes, tag_centerness)

View File

@ -0,0 +1,108 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from ppdet.core.workspace import register
from .. import layers as L
from ..backbones.hrnet import BasicBlock
@register
class HrHRNetHead(nn.Layer):
__inject__ = ['loss']
def __init__(self, num_joints, loss='HrHRNetLoss', swahr=False, width=32):
"""
Head for HigherHRNet network
Args:
num_joints (int): number of keypoints
hrloss (object): HrHRNetLoss instance
swahr (bool): whether to use swahr
width (int): hrnet channel width
"""
super(HrHRNetHead, self).__init__()
self.loss = loss
self.num_joints = num_joints
num_featout1 = num_joints * 2
num_featout2 = num_joints
self.swahr = swahr
self.conv1 = L.Conv2d(width, num_featout1, 1, 1, 0, bias=True)
self.conv2 = L.Conv2d(width, num_featout2, 1, 1, 0, bias=True)
self.deconv = nn.Sequential(
L.ConvTranspose2d(
num_featout1 + width, width, 4, 2, 1, 0, bias=False),
L.BatchNorm2d(width),
L.ReLU())
self.blocks = nn.Sequential(*(BasicBlock(
num_channels=width,
num_filters=width,
has_se=False,
freeze_norm=False,
name='HrHRNetHead_{}'.format(i)) for i in range(4)))
self.interpolate = L.Upsample(2, mode='bilinear')
self.concat = L.Concat(dim=1)
if swahr:
self.scalelayer0 = nn.Sequential(
L.Conv2d(
width, num_joints, 1, 1, 0, bias=True),
L.BatchNorm2d(num_joints),
L.ReLU(),
L.Conv2d(
num_joints,
num_joints,
9,
1,
4,
groups=num_joints,
bias=True))
self.scalelayer1 = nn.Sequential(
L.Conv2d(
width, num_joints, 1, 1, 0, bias=True),
L.BatchNorm2d(num_joints),
L.ReLU(),
L.Conv2d(
num_joints,
num_joints,
9,
1,
4,
groups=num_joints,
bias=True))
def forward(self, feats, targets=None):
x1 = feats[0]
xo1 = self.conv1(x1)
x2 = self.blocks(self.deconv(self.concat((x1, xo1))))
xo2 = self.conv2(x2)
num_joints = self.num_joints
if self.training:
heatmap1, tagmap = paddle.split(xo1, 2, axis=1)
if self.swahr:
so1 = self.scalelayer0(x1)
so2 = self.scalelayer1(x2)
hrhrnet_outputs = ([heatmap1, so1], [xo2, so2], tagmap)
return self.loss(hrhrnet_outputs, targets)
else:
hrhrnet_outputs = (heatmap1, xo2, tagmap)
return self.loss(hrhrnet_outputs, targets)
# averaged heatmap, upsampled tagmap
upsampled = self.interpolate(xo1)
avg = (upsampled[:, :num_joints] + xo2[:, :num_joints]) / 2
return avg, upsampled[:, num_joints:]

View File

@ -0,0 +1,250 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, create
from ppdet.modeling.layers import ConvNormLayer
from .roi_extractor import RoIAlign
@register
class MaskFeat(nn.Layer):
"""
Feature extraction in Mask head
Args:
in_channel (int): Input channels
out_channel (int): Output channels
num_convs (int): The number of conv layers, default 4
norm_type (string | None): Norm type, bn, gn, sync_bn are available,
default None
"""
def __init__(self,
in_channel=256,
out_channel=256,
num_convs=4,
norm_type=None):
super(MaskFeat, self).__init__()
self.num_convs = num_convs
self.in_channel = in_channel
self.out_channel = out_channel
self.norm_type = norm_type
fan_conv = out_channel * 3 * 3
fan_deconv = out_channel * 2 * 2
mask_conv = nn.Sequential()
if norm_type == 'gn':
for i in range(self.num_convs):
conv_name = 'mask_inter_feat_{}'.format(i + 1)
mask_conv.add_sublayer(
conv_name,
ConvNormLayer(
ch_in=in_channel if i == 0 else out_channel,
ch_out=out_channel,
filter_size=3,
stride=1,
norm_type=self.norm_type,
initializer=KaimingNormal(fan_in=fan_conv),
skip_quant=True))
mask_conv.add_sublayer(conv_name + 'act', nn.ReLU())
else:
for i in range(self.num_convs):
conv_name = 'mask_inter_feat_{}'.format(i + 1)
conv = nn.Conv2D(
in_channels=in_channel if i == 0 else out_channel,
out_channels=out_channel,
kernel_size=3,
padding=1,
weight_attr=paddle.ParamAttr(
initializer=KaimingNormal(fan_in=fan_conv)))
conv.skip_quant = True
mask_conv.add_sublayer(conv_name, conv)
mask_conv.add_sublayer(conv_name + 'act', nn.ReLU())
mask_conv.add_sublayer(
'conv5_mask',
nn.Conv2DTranspose(
in_channels=self.in_channel,
out_channels=self.out_channel,
kernel_size=2,
stride=2,
weight_attr=paddle.ParamAttr(
initializer=KaimingNormal(fan_in=fan_deconv))))
mask_conv.add_sublayer('conv5_mask' + 'act', nn.ReLU())
self.upsample = mask_conv
@classmethod
def from_config(cls, cfg, input_shape):
if isinstance(input_shape, (list, tuple)):
input_shape = input_shape[0]
return {'in_channel': input_shape.channels, }
def out_channels(self):
return self.out_channel
def forward(self, feats):
return self.upsample(feats)
@register
class MaskHead(nn.Layer):
__shared__ = ['num_classes']
__inject__ = ['mask_assigner']
"""
RCNN mask head
Args:
head (nn.Layer): Extract feature in mask head
roi_extractor (object): The module of RoI Extractor
mask_assigner (object): The module of Mask Assigner,
label and sample the mask
num_classes (int): The number of classes
share_bbox_feat (bool): Whether to share the feature from bbox head,
default false
"""
def __init__(self,
head,
roi_extractor=RoIAlign().__dict__,
mask_assigner='MaskAssigner',
num_classes=80,
share_bbox_feat=False):
super(MaskHead, self).__init__()
self.num_classes = num_classes
self.roi_extractor = roi_extractor
if isinstance(roi_extractor, dict):
self.roi_extractor = RoIAlign(**roi_extractor)
self.head = head
self.in_channels = head.out_channels()
self.mask_assigner = mask_assigner
self.share_bbox_feat = share_bbox_feat
self.bbox_head = None
self.mask_fcn_logits = nn.Conv2D(
in_channels=self.in_channels,
out_channels=self.num_classes,
kernel_size=1,
weight_attr=paddle.ParamAttr(initializer=KaimingNormal(
fan_in=self.num_classes)))
self.mask_fcn_logits.skip_quant = True
@classmethod
def from_config(cls, cfg, input_shape):
roi_pooler = cfg['roi_extractor']
assert isinstance(roi_pooler, dict)
kwargs = RoIAlign.from_config(cfg, input_shape)
roi_pooler.update(kwargs)
kwargs = {'input_shape': input_shape}
head = create(cfg['head'], **kwargs)
return {
'roi_extractor': roi_pooler,
'head': head,
}
def get_loss(self, mask_logits, mask_label, mask_target, mask_weight):
mask_label = F.one_hot(mask_label, self.num_classes).unsqueeze([2, 3])
mask_label = paddle.expand_as(mask_label, mask_logits)
mask_label.stop_gradient = True
mask_pred = paddle.gather_nd(mask_logits, paddle.nonzero(mask_label))
shape = mask_logits.shape
mask_pred = paddle.reshape(mask_pred, [shape[0], shape[2], shape[3]])
mask_target = mask_target.cast('float32')
mask_weight = mask_weight.unsqueeze([1, 2])
loss_mask = F.binary_cross_entropy_with_logits(
mask_pred, mask_target, weight=mask_weight, reduction="mean")
return loss_mask
def forward_train(self, body_feats, rois, rois_num, inputs, targets,
bbox_feat):
"""
body_feats (list[Tensor]): Multi-level backbone features
rois (list[Tensor]): Proposals for each batch with shape [N, 4]
rois_num (Tensor): The number of proposals for each batch
inputs (dict): ground truth info
"""
tgt_labels, _, tgt_gt_inds = targets
rois, rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights = self.mask_assigner(
rois, tgt_labels, tgt_gt_inds, inputs)
if self.share_bbox_feat:
rois_feat = paddle.gather(bbox_feat, mask_index)
else:
rois_feat = self.roi_extractor(body_feats, rois, rois_num)
mask_feat = self.head(rois_feat)
mask_logits = self.mask_fcn_logits(mask_feat)
loss_mask = self.get_loss(mask_logits, tgt_classes, tgt_masks,
tgt_weights)
return {'loss_mask': loss_mask}
def forward_test(self,
body_feats,
rois,
rois_num,
scale_factor,
feat_func=None):
"""
body_feats (list[Tensor]): Multi-level backbone features
rois (Tensor): Prediction from bbox head with shape [N, 6]
rois_num (Tensor): The number of prediction for each batch
scale_factor (Tensor): The scale factor from origin size to input size
"""
if rois.shape[0] == 0:
mask_out = paddle.full([1, 1, 1, 1], -1)
else:
bbox = [rois[:, 2:]]
labels = rois[:, 0].cast('int32')
rois_feat = self.roi_extractor(body_feats, bbox, rois_num)
if self.share_bbox_feat:
assert feat_func is not None
rois_feat = feat_func(rois_feat)
mask_feat = self.head(rois_feat)
mask_logit = self.mask_fcn_logits(mask_feat)
mask_num_class = mask_logit.shape[1]
if mask_num_class == 1:
mask_out = F.sigmoid(mask_logit)
else:
num_masks = mask_logit.shape[0]
mask_out = []
# TODO: need to optimize gather
for i in range(mask_logit.shape[0]):
pred_masks = paddle.unsqueeze(
mask_logit[i, :, :, :], axis=0)
mask = paddle.gather(pred_masks, labels[i], axis=1)
mask_out.append(mask)
mask_out = F.sigmoid(paddle.concat(mask_out))
return mask_out
def forward(self,
body_feats,
rois,
rois_num,
inputs,
targets=None,
bbox_feat=None,
feat_func=None):
if self.training:
return self.forward_train(body_feats, rois, rois_num, inputs,
targets, bbox_feat)
else:
im_scale = inputs['scale_factor']
return self.forward_test(body_feats, rois, rois_num, im_scale,
feat_func)

View File

@ -0,0 +1,111 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from ppdet.core.workspace import register
from ppdet.modeling import ops
def _to_list(v):
if not isinstance(v, (list, tuple)):
return [v]
return v
@register
class RoIAlign(object):
"""
RoI Align module
For more details, please refer to the document of roi_align in
in ppdet/modeing/ops.py
Args:
resolution (int): The output size, default 14
spatial_scale (float): Multiplicative spatial scale factor to translate
ROI coords from their input scale to the scale used when pooling.
default 0.0625
sampling_ratio (int): The number of sampling points in the interpolation
grid, default 0
canconical_level (int): The referring level of FPN layer with
specified level. default 4
canonical_size (int): The referring scale of FPN layer with
specified scale. default 224
start_level (int): The start level of FPN layer to extract RoI feature,
default 0
end_level (int): The end level of FPN layer to extract RoI feature,
default 3
aligned (bool): Whether to add offset to rois' coord in roi_align.
default false
"""
def __init__(self,
resolution=14,
spatial_scale=0.0625,
sampling_ratio=0,
canconical_level=4,
canonical_size=224,
start_level=0,
end_level=3,
aligned=False):
super(RoIAlign, self).__init__()
self.resolution = resolution
self.spatial_scale = _to_list(spatial_scale)
self.sampling_ratio = sampling_ratio
self.canconical_level = canconical_level
self.canonical_size = canonical_size
self.start_level = start_level
self.end_level = end_level
self.aligned = aligned
@classmethod
def from_config(cls, cfg, input_shape):
return {'spatial_scale': [1. / i.stride for i in input_shape]}
def __call__(self, feats, roi, rois_num):
roi = paddle.concat(roi) if len(roi) > 1 else roi[0]
if len(feats) == 1:
rois_feat = ops.roi_align(
feats[self.start_level],
roi,
self.resolution,
self.spatial_scale[0],
rois_num=rois_num,
aligned=self.aligned)
else:
offset = 2
k_min = self.start_level + offset
k_max = self.end_level + offset
rois_dist, restore_index, rois_num_dist = ops.distribute_fpn_proposals(
roi,
k_min,
k_max,
self.canconical_level,
self.canonical_size,
rois_num=rois_num)
rois_feat_list = []
for lvl in range(self.start_level, self.end_level + 1):
roi_feat = ops.roi_align(
feats[lvl],
rois_dist[lvl],
self.resolution,
self.spatial_scale[lvl],
sampling_ratio=self.sampling_ratio,
rois_num=rois_num_dist[lvl],
aligned=self.aligned)
rois_feat_list.append(roi_feat)
rois_feat_shuffle = paddle.concat(rois_feat_list)
rois_feat = paddle.gather(rois_feat_shuffle, restore_index)
return rois_feat

View File

@ -0,0 +1,841 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
from ppdet.modeling.proposal_generator.target_layer import RBoxAssigner
import numpy as np
class S2ANetAnchorGenerator(nn.Layer):
"""
AnchorGenerator by paddle
"""
def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
super(S2ANetAnchorGenerator, self).__init__()
self.base_size = base_size
self.scales = paddle.to_tensor(scales)
self.ratios = paddle.to_tensor(ratios)
self.scale_major = scale_major
self.ctr = ctr
self.base_anchors = self.gen_base_anchors()
@property
def num_base_anchors(self):
return self.base_anchors.shape[0]
def gen_base_anchors(self):
w = self.base_size
h = self.base_size
if self.ctr is None:
x_ctr = 0.5 * (w - 1)
y_ctr = 0.5 * (h - 1)
else:
x_ctr, y_ctr = self.ctr
h_ratios = paddle.sqrt(self.ratios)
w_ratios = 1 / h_ratios
if self.scale_major:
ws = (w * w_ratios[:] * self.scales[:]).reshape([-1])
hs = (h * h_ratios[:] * self.scales[:]).reshape([-1])
else:
ws = (w * self.scales[:] * w_ratios[:]).reshape([-1])
hs = (h * self.scales[:] * h_ratios[:]).reshape([-1])
base_anchors = paddle.stack(
[
x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
],
axis=-1)
base_anchors = paddle.round(base_anchors)
return base_anchors
def _meshgrid(self, x, y, row_major=True):
yy, xx = paddle.meshgrid(x, y)
yy = yy.reshape([-1])
xx = xx.reshape([-1])
if row_major:
return xx, yy
else:
return yy, xx
def forward(self, featmap_size, stride=16):
# featmap_size*stride project it to original area
base_anchors = self.base_anchors
feat_h = featmap_size[0]
feat_w = featmap_size[1]
shift_x = paddle.arange(0, feat_w, 1, 'int32') * stride
shift_y = paddle.arange(0, feat_h, 1, 'int32') * stride
shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
shifts = paddle.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1)
all_anchors = base_anchors[:, :] + shifts[:, :]
all_anchors = all_anchors.reshape([feat_h * feat_w, 4])
return all_anchors
def valid_flags(self, featmap_size, valid_size):
feat_h, feat_w = featmap_size
valid_h, valid_w = valid_size
assert valid_h <= feat_h and valid_w <= feat_w
valid_x = paddle.zeros([feat_w], dtype='uint8')
valid_y = paddle.zeros([feat_h], dtype='uint8')
valid_x[:valid_w] = 1
valid_y[:valid_h] = 1
valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
valid = valid_xx & valid_yy
valid = valid[:, None].expand(
[valid.size(0), self.num_base_anchors]).reshape([-1])
return valid
class AlignConv(nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size=3, groups=1):
super(AlignConv, self).__init__()
self.kernel_size = kernel_size
self.align_conv = paddle.vision.ops.DeformConv2D(
in_channels,
out_channels,
kernel_size=self.kernel_size,
padding=(self.kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=None)
@paddle.no_grad()
def get_offset(self, anchors, featmap_size, stride):
"""
Args:
anchors: [M,5] xc,yc,w,h,angle
featmap_size: (feat_h, feat_w)
stride: 8
Returns:
"""
anchors = paddle.reshape(anchors, [-1, 5]) # (NA,5)
dtype = anchors.dtype
feat_h, feat_w = featmap_size
pad = (self.kernel_size - 1) // 2
idx = paddle.arange(-pad, pad + 1, dtype=dtype)
yy, xx = paddle.meshgrid(idx, idx)
xx = paddle.reshape(xx, [-1])
yy = paddle.reshape(yy, [-1])
# get sampling locations of default conv
xc = paddle.arange(0, feat_w, dtype=dtype)
yc = paddle.arange(0, feat_h, dtype=dtype)
yc, xc = paddle.meshgrid(yc, xc)
xc = paddle.reshape(xc, [-1, 1])
yc = paddle.reshape(yc, [-1, 1])
x_conv = xc + xx
y_conv = yc + yy
# get sampling locations of anchors
# x_ctr, y_ctr, w, h, a = np.unbind(anchors, dim=1)
x_ctr = anchors[:, 0]
y_ctr = anchors[:, 1]
w = anchors[:, 2]
h = anchors[:, 3]
a = anchors[:, 4]
x_ctr = paddle.reshape(x_ctr, [x_ctr.shape[0], 1])
y_ctr = paddle.reshape(y_ctr, [y_ctr.shape[0], 1])
w = paddle.reshape(w, [w.shape[0], 1])
h = paddle.reshape(h, [h.shape[0], 1])
a = paddle.reshape(a, [a.shape[0], 1])
x_ctr = x_ctr / stride
y_ctr = y_ctr / stride
w_s = w / stride
h_s = h / stride
cos, sin = paddle.cos(a), paddle.sin(a)
dw, dh = w_s / self.kernel_size, h_s / self.kernel_size
x, y = dw * xx, dh * yy
xr = cos * x - sin * y
yr = sin * x + cos * y
x_anchor, y_anchor = xr + x_ctr, yr + y_ctr
# get offset filed
offset_x = x_anchor - x_conv
offset_y = y_anchor - y_conv
# x, y in anchors is opposite in image coordinates,
# so we stack them with y, x other than x, y
offset = paddle.stack([offset_y, offset_x], axis=-1)
# NA,ks*ks*2
# [NA, ks, ks, 2] --> [NA, ks*ks*2]
offset = paddle.reshape(offset, [offset.shape[0], -1])
# [NA, ks*ks*2] --> [ks*ks*2, NA]
offset = paddle.transpose(offset, [1, 0])
# [NA, ks*ks*2] --> [1, ks*ks*2, H, W]
offset = paddle.reshape(offset, [1, -1, feat_h, feat_w])
return offset
def forward(self, x, refine_anchors, stride):
featmap_size = (x.shape[2], x.shape[3])
offset = self.get_offset(refine_anchors, featmap_size, stride)
x = F.relu(self.align_conv(x, offset))
return x
@register
class S2ANetHead(nn.Layer):
"""
S2Anet head
Args:
stacked_convs (int): number of stacked_convs
feat_in (int): input channels of feat
feat_out (int): output channels of feat
num_classes (int): num_classes
anchor_strides (list): stride of anchors
anchor_scales (list): scale of anchors
anchor_ratios (list): ratios of anchors
target_means (list): target_means
target_stds (list): target_stds
align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
align_conv_size (int): kernel size of align_conv
use_sigmoid_cls (bool): use sigmoid_cls or not
reg_loss_weight (list): loss weight for regression
"""
__shared__ = ['num_classes']
__inject__ = ['anchor_assign']
def __init__(self,
stacked_convs=2,
feat_in=256,
feat_out=256,
num_classes=15,
anchor_strides=[8, 16, 32, 64, 128],
anchor_scales=[4],
anchor_ratios=[1.0],
target_means=0.0,
target_stds=1.0,
align_conv_type='AlignConv',
align_conv_size=3,
use_sigmoid_cls=True,
anchor_assign=RBoxAssigner().__dict__,
reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.0],
cls_loss_weight=[1.0, 1.0]):
super(S2ANetHead, self).__init__()
self.stacked_convs = stacked_convs
self.feat_in = feat_in
self.feat_out = feat_out
self.anchor_list = None
self.anchor_scales = anchor_scales
self.anchor_ratios = anchor_ratios
self.anchor_strides = anchor_strides
self.anchor_base_sizes = list(anchor_strides)
self.target_means = target_means
self.target_stds = target_stds
assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
self.align_conv_type = align_conv_type
self.align_conv_size = align_conv_size
self.use_sigmoid_cls = use_sigmoid_cls
self.cls_out_channels = num_classes if self.use_sigmoid_cls else 1
self.sampling = False
self.anchor_assign = anchor_assign
self.reg_loss_weight = reg_loss_weight
self.cls_loss_weight = cls_loss_weight
self.s2anet_head_out = None
# anchor
self.anchor_generators = []
for anchor_base in self.anchor_base_sizes:
self.anchor_generators.append(
S2ANetAnchorGenerator(anchor_base, anchor_scales,
anchor_ratios))
self.anchor_generators = paddle.nn.LayerList(self.anchor_generators)
self.add_sublayer('s2anet_anchor_gen', self.anchor_generators)
self.fam_cls_convs = nn.Sequential()
self.fam_reg_convs = nn.Sequential()
for i in range(self.stacked_convs):
chan_in = self.feat_in if i == 0 else self.feat_out
self.fam_cls_convs.add_sublayer(
'fam_cls_conv_{}'.format(i),
nn.Conv2D(
in_channels=chan_in,
out_channels=self.feat_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i),
nn.ReLU())
self.fam_reg_convs.add_sublayer(
'fam_reg_conv_{}'.format(i),
nn.Conv2D(
in_channels=chan_in,
out_channels=self.feat_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i),
nn.ReLU())
self.fam_reg = nn.Conv2D(
self.feat_out,
5,
1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
prior_prob = 0.01
bias_init = float(-np.log((1 - prior_prob) / prior_prob))
self.fam_cls = nn.Conv2D(
self.feat_out,
self.cls_out_channels,
1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(bias_init)))
if self.align_conv_type == "AlignConv":
self.align_conv = AlignConv(self.feat_out, self.feat_out,
self.align_conv_size)
elif self.align_conv_type == "Conv":
self.align_conv = nn.Conv2D(
self.feat_out,
self.feat_out,
self.align_conv_size,
padding=(self.align_conv_size - 1) // 2,
bias_attr=ParamAttr(initializer=Constant(0)))
elif self.align_conv_type == "DCN":
self.align_conv_offset = nn.Conv2D(
self.feat_out,
2 * self.align_conv_size**2,
1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
self.align_conv = paddle.vision.ops.DeformConv2D(
self.feat_out,
self.feat_out,
self.align_conv_size,
padding=(self.align_conv_size - 1) // 2,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=False)
self.or_conv = nn.Conv2D(
self.feat_out,
self.feat_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
# ODM
self.odm_cls_convs = nn.Sequential()
self.odm_reg_convs = nn.Sequential()
for i in range(self.stacked_convs):
ch_in = self.feat_out
# ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out
self.odm_cls_convs.add_sublayer(
'odm_cls_conv_{}'.format(i),
nn.Conv2D(
in_channels=ch_in,
out_channels=self.feat_out,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i),
nn.ReLU())
self.odm_reg_convs.add_sublayer(
'odm_reg_conv_{}'.format(i),
nn.Conv2D(
in_channels=self.feat_out,
out_channels=self.feat_out,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i),
nn.ReLU())
self.odm_cls = nn.Conv2D(
self.feat_out,
self.cls_out_channels,
3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(bias_init)))
self.odm_reg = nn.Conv2D(
self.feat_out,
5,
3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
self.featmap_size_list = []
self.init_anchors_list = []
self.rbox_anchors_list = []
self.refine_anchor_list = []
def forward(self, feats):
fam_reg_branch_list = []
fam_cls_branch_list = []
odm_reg_branch_list = []
odm_cls_branch_list = []
fam_reg1_branch_list = []
self.featmap_size_list = []
self.init_anchors_list = []
self.rbox_anchors_list = []
self.refine_anchor_list = []
for i, feat in enumerate(feats):
# prepare anchor
featmap_size = paddle.shape(feat)[-2:]
self.featmap_size_list.append(featmap_size)
init_anchors = self.anchor_generators[i](featmap_size,
self.anchor_strides[i])
init_anchors = paddle.reshape(
init_anchors, [featmap_size[0] * featmap_size[1], 4])
self.init_anchors_list.append(init_anchors)
rbox_anchors = self.rect2rbox(init_anchors)
self.rbox_anchors_list.append(rbox_anchors)
fam_cls_feat = self.fam_cls_convs(feat)
fam_cls = self.fam_cls(fam_cls_feat)
# [N, CLS, H, W] --> [N, H, W, CLS]
fam_cls = fam_cls.transpose([0, 2, 3, 1])
fam_cls_reshape = paddle.reshape(
fam_cls, [fam_cls.shape[0], -1, self.cls_out_channels])
fam_cls_branch_list.append(fam_cls_reshape)
fam_reg_feat = self.fam_reg_convs(feat)
fam_reg = self.fam_reg(fam_reg_feat)
# [N, 5, H, W] --> [N, H, W, 5]
fam_reg = fam_reg.transpose([0, 2, 3, 1])
fam_reg_reshape = paddle.reshape(fam_reg, [fam_reg.shape[0], -1, 5])
fam_reg_branch_list.append(fam_reg_reshape)
# refine anchors
fam_reg1 = fam_reg.clone()
fam_reg1.stop_gradient = True
rbox_anchors.stop_gradient = True
fam_reg1_branch_list.append(fam_reg1)
refine_anchor = self.bbox_decode(
fam_reg1, rbox_anchors, self.target_stds, self.target_means)
self.refine_anchor_list.append(refine_anchor)
if self.align_conv_type == 'AlignConv':
align_feat = self.align_conv(feat,
refine_anchor.clone(),
self.anchor_strides[i])
elif self.align_conv_type == 'DCN':
align_offset = self.align_conv_offset(feat)
align_feat = self.align_conv(feat, align_offset)
elif self.align_conv_type == 'Conv':
align_feat = self.align_conv(feat)
or_feat = self.or_conv(align_feat)
odm_reg_feat = or_feat
odm_cls_feat = or_feat
odm_reg_feat = self.odm_reg_convs(odm_reg_feat)
odm_cls_feat = self.odm_cls_convs(odm_cls_feat)
odm_cls_score = self.odm_cls(odm_cls_feat)
# [N, CLS, H, W] --> [N, H, W, CLS]
odm_cls_score = odm_cls_score.transpose([0, 2, 3, 1])
odm_cls_score_reshape = paddle.reshape(
odm_cls_score,
[odm_cls_score.shape[0], -1, self.cls_out_channels])
odm_cls_branch_list.append(odm_cls_score_reshape)
odm_bbox_pred = self.odm_reg(odm_reg_feat)
# [N, 5, H, W] --> [N, H, W, 5]
odm_bbox_pred = odm_bbox_pred.transpose([0, 2, 3, 1])
odm_bbox_pred_reshape = paddle.reshape(
odm_bbox_pred, [odm_bbox_pred.shape[0], -1, 5])
odm_reg_branch_list.append(odm_bbox_pred_reshape)
self.s2anet_head_out = (fam_cls_branch_list, fam_reg_branch_list,
odm_cls_branch_list, odm_reg_branch_list)
return self.s2anet_head_out
def rect2rbox(self, bboxes):
"""
:param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
:return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
"""
num_boxes = paddle.shape(bboxes)[0]
x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
edges1 = paddle.abs(bboxes[:, 2] - bboxes[:, 0])
edges2 = paddle.abs(bboxes[:, 3] - bboxes[:, 1])
rbox_w = paddle.maximum(edges1, edges2)
rbox_h = paddle.minimum(edges1, edges2)
# set angle
inds = edges1 < edges2
inds = paddle.cast(inds, 'int32')
inds1 = inds * paddle.arange(0, num_boxes)
rboxes_angle = inds1 * np.pi / 2.0
rboxes = paddle.stack(
(x_ctr, y_ctr, rbox_w, rbox_h, rboxes_angle), axis=1)
return rboxes
# deltas to rbox
def delta2rbox(self, rrois, deltas, means, stds, wh_ratio_clip=1e-6):
"""
:param rrois: (cx, cy, w, h, theta)
:param deltas: (dx, dy, dw, dh, dtheta)
:param means: means of anchor
:param stds: stds of anchor
:param wh_ratio_clip: clip threshold of wh_ratio
:return:
"""
deltas = paddle.reshape(deltas, [-1, 5])
rrois = paddle.reshape(rrois, [-1, 5])
pd_means = paddle.ones(shape=[5]) * means
pd_stds = paddle.ones(shape=[5]) * stds
denorm_deltas = deltas * pd_stds + pd_means
dx = denorm_deltas[:, 0]
dy = denorm_deltas[:, 1]
dw = denorm_deltas[:, 2]
dh = denorm_deltas[:, 3]
dangle = denorm_deltas[:, 4]
max_ratio = np.abs(np.log(wh_ratio_clip))
dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)
rroi_x = rrois[:, 0]
rroi_y = rrois[:, 1]
rroi_w = rrois[:, 2]
rroi_h = rrois[:, 3]
rroi_angle = rrois[:, 4]
gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
rroi_angle) + rroi_x
gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
rroi_angle) + rroi_y
gw = rroi_w * dw.exp()
gh = rroi_h * dh.exp()
ga = np.pi * dangle + rroi_angle
ga = (ga + np.pi / 4) % np.pi - np.pi / 4
bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
return bboxes
def bbox_decode(self, bbox_preds, anchors, stds, means, wh_ratio_clip=1e-6):
"""decode bbox from deltas
Args:
bbox_preds: bbox_preds, shape=[N,H,W,5]
anchors: anchors, shape=[H,W,5]
return:
bboxes: return decoded bboxes, shape=[N*H*W,5]
"""
num_imgs, H, W, _ = bbox_preds.shape
bbox_delta = paddle.reshape(bbox_preds, [-1, 5])
bboxes = self.delta2rbox(anchors, bbox_delta, means, stds,
wh_ratio_clip)
return bboxes
def get_prediction(self, nms_pre):
refine_anchors = self.refine_anchor_list
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = self.s2anet_head_out
pred_scores, pred_bboxes = self.get_bboxes(
odm_cls_branch_list,
odm_reg_branch_list,
refine_anchors,
nms_pre,
cls_out_channels=self.cls_out_channels,
use_sigmoid_cls=self.use_sigmoid_cls)
return pred_scores, pred_bboxes
def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
"""
Args:
pred: pred score
label: label
delta: delta
Returns: loss
"""
assert pred.shape == label.shape and label.numel() > 0
assert delta > 0
diff = paddle.abs(pred - label)
loss = paddle.where(diff < delta, 0.5 * diff * diff / delta,
diff - 0.5 * delta)
return loss
def get_fam_loss(self, fam_target, s2anet_head_out):
(feat_labels, feat_label_weights, feat_bbox_targets, feat_bbox_weights,
pos_inds, neg_inds) = fam_target
fam_cls_score, fam_bbox_pred = s2anet_head_out
# step1: sample count
num_total_samples = len(pos_inds) + len(
neg_inds) if self.sampling else len(pos_inds)
num_total_samples = max(1, num_total_samples)
# step2: calc cls loss
feat_labels = feat_labels.reshape(-1)
feat_label_weights = feat_label_weights.reshape(-1)
fam_cls_score = paddle.squeeze(fam_cls_score, axis=0)
fam_cls_score1 = fam_cls_score
# gt_classes 0~14(data), feat_labels 0~14, sigmoid_focal_loss need class>=1
feat_labels = feat_labels + 1
feat_labels = paddle.to_tensor(feat_labels)
feat_labels_one_hot = F.one_hot(feat_labels, self.cls_out_channels + 1)
feat_labels_one_hot = feat_labels_one_hot[:, 1:]
feat_labels_one_hot.stop_gradient = True
num_total_samples = paddle.to_tensor(
num_total_samples, dtype='float32', stop_gradient=True)
fam_cls = F.sigmoid_focal_loss(
fam_cls_score1,
feat_labels_one_hot,
normalizer=num_total_samples,
reduction='none')
feat_label_weights = feat_label_weights.reshape(
feat_label_weights.shape[0], 1)
feat_label_weights = np.repeat(
feat_label_weights, self.cls_out_channels, axis=1)
feat_label_weights = paddle.to_tensor(
feat_label_weights, stop_gradient=True)
fam_cls = fam_cls * feat_label_weights
fam_cls_total = paddle.sum(fam_cls)
# step3: regression loss
feat_bbox_targets = paddle.to_tensor(
feat_bbox_targets, dtype='float32', stop_gradient=True)
feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
fam_bbox = paddle.multiply(fam_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True)
fam_bbox = fam_bbox * feat_bbox_weights
fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples
fam_cls_loss_weight = paddle.to_tensor(
self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
fam_cls_loss = fam_cls_total * fam_cls_loss_weight
fam_reg_loss = paddle.add_n(fam_bbox_total)
return fam_cls_loss, fam_reg_loss
def get_odm_loss(self, odm_target, s2anet_head_out):
(feat_labels, feat_label_weights, feat_bbox_targets, feat_bbox_weights,
pos_inds, neg_inds) = odm_target
odm_cls_score, odm_bbox_pred = s2anet_head_out
# step1: sample count
num_total_samples = len(pos_inds) + len(
neg_inds) if self.sampling else len(pos_inds)
num_total_samples = max(1, num_total_samples)
# step2: calc cls loss
feat_labels = feat_labels.reshape(-1)
feat_label_weights = feat_label_weights.reshape(-1)
odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
odm_cls_score1 = odm_cls_score
# gt_classes 0~14(data), feat_labels 0~14, sigmoid_focal_loss need class>=1
# for debug 0426
feat_labels = feat_labels + 1
feat_labels = paddle.to_tensor(feat_labels)
feat_labels_one_hot = F.one_hot(feat_labels, self.cls_out_channels + 1)
feat_labels_one_hot = feat_labels_one_hot[:, 1:]
feat_labels_one_hot.stop_gradient = True
num_total_samples = paddle.to_tensor(
num_total_samples, dtype='float32', stop_gradient=True)
odm_cls = F.sigmoid_focal_loss(
odm_cls_score1,
feat_labels_one_hot,
normalizer=num_total_samples,
reduction='none')
feat_label_weights = feat_label_weights.reshape(
feat_label_weights.shape[0], 1)
feat_label_weights = np.repeat(
feat_label_weights, self.cls_out_channels, axis=1)
feat_label_weights = paddle.to_tensor(
feat_label_weights, stop_gradient=True)
odm_cls = odm_cls * feat_label_weights
odm_cls_total = paddle.sum(odm_cls)
# step3: regression loss
feat_bbox_targets = paddle.to_tensor(
feat_bbox_targets, dtype='float32', stop_gradient=True)
feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
odm_bbox = paddle.multiply(odm_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True)
odm_bbox = odm_bbox * feat_bbox_weights
odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
odm_cls_loss_weight = paddle.to_tensor(
self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
odm_cls_loss = odm_cls_total * odm_cls_loss_weight
odm_reg_loss = paddle.add_n(odm_bbox_total)
return odm_cls_loss, odm_reg_loss
def get_loss(self, inputs):
# inputs: im_id image im_shape scale_factor gt_bbox gt_class is_crowd
# compute loss
fam_cls_loss_lst = []
fam_reg_loss_lst = []
odm_cls_loss_lst = []
odm_reg_loss_lst = []
im_shape = inputs['im_shape']
for im_id in range(im_shape.shape[0]):
np_im_shape = inputs['im_shape'][im_id].numpy()
np_scale_factor = inputs['scale_factor'][im_id].numpy()
# data_format: (xc, yc, w, h, theta)
gt_bboxes = inputs['gt_rbox'][im_id].numpy()
gt_labels = inputs['gt_class'][im_id].numpy()
is_crowd = inputs['is_crowd'][im_id].numpy()
gt_labels = gt_labels + 1
# FAM
for idx, rbox_anchors in enumerate(self.rbox_anchors_list):
rbox_anchors = rbox_anchors.numpy()
rbox_anchors = rbox_anchors.reshape(-1, 5)
im_fam_target = self.anchor_assign(rbox_anchors, gt_bboxes,
gt_labels, is_crowd)
# feat
fam_cls_feat = self.s2anet_head_out[0][idx][im_id]
fam_reg_feat = self.s2anet_head_out[1][idx][im_id]
im_s2anet_fam_feat = (fam_cls_feat, fam_reg_feat)
im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss(
im_fam_target, im_s2anet_fam_feat)
fam_cls_loss_lst.append(im_fam_cls_loss)
fam_reg_loss_lst.append(im_fam_reg_loss)
# ODM
for idx, refine_anchors in enumerate(self.refine_anchor_list):
refine_anchors = refine_anchors.numpy()
refine_anchors = refine_anchors.reshape(-1, 5)
im_odm_target = self.anchor_assign(refine_anchors, gt_bboxes,
gt_labels, is_crowd)
odm_cls_feat = self.s2anet_head_out[2][idx][im_id]
odm_reg_feat = self.s2anet_head_out[3][idx][im_id]
im_s2anet_odm_feat = (odm_cls_feat, odm_reg_feat)
im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
im_odm_target, im_s2anet_odm_feat)
odm_cls_loss_lst.append(im_odm_cls_loss)
odm_reg_loss_lst.append(im_odm_reg_loss)
fam_cls_loss = paddle.add_n(fam_cls_loss_lst)
fam_reg_loss = paddle.add_n(fam_reg_loss_lst)
odm_cls_loss = paddle.add_n(odm_cls_loss_lst)
odm_reg_loss = paddle.add_n(odm_reg_loss_lst)
return {
'fam_cls_loss': fam_cls_loss,
'fam_reg_loss': fam_reg_loss,
'odm_cls_loss': odm_cls_loss,
'odm_reg_loss': odm_reg_loss
}
def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre,
cls_out_channels, use_sigmoid_cls):
assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)
mlvl_bboxes = []
mlvl_scores = []
idx = 0
for cls_score, bbox_pred, anchors in zip(cls_score_list, bbox_pred_list,
mlvl_anchors):
cls_score = paddle.reshape(cls_score, [-1, cls_out_channels])
if use_sigmoid_cls:
scores = F.sigmoid(cls_score)
else:
scores = F.softmax(cls_score, axis=-1)
# bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 5)
bbox_pred = paddle.transpose(bbox_pred, [1, 2, 0])
bbox_pred = paddle.reshape(bbox_pred, [-1, 5])
anchors = paddle.reshape(anchors, [-1, 5])
if nms_pre > 0 and scores.shape[0] > nms_pre:
# Get maximum scores for foreground classes.
if use_sigmoid_cls:
max_scores = paddle.max(scores, axis=1)
else:
max_scores = paddle.max(scores[:, 1:], axis=1)
topk_val, topk_inds = paddle.topk(max_scores, nms_pre)
anchors = paddle.gather(anchors, topk_inds)
bbox_pred = paddle.gather(bbox_pred, topk_inds)
scores = paddle.gather(scores, topk_inds)
bboxes = self.delta2rbox(anchors, bbox_pred, self.target_means,
self.target_stds)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
idx += 1
mlvl_bboxes = paddle.concat(mlvl_bboxes, axis=0)
mlvl_scores = paddle.concat(mlvl_scores)
if use_sigmoid_cls:
# Add a dummy background class to the front when using sigmoid
padding = paddle.zeros(
[mlvl_scores.shape[0], 1], dtype=mlvl_scores.dtype)
mlvl_scores = paddle.concat([padding, mlvl_scores], axis=1)
return mlvl_scores, mlvl_bboxes

View File

@ -0,0 +1,530 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from ppdet.modeling.layers import ConvNormLayer
from ppdet.core.workspace import register
from six.moves import zip
import numpy as np
__all__ = ['SOLOv2Head']
@register
class SOLOv2MaskHead(nn.Layer):
"""
MaskHead of SOLOv2
Args:
in_channels (int): The channel number of input Tensor.
out_channels (int): The channel number of output Tensor.
start_level (int): The position where the input starts.
end_level (int): The position where the input ends.
use_dcn_in_tower (bool): Whether to use dcn in tower or not.
"""
def __init__(self,
in_channels=256,
mid_channels=128,
out_channels=256,
start_level=0,
end_level=3,
use_dcn_in_tower=False):
super(SOLOv2MaskHead, self).__init__()
assert start_level >= 0 and end_level >= start_level
self.in_channels = in_channels
self.out_channels = out_channels
self.mid_channels = mid_channels
self.use_dcn_in_tower = use_dcn_in_tower
self.range_level = end_level - start_level + 1
# TODO: add DeformConvNorm
conv_type = [ConvNormLayer]
self.conv_func = conv_type[0]
if self.use_dcn_in_tower:
self.conv_func = conv_type[1]
self.convs_all_levels = []
for i in range(start_level, end_level + 1):
conv_feat_name = 'mask_feat_head.convs_all_levels.{}'.format(i)
conv_pre_feat = nn.Sequential()
if i == start_level:
conv_pre_feat.add_sublayer(
conv_feat_name + '.conv' + str(i),
self.conv_func(
ch_in=self.in_channels,
ch_out=self.mid_channels,
filter_size=3,
stride=1,
norm_type='gn'))
self.add_sublayer('conv_pre_feat' + str(i), conv_pre_feat)
self.convs_all_levels.append(conv_pre_feat)
else:
for j in range(i):
ch_in = 0
if j == 0:
ch_in = self.in_channels + 2 if i == end_level else self.in_channels
else:
ch_in = self.mid_channels
conv_pre_feat.add_sublayer(
conv_feat_name + '.conv' + str(j),
self.conv_func(
ch_in=ch_in,
ch_out=self.mid_channels,
filter_size=3,
stride=1,
norm_type='gn'))
conv_pre_feat.add_sublayer(
conv_feat_name + '.conv' + str(j) + 'act', nn.ReLU())
conv_pre_feat.add_sublayer(
'upsample' + str(i) + str(j),
nn.Upsample(
scale_factor=2, mode='bilinear'))
self.add_sublayer('conv_pre_feat' + str(i), conv_pre_feat)
self.convs_all_levels.append(conv_pre_feat)
conv_pred_name = 'mask_feat_head.conv_pred.0'
self.conv_pred = self.add_sublayer(
conv_pred_name,
self.conv_func(
ch_in=self.mid_channels,
ch_out=self.out_channels,
filter_size=1,
stride=1,
norm_type='gn'))
def forward(self, inputs):
"""
Get SOLOv2MaskHead output.
Args:
inputs(list[Tensor]): feature map from each necks with shape of [N, C, H, W]
Returns:
ins_pred(Tensor): Output of SOLOv2MaskHead head
"""
feat_all_level = F.relu(self.convs_all_levels[0](inputs[0]))
for i in range(1, self.range_level):
input_p = inputs[i]
if i == (self.range_level - 1):
input_feat = input_p
x_range = paddle.linspace(
-1, 1, paddle.shape(input_feat)[-1], dtype='float32')
y_range = paddle.linspace(
-1, 1, paddle.shape(input_feat)[-2], dtype='float32')
y, x = paddle.meshgrid([y_range, x_range])
x = paddle.unsqueeze(x, [0, 1])
y = paddle.unsqueeze(y, [0, 1])
y = paddle.expand(
y, shape=[paddle.shape(input_feat)[0], 1, -1, -1])
x = paddle.expand(
x, shape=[paddle.shape(input_feat)[0], 1, -1, -1])
coord_feat = paddle.concat([x, y], axis=1)
input_p = paddle.concat([input_p, coord_feat], axis=1)
feat_all_level = paddle.add(feat_all_level,
self.convs_all_levels[i](input_p))
ins_pred = F.relu(self.conv_pred(feat_all_level))
return ins_pred
@register
class SOLOv2Head(nn.Layer):
"""
Head block for SOLOv2 network
Args:
num_classes (int): Number of output classes.
in_channels (int): Number of input channels.
seg_feat_channels (int): Num_filters of kernel & categroy branch convolution operation.
stacked_convs (int): Times of convolution operation.
num_grids (list[int]): List of feature map grids size.
kernel_out_channels (int): Number of output channels in kernel branch.
dcn_v2_stages (list): Which stage use dcn v2 in tower. It is between [0, stacked_convs).
segm_strides (list[int]): List of segmentation area stride.
solov2_loss (object): SOLOv2Loss instance.
score_threshold (float): Threshold of categroy score.
mask_nms (object): MaskMatrixNMS instance.
"""
__inject__ = ['solov2_loss', 'mask_nms']
__shared__ = ['num_classes']
def __init__(self,
num_classes=80,
in_channels=256,
seg_feat_channels=256,
stacked_convs=4,
num_grids=[40, 36, 24, 16, 12],
kernel_out_channels=256,
dcn_v2_stages=[],
segm_strides=[8, 8, 16, 32, 32],
solov2_loss=None,
score_threshold=0.1,
mask_threshold=0.5,
mask_nms=None):
super(SOLOv2Head, self).__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.seg_num_grids = num_grids
self.cate_out_channels = self.num_classes
self.seg_feat_channels = seg_feat_channels
self.stacked_convs = stacked_convs
self.kernel_out_channels = kernel_out_channels
self.dcn_v2_stages = dcn_v2_stages
self.segm_strides = segm_strides
self.solov2_loss = solov2_loss
self.mask_nms = mask_nms
self.score_threshold = score_threshold
self.mask_threshold = mask_threshold
conv_type = [ConvNormLayer]
self.conv_func = conv_type[0]
self.kernel_pred_convs = []
self.cate_pred_convs = []
for i in range(self.stacked_convs):
if i in self.dcn_v2_stages:
self.conv_func = conv_type[1]
ch_in = self.in_channels + 2 if i == 0 else self.seg_feat_channels
kernel_conv = self.add_sublayer(
'bbox_head.kernel_convs.' + str(i),
self.conv_func(
ch_in=ch_in,
ch_out=self.seg_feat_channels,
filter_size=3,
stride=1,
norm_type='gn'))
self.kernel_pred_convs.append(kernel_conv)
ch_in = self.in_channels if i == 0 else self.seg_feat_channels
cate_conv = self.add_sublayer(
'bbox_head.cate_convs.' + str(i),
self.conv_func(
ch_in=ch_in,
ch_out=self.seg_feat_channels,
filter_size=3,
stride=1,
norm_type='gn'))
self.cate_pred_convs.append(cate_conv)
self.solo_kernel = self.add_sublayer(
'bbox_head.solo_kernel',
nn.Conv2D(
self.seg_feat_channels,
self.kernel_out_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=True))
self.solo_cate = self.add_sublayer(
'bbox_head.solo_cate',
nn.Conv2D(
self.seg_feat_channels,
self.cate_out_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=ParamAttr(initializer=Constant(
value=float(-np.log((1 - 0.01) / 0.01))))))
def _points_nms(self, heat, kernel_size=2):
hmax = F.max_pool2d(heat, kernel_size=kernel_size, stride=1, padding=1)
keep = paddle.cast((hmax[:, :, :-1, :-1] == heat), 'float32')
return heat * keep
def _split_feats(self, feats):
return (F.interpolate(
feats[0],
scale_factor=0.5,
align_corners=False,
align_mode=0,
mode='bilinear'), feats[1], feats[2], feats[3], F.interpolate(
feats[4],
size=paddle.shape(feats[3])[-2:],
mode='bilinear',
align_corners=False,
align_mode=0))
def forward(self, input):
"""
Get SOLOv2 head output
Args:
input (list): List of Tensors, output of backbone or neck stages
Returns:
cate_pred_list (list): Tensors of each category branch layer
kernel_pred_list (list): Tensors of each kernel branch layer
"""
feats = self._split_feats(input)
cate_pred_list = []
kernel_pred_list = []
for idx in range(len(self.seg_num_grids)):
cate_pred, kernel_pred = self._get_output_single(feats[idx], idx)
cate_pred_list.append(cate_pred)
kernel_pred_list.append(kernel_pred)
return cate_pred_list, kernel_pred_list
def _get_output_single(self, input, idx):
ins_kernel_feat = input
# CoordConv
x_range = paddle.linspace(
-1, 1, paddle.shape(ins_kernel_feat)[-1], dtype='float32')
y_range = paddle.linspace(
-1, 1, paddle.shape(ins_kernel_feat)[-2], dtype='float32')
y, x = paddle.meshgrid([y_range, x_range])
x = paddle.unsqueeze(x, [0, 1])
y = paddle.unsqueeze(y, [0, 1])
y = paddle.expand(
y, shape=[paddle.shape(ins_kernel_feat)[0], 1, -1, -1])
x = paddle.expand(
x, shape=[paddle.shape(ins_kernel_feat)[0], 1, -1, -1])
coord_feat = paddle.concat([x, y], axis=1)
ins_kernel_feat = paddle.concat([ins_kernel_feat, coord_feat], axis=1)
# kernel branch
kernel_feat = ins_kernel_feat
seg_num_grid = self.seg_num_grids[idx]
kernel_feat = F.interpolate(
kernel_feat,
size=[seg_num_grid, seg_num_grid],
mode='bilinear',
align_corners=False,
align_mode=0)
cate_feat = kernel_feat[:, :-2, :, :]
for kernel_layer in self.kernel_pred_convs:
kernel_feat = F.relu(kernel_layer(kernel_feat))
kernel_pred = self.solo_kernel(kernel_feat)
# cate branch
for cate_layer in self.cate_pred_convs:
cate_feat = F.relu(cate_layer(cate_feat))
cate_pred = self.solo_cate(cate_feat)
if not self.training:
cate_pred = self._points_nms(F.sigmoid(cate_pred), kernel_size=2)
cate_pred = paddle.transpose(cate_pred, [0, 2, 3, 1])
return cate_pred, kernel_pred
def get_loss(self, cate_preds, kernel_preds, ins_pred, ins_labels,
cate_labels, grid_order_list, fg_num):
"""
Get loss of network of SOLOv2.
Args:
cate_preds (list): Tensor list of categroy branch output.
kernel_preds (list): Tensor list of kernel branch output.
ins_pred (list): Tensor list of instance branch output.
ins_labels (list): List of instance labels pre batch.
cate_labels (list): List of categroy labels pre batch.
grid_order_list (list): List of index in pre grid.
fg_num (int): Number of positive samples in a mini-batch.
Returns:
loss_ins (Tensor): The instance loss Tensor of SOLOv2 network.
loss_cate (Tensor): The category loss Tensor of SOLOv2 network.
"""
batch_size = paddle.shape(grid_order_list[0])[0]
ins_pred_list = []
for kernel_preds_level, grid_orders_level in zip(kernel_preds,
grid_order_list):
if grid_orders_level.shape[1] == 0:
ins_pred_list.append(None)
continue
grid_orders_level = paddle.reshape(grid_orders_level, [-1])
reshape_pred = paddle.reshape(
kernel_preds_level,
shape=(paddle.shape(kernel_preds_level)[0],
paddle.shape(kernel_preds_level)[1], -1))
reshape_pred = paddle.transpose(reshape_pred, [0, 2, 1])
reshape_pred = paddle.reshape(
reshape_pred, shape=(-1, paddle.shape(reshape_pred)[2]))
gathered_pred = paddle.gather(reshape_pred, index=grid_orders_level)
gathered_pred = paddle.reshape(
gathered_pred,
shape=[batch_size, -1, paddle.shape(gathered_pred)[1]])
cur_ins_pred = ins_pred
cur_ins_pred = paddle.reshape(
cur_ins_pred,
shape=(paddle.shape(cur_ins_pred)[0],
paddle.shape(cur_ins_pred)[1], -1))
ins_pred_conv = paddle.matmul(gathered_pred, cur_ins_pred)
cur_ins_pred = paddle.reshape(
ins_pred_conv,
shape=(-1, paddle.shape(ins_pred)[-2],
paddle.shape(ins_pred)[-1]))
ins_pred_list.append(cur_ins_pred)
num_ins = paddle.sum(fg_num)
cate_preds = [
paddle.reshape(
paddle.transpose(cate_pred, [0, 2, 3, 1]),
shape=(-1, self.cate_out_channels)) for cate_pred in cate_preds
]
flatten_cate_preds = paddle.concat(cate_preds)
new_cate_labels = []
for cate_label in cate_labels:
new_cate_labels.append(paddle.reshape(cate_label, shape=[-1]))
cate_labels = paddle.concat(new_cate_labels)
loss_ins, loss_cate = self.solov2_loss(
ins_pred_list, ins_labels, flatten_cate_preds, cate_labels, num_ins)
return {'loss_ins': loss_ins, 'loss_cate': loss_cate}
def get_prediction(self, cate_preds, kernel_preds, seg_pred, im_shape,
scale_factor):
"""
Get prediction result of SOLOv2 network
Args:
cate_preds (list): List of Variables, output of categroy branch.
kernel_preds (list): List of Variables, output of kernel branch.
seg_pred (list): List of Variables, output of mask head stages.
im_shape (Variables): [h, w] for input images.
scale_factor (Variables): [scale, scale] for input images.
Returns:
seg_masks (Tensor): The prediction segmentation.
cate_labels (Tensor): The prediction categroy label of each segmentation.
seg_masks (Tensor): The prediction score of each segmentation.
"""
num_levels = len(cate_preds)
featmap_size = paddle.shape(seg_pred)[-2:]
seg_masks_list = []
cate_labels_list = []
cate_scores_list = []
cate_preds = [cate_pred * 1.0 for cate_pred in cate_preds]
kernel_preds = [kernel_pred * 1.0 for kernel_pred in kernel_preds]
# Currently only supports batch size == 1
for idx in range(1):
cate_pred_list = [
paddle.reshape(
cate_preds[i][idx], shape=(-1, self.cate_out_channels))
for i in range(num_levels)
]
seg_pred_list = seg_pred
kernel_pred_list = [
paddle.reshape(
paddle.transpose(kernel_preds[i][idx], [1, 2, 0]),
shape=(-1, self.kernel_out_channels))
for i in range(num_levels)
]
cate_pred_list = paddle.concat(cate_pred_list, axis=0)
kernel_pred_list = paddle.concat(kernel_pred_list, axis=0)
seg_masks, cate_labels, cate_scores = self.get_seg_single(
cate_pred_list, seg_pred_list, kernel_pred_list, featmap_size,
im_shape[idx], scale_factor[idx][0])
bbox_num = paddle.shape(cate_labels)[0]
return seg_masks, cate_labels, cate_scores, bbox_num
def get_seg_single(self, cate_preds, seg_preds, kernel_preds, featmap_size,
im_shape, scale_factor):
h = paddle.cast(im_shape[0], 'int32')[0]
w = paddle.cast(im_shape[1], 'int32')[0]
upsampled_size_out = [featmap_size[0] * 4, featmap_size[1] * 4]
y = paddle.zeros(shape=paddle.shape(cate_preds), dtype='float32')
inds = paddle.where(cate_preds > self.score_threshold, cate_preds, y)
inds = paddle.nonzero(inds)
cate_preds = paddle.reshape(cate_preds, shape=[-1])
# Prevent empty and increase fake data
ind_a = paddle.cast(paddle.shape(kernel_preds)[0], 'int64')
ind_b = paddle.zeros(shape=[1], dtype='int64')
inds_end = paddle.unsqueeze(paddle.concat([ind_a, ind_b]), 0)
inds = paddle.concat([inds, inds_end])
kernel_preds_end = paddle.ones(
shape=[1, self.kernel_out_channels], dtype='float32')
kernel_preds = paddle.concat([kernel_preds, kernel_preds_end])
cate_preds = paddle.concat(
[cate_preds, paddle.zeros(
shape=[1], dtype='float32')])
# cate_labels & kernel_preds
cate_labels = inds[:, 1]
kernel_preds = paddle.gather(kernel_preds, index=inds[:, 0])
cate_score_idx = paddle.add(inds[:, 0] * 80, cate_labels)
cate_scores = paddle.gather(cate_preds, index=cate_score_idx)
size_trans = np.power(self.seg_num_grids, 2)
strides = []
for _ind in range(len(self.segm_strides)):
strides.append(
paddle.full(
shape=[int(size_trans[_ind])],
fill_value=self.segm_strides[_ind],
dtype="int32"))
strides = paddle.concat(strides)
strides = paddle.gather(strides, index=inds[:, 0])
# mask encoding.
kernel_preds = paddle.unsqueeze(kernel_preds, [2, 3])
seg_preds = F.conv2d(seg_preds, kernel_preds)
seg_preds = F.sigmoid(paddle.squeeze(seg_preds, [0]))
seg_masks = seg_preds > self.mask_threshold
seg_masks = paddle.cast(seg_masks, 'float32')
sum_masks = paddle.sum(seg_masks, axis=[1, 2])
y = paddle.zeros(shape=paddle.shape(sum_masks), dtype='float32')
keep = paddle.where(sum_masks > strides, sum_masks, y)
keep = paddle.nonzero(keep)
keep = paddle.squeeze(keep, axis=[1])
# Prevent empty and increase fake data
keep_other = paddle.concat(
[keep, paddle.cast(paddle.shape(sum_masks)[0] - 1, 'int64')])
keep_scores = paddle.concat(
[keep, paddle.cast(paddle.shape(sum_masks)[0], 'int64')])
cate_scores_end = paddle.zeros(shape=[1], dtype='float32')
cate_scores = paddle.concat([cate_scores, cate_scores_end])
seg_masks = paddle.gather(seg_masks, index=keep_other)
seg_preds = paddle.gather(seg_preds, index=keep_other)
sum_masks = paddle.gather(sum_masks, index=keep_other)
cate_labels = paddle.gather(cate_labels, index=keep_other)
cate_scores = paddle.gather(cate_scores, index=keep_scores)
# mask scoring.
seg_mul = paddle.cast(seg_preds * seg_masks, 'float32')
seg_scores = paddle.sum(seg_mul, axis=[1, 2]) / sum_masks
cate_scores *= seg_scores
# Matrix NMS
seg_preds, cate_scores, cate_labels = self.mask_nms(
seg_preds, seg_masks, cate_labels, cate_scores, sum_masks=sum_masks)
ori_shape = im_shape[:2] / scale_factor + 0.5
ori_shape = paddle.cast(ori_shape, 'int32')
seg_preds = F.interpolate(
paddle.unsqueeze(seg_preds, 0),
size=upsampled_size_out,
mode='bilinear',
align_corners=False,
align_mode=0)
seg_preds = paddle.slice(
seg_preds, axes=[2, 3], starts=[0, 0], ends=[h, w])
seg_masks = paddle.squeeze(
F.interpolate(
seg_preds,
size=ori_shape[:2],
mode='bilinear',
align_corners=False,
align_mode=0),
axis=[0])
seg_masks = paddle.cast(seg_masks > self.mask_threshold, 'uint8')
return seg_masks, cate_labels, cate_scores

View File

@ -0,0 +1,175 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from ..layers import AnchorGeneratorSSD
class SepConvLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
padding=1,
conv_decay=0):
super(SepConvLayer, self).__init__()
self.dw_conv = nn.Conv2D(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
stride=1,
padding=padding,
groups=in_channels,
weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
bias_attr=False)
self.bn = nn.BatchNorm2D(
in_channels,
weight_attr=ParamAttr(regularizer=L2Decay(0.)),
bias_attr=ParamAttr(regularizer=L2Decay(0.)))
self.pw_conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
bias_attr=False)
def forward(self, x):
x = self.dw_conv(x)
x = F.relu6(self.bn(x))
x = self.pw_conv(x)
return x
@register
class SSDHead(nn.Layer):
"""
SSDHead
Args:
num_classes (int): Number of classes
in_channels (list): Number of channels per input feature
anchor_generator (dict): Configuration of 'AnchorGeneratorSSD' instance
kernel_size (int): Conv kernel size
padding (int): Conv padding
use_sepconv (bool): Use SepConvLayer if true
conv_decay (float): Conv regularization coeff
loss (object): 'SSDLoss' instance
"""
__shared__ = ['num_classes']
__inject__ = ['anchor_generator', 'loss']
def __init__(self,
num_classes=80,
in_channels=(512, 1024, 512, 256, 256, 256),
anchor_generator=AnchorGeneratorSSD().__dict__,
kernel_size=3,
padding=1,
use_sepconv=False,
conv_decay=0.,
loss='SSDLoss'):
super(SSDHead, self).__init__()
# add background class
self.num_classes = num_classes + 1
self.in_channels = in_channels
self.anchor_generator = anchor_generator
self.loss = loss
if isinstance(anchor_generator, dict):
self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)
self.num_priors = self.anchor_generator.num_priors
self.box_convs = []
self.score_convs = []
for i, num_prior in enumerate(self.num_priors):
box_conv_name = "boxes{}".format(i)
if not use_sepconv:
box_conv = self.add_sublayer(
box_conv_name,
nn.Conv2D(
in_channels=in_channels[i],
out_channels=num_prior * 4,
kernel_size=kernel_size,
padding=padding))
else:
box_conv = self.add_sublayer(
box_conv_name,
SepConvLayer(
in_channels=in_channels[i],
out_channels=num_prior * 4,
kernel_size=kernel_size,
padding=padding,
conv_decay=conv_decay))
self.box_convs.append(box_conv)
score_conv_name = "scores{}".format(i)
if not use_sepconv:
score_conv = self.add_sublayer(
score_conv_name,
nn.Conv2D(
in_channels=in_channels[i],
out_channels=num_prior * self.num_classes,
kernel_size=kernel_size,
padding=padding))
else:
score_conv = self.add_sublayer(
score_conv_name,
SepConvLayer(
in_channels=in_channels[i],
out_channels=num_prior * self.num_classes,
kernel_size=kernel_size,
padding=padding,
conv_decay=conv_decay))
self.score_convs.append(score_conv)
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
def forward(self, feats, image, gt_bbox=None, gt_class=None):
box_preds = []
cls_scores = []
prior_boxes = []
for feat, box_conv, score_conv in zip(feats, self.box_convs,
self.score_convs):
box_pred = box_conv(feat)
box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
box_pred = paddle.reshape(box_pred, [0, -1, 4])
box_preds.append(box_pred)
cls_score = score_conv(feat)
cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
cls_scores.append(cls_score)
prior_boxes = self.anchor_generator(feats, image)
if self.training:
return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
prior_boxes)
else:
return (box_preds, cls_scores), prior_boxes
def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)

View File

@ -0,0 +1,309 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Normal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
from ppdet.modeling.layers import DeformableConvV2, LiteConv
import numpy as np
@register
class HMHead(nn.Layer):
"""
Args:
ch_in (int): The channel number of input Tensor.
ch_out (int): The channel number of output Tensor.
num_classes (int): Number of classes.
conv_num (int): The convolution number of hm_feat.
dcn_head(bool): whether use dcn in head. False by default.
lite_head(bool): whether use lite version. False by default.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
Return:
Heatmap head output
"""
__shared__ = ['num_classes', 'norm_type']
def __init__(
self,
ch_in,
ch_out=128,
num_classes=80,
conv_num=2,
dcn_head=False,
lite_head=False,
norm_type='bn', ):
super(HMHead, self).__init__()
head_conv = nn.Sequential()
for i in range(conv_num):
name = 'conv.{}'.format(i)
if lite_head:
lite_name = 'hm.' + name
head_conv.add_sublayer(
lite_name,
LiteConv(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
norm_type=norm_type))
head_conv.add_sublayer(lite_name + '.act', nn.ReLU6())
else:
if dcn_head:
head_conv.add_sublayer(
name,
DeformableConvV2(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
else:
head_conv.add_sublayer(
name,
nn.Conv2D(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.))))
head_conv.add_sublayer(name + '.act', nn.ReLU())
self.feat = head_conv
bias_init = float(-np.log((1 - 0.01) / 0.01))
self.head = nn.Conv2D(
in_channels=ch_out,
out_channels=num_classes,
kernel_size=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=ParamAttr(
learning_rate=2.,
regularizer=L2Decay(0.),
initializer=Constant(bias_init)))
def forward(self, feat):
out = self.feat(feat)
out = self.head(out)
return out
@register
class WHHead(nn.Layer):
"""
Args:
ch_in (int): The channel number of input Tensor.
ch_out (int): The channel number of output Tensor.
conv_num (int): The convolution number of wh_feat.
dcn_head(bool): whether use dcn in head. False by default.
lite_head(bool): whether use lite version. False by default.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
Return:
Width & Height head output
"""
__shared__ = ['norm_type']
def __init__(self,
ch_in,
ch_out=64,
conv_num=2,
dcn_head=False,
lite_head=False,
norm_type='bn'):
super(WHHead, self).__init__()
head_conv = nn.Sequential()
for i in range(conv_num):
name = 'conv.{}'.format(i)
if lite_head:
lite_name = 'wh.' + name
head_conv.add_sublayer(
lite_name,
LiteConv(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
norm_type=norm_type))
head_conv.add_sublayer(lite_name + '.act', nn.ReLU6())
else:
if dcn_head:
head_conv.add_sublayer(
name,
DeformableConvV2(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
else:
head_conv.add_sublayer(
name,
nn.Conv2D(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.))))
head_conv.add_sublayer(name + '.act', nn.ReLU())
self.feat = head_conv
self.head = nn.Conv2D(
in_channels=ch_out,
out_channels=4,
kernel_size=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.001)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.)))
def forward(self, feat):
out = self.feat(feat)
out = self.head(out)
out = F.relu(out)
return out
@register
class TTFHead(nn.Layer):
"""
TTFHead
Args:
in_channels (int): the channel number of input to TTFHead.
num_classes (int): the number of classes, 80 by default.
hm_head_planes (int): the channel number in heatmap head,
128 by default.
wh_head_planes (int): the channel number in width & height head,
64 by default.
hm_head_conv_num (int): the number of convolution in heatmap head,
2 by default.
wh_head_conv_num (int): the number of convolution in width & height
head, 2 by default.
hm_loss (object): Instance of 'CTFocalLoss'.
wh_loss (object): Instance of 'GIoULoss'.
wh_offset_base (float): the base offset of width and height,
16.0 by default.
down_ratio (int): the actual down_ratio is calculated by base_down_ratio
(default 16) and the number of upsample layers.
lite_head(bool): whether use lite version. False by default.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
ags_module(bool): whether use AGS module to reweight location feature.
false by default.
"""
__shared__ = ['num_classes', 'down_ratio', 'norm_type']
__inject__ = ['hm_loss', 'wh_loss']
def __init__(self,
in_channels,
num_classes=80,
hm_head_planes=128,
wh_head_planes=64,
hm_head_conv_num=2,
wh_head_conv_num=2,
hm_loss='CTFocalLoss',
wh_loss='GIoULoss',
wh_offset_base=16.,
down_ratio=4,
dcn_head=False,
lite_head=False,
norm_type='bn',
ags_module=False):
super(TTFHead, self).__init__()
self.in_channels = in_channels
self.hm_head = HMHead(in_channels, hm_head_planes, num_classes,
hm_head_conv_num, dcn_head, lite_head, norm_type)
self.wh_head = WHHead(in_channels, wh_head_planes, wh_head_conv_num,
dcn_head, lite_head, norm_type)
self.hm_loss = hm_loss
self.wh_loss = wh_loss
self.wh_offset_base = wh_offset_base
self.down_ratio = down_ratio
self.ags_module = ags_module
@classmethod
def from_config(cls, cfg, input_shape):
if isinstance(input_shape, (list, tuple)):
input_shape = input_shape[0]
return {'in_channels': input_shape.channels, }
def forward(self, feats):
hm = self.hm_head(feats)
wh = self.wh_head(feats) * self.wh_offset_base
return hm, wh
def filter_box_by_weight(self, pred, target, weight):
"""
Filter out boxes where ttf_reg_weight is 0, only keep positive samples.
"""
index = paddle.nonzero(weight > 0)
index.stop_gradient = True
weight = paddle.gather_nd(weight, index)
pred = paddle.gather_nd(pred, index)
target = paddle.gather_nd(target, index)
return pred, target, weight
def filter_loc_by_weight(self, score, weight):
index = paddle.nonzero(weight > 0)
index.stop_gradient = True
score = paddle.gather_nd(score, index)
return score
def get_loss(self, pred_hm, pred_wh, target_hm, box_target, target_weight):
pred_hm = paddle.clip(F.sigmoid(pred_hm), 1e-4, 1 - 1e-4)
hm_loss = self.hm_loss(pred_hm, target_hm)
H, W = target_hm.shape[2:]
mask = paddle.reshape(target_weight, [-1, H, W])
avg_factor = paddle.sum(mask) + 1e-4
base_step = self.down_ratio
shifts_x = paddle.arange(0, W * base_step, base_step, dtype='int32')
shifts_y = paddle.arange(0, H * base_step, base_step, dtype='int32')
shift_y, shift_x = paddle.tensor.meshgrid([shifts_y, shifts_x])
base_loc = paddle.stack([shift_x, shift_y], axis=0)
base_loc.stop_gradient = True
pred_boxes = paddle.concat(
[0 - pred_wh[:, 0:2, :, :] + base_loc, pred_wh[:, 2:4] + base_loc],
axis=1)
pred_boxes = paddle.transpose(pred_boxes, [0, 2, 3, 1])
boxes = paddle.transpose(box_target, [0, 2, 3, 1])
boxes.stop_gradient = True
if self.ags_module:
pred_hm_max = paddle.max(pred_hm, axis=1, keepdim=True)
pred_hm_max_softmax = F.softmax(pred_hm_max, axis=1)
pred_hm_max_softmax = paddle.transpose(pred_hm_max_softmax,
[0, 2, 3, 1])
pred_hm_max_softmax = self.filter_loc_by_weight(pred_hm_max_softmax,
mask)
else:
pred_hm_max_softmax = None
pred_boxes, boxes, mask = self.filter_box_by_weight(pred_boxes, boxes,
mask)
mask.stop_gradient = True
wh_loss = self.wh_loss(
pred_boxes,
boxes,
iou_weight=mask.unsqueeze(1),
loc_reweight=pred_hm_max_softmax)
wh_loss = wh_loss / avg_factor
ttf_loss = {'hm_loss': hm_loss, 'wh_loss': wh_loss}
return ttf_loss

View File

@ -0,0 +1,124 @@
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
def _de_sigmoid(x, eps=1e-7):
x = paddle.clip(x, eps, 1. / eps)
x = paddle.clip(1. / x - 1., eps, 1. / eps)
x = -paddle.log(x)
return x
@register
class YOLOv3Head(nn.Layer):
__shared__ = ['num_classes', 'data_format']
__inject__ = ['loss']
def __init__(self,
in_channels=[1024, 512, 256],
anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]],
anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
num_classes=80,
loss='YOLOv3Loss',
iou_aware=False,
iou_aware_factor=0.4,
data_format='NCHW'):
"""
Head for YOLOv3 network
Args:
num_classes (int): number of foreground classes
anchors (list): anchors
anchor_masks (list): anchor masks
loss (object): YOLOv3Loss instance
iou_aware (bool): whether to use iou_aware
iou_aware_factor (float): iou aware factor
data_format (str): data format, NCHW or NHWC
"""
super(YOLOv3Head, self).__init__()
assert len(in_channels) > 0, "in_channels length should > 0"
self.in_channels = in_channels
self.num_classes = num_classes
self.loss = loss
self.iou_aware = iou_aware
self.iou_aware_factor = iou_aware_factor
self.parse_anchor(anchors, anchor_masks)
self.num_outputs = len(self.anchors)
self.data_format = data_format
self.yolo_outputs = []
for i in range(len(self.anchors)):
if self.iou_aware:
num_filters = len(self.anchors[i]) * (self.num_classes + 6)
else:
num_filters = len(self.anchors[i]) * (self.num_classes + 5)
name = 'yolo_output.{}'.format(i)
conv = nn.Conv2D(
in_channels=self.in_channels[i],
out_channels=num_filters,
kernel_size=1,
stride=1,
padding=0,
data_format=data_format,
bias_attr=ParamAttr(regularizer=L2Decay(0.)))
conv.skip_quant = True
yolo_output = self.add_sublayer(name, conv)
self.yolo_outputs.append(yolo_output)
def parse_anchor(self, anchors, anchor_masks):
self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks]
self.mask_anchors = []
anchor_num = len(anchors)
for masks in anchor_masks:
self.mask_anchors.append([])
for mask in masks:
assert mask < anchor_num, "anchor mask index overflow"
self.mask_anchors[-1].extend(anchors[mask])
def forward(self, feats, targets=None):
assert len(feats) == len(self.anchors)
yolo_outputs = []
for i, feat in enumerate(feats):
yolo_output = self.yolo_outputs[i](feat)
if self.data_format == 'NHWC':
yolo_output = paddle.transpose(yolo_output, [0, 3, 1, 2])
yolo_outputs.append(yolo_output)
if self.training:
return self.loss(yolo_outputs, targets, self.anchors)
else:
if self.iou_aware:
y = []
for i, out in enumerate(yolo_outputs):
na = len(self.anchors[i])
ioup, x = out[:, 0:na, :, :], out[:, na:, :, :]
b, c, h, w = x.shape
no = c // na
x = x.reshape((b, na, no, h * w))
ioup = ioup.reshape((b, na, 1, h * w))
obj = x[:, :, 4:5, :]
ioup = F.sigmoid(ioup)
obj = F.sigmoid(obj)
obj_t = (obj**(1 - self.iou_aware_factor)) * (
ioup**self.iou_aware_factor)
obj_t = _de_sigmoid(obj_t)
loc_t = x[:, :, :4, :]
cls_t = x[:, :, 5:, :]
y_t = paddle.concat([loc_t, obj_t, cls_t], axis=2)
y_t = y_t.reshape((b, c, h, w))
y.append(y_t)
return y
else:
return yolo_outputs
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }

View File

@ -0,0 +1,302 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
def get_affine_mat_kernel(h, w, s, inv=False):
if w < h:
w_ = s
h_ = int(np.ceil((s / w * h) / 64.) * 64)
scale_w = w
scale_h = h_ / w_ * w
else:
h_ = s
w_ = int(np.ceil((s / h * w) / 64.) * 64)
scale_h = h
scale_w = w_ / h_ * h
center = np.array([np.round(w / 2.), np.round(h / 2.)])
size_resized = (w_, h_)
trans = get_affine_transform(
center, np.array([scale_w, scale_h]), 0, size_resized, inv=inv)
return trans, size_resized
def get_affine_transform(center,
input_size,
rot,
output_size,
shift=(0., 0.),
inv=False):
"""Get the affine transform matrix, given the center/scale/rot/output_size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ]): Size of the destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: The transform matrix.
"""
assert len(center) == 2
assert len(input_size) == 2
assert len(output_size) == 2
assert len(shift) == 2
scale_tmp = input_size
shift = np.array(shift)
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = rotate_point([0., src_w * -0.5], rot_rad)
dst_dir = np.array([0., dst_w * -0.5])
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def _get_3rd_point(a, b):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): point(x,y)
b (np.ndarray): point(x,y)
Returns:
np.ndarray: The 3rd point.
"""
assert len(a) == 2
assert len(b) == 2
direction = a - b
third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)
return third_pt
def rotate_point(pt, angle_rad):
"""Rotate a point by an angle.
Args:
pt (list[float]): 2 dimensional point to be rotated
angle_rad (float): rotation angle by radian
Returns:
list[float]: Rotated point.
"""
assert len(pt) == 2
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
new_x = pt[0] * cs - pt[1] * sn
new_y = pt[0] * sn + pt[1] * cs
rotated_pt = [new_x, new_y]
return rotated_pt
def transpred(kpts, h, w, s):
trans, _ = get_affine_mat_kernel(h, w, s, inv=True)
return warp_affine_joints(kpts[..., :2].copy(), trans)
def warp_affine_joints(joints, mat):
"""Apply affine transformation defined by the transform matrix on the
joints.
Args:
joints (np.ndarray[..., 2]): Origin coordinate of joints.
mat (np.ndarray[3, 2]): The affine matrix.
Returns:
matrix (np.ndarray[..., 2]): Result coordinate of joints.
"""
joints = np.array(joints)
shape = joints.shape
joints = joints.reshape(-1, 2)
return np.dot(np.concatenate(
(joints, joints[:, 0:1] * 0 + 1), axis=1),
mat.T).reshape(shape)
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def transform_preds(coords, center, scale, output_size):
target_coords = np.zeros(coords.shape)
trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
for p in range(coords.shape[0]):
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
return target_coords
def oks_iou(g, d, a_g, a_d, sigmas=None, in_vis_thre=None):
if not isinstance(sigmas, np.ndarray):
sigmas = np.array([
.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,
.87, .87, .89, .89
]) / 10.0
vars = (sigmas * 2)**2
xg = g[0::3]
yg = g[1::3]
vg = g[2::3]
ious = np.zeros((d.shape[0]))
for n_d in range(0, d.shape[0]):
xd = d[n_d, 0::3]
yd = d[n_d, 1::3]
vd = d[n_d, 2::3]
dx = xd - xg
dy = yd - yg
e = (dx**2 + dy**2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2
if in_vis_thre is not None:
ind = list(vg > in_vis_thre) and list(vd > in_vis_thre)
e = e[ind]
ious[n_d] = np.sum(np.exp(-e)) / e.shape[0] if e.shape[0] != 0 else 0.0
return ious
def oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None):
"""greedily select boxes with high confidence and overlap with current maximum <= thresh
rule out overlap >= thresh
Args:
kpts_db (list): The predicted keypoints within the image
thresh (float): The threshold to select the boxes
sigmas (np.array): The variance to calculate the oks iou
Default: None
in_vis_thre (float): The threshold to select the high confidence boxes
Default: None
Return:
keep (list): indexes to keep
"""
if len(kpts_db) == 0:
return []
scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))])
kpts = np.array(
[kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))])
areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))])
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
sigmas, in_vis_thre)
inds = np.where(oks_ovr <= thresh)[0]
order = order[inds + 1]
return keep
def rescore(overlap, scores, thresh, type='gaussian'):
assert overlap.shape[0] == scores.shape[0]
if type == 'linear':
inds = np.where(overlap >= thresh)[0]
scores[inds] = scores[inds] * (1 - overlap[inds])
else:
scores = scores * np.exp(-overlap**2 / thresh)
return scores
def soft_oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None):
"""greedily select boxes with high confidence and overlap with current maximum <= thresh
rule out overlap >= thresh
Args:
kpts_db (list): The predicted keypoints within the image
thresh (float): The threshold to select the boxes
sigmas (np.array): The variance to calculate the oks iou
Default: None
in_vis_thre (float): The threshold to select the high confidence boxes
Default: None
Return:
keep (list): indexes to keep
"""
if len(kpts_db) == 0:
return []
scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))])
kpts = np.array(
[kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))])
areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))])
order = scores.argsort()[::-1]
scores = scores[order]
# max_dets = order.size
max_dets = 20
keep = np.zeros(max_dets, dtype=np.intp)
keep_cnt = 0
while order.size > 0 and keep_cnt < max_dets:
i = order[0]
oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
sigmas, in_vis_thre)
order = order[1:]
scores = rescore(oks_ovr, scores[1:], thresh)
tmp = scores.argsort()[::-1]
order = order[tmp]
scores = scores[tmp]
keep[keep_cnt] = i
keep_cnt += 1
keep = keep[:keep_cnt]
return keep

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,35 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import yolo_loss
from . import iou_aware_loss
from . import iou_loss
from . import ssd_loss
from . import fcos_loss
from . import solov2_loss
from . import ctfocal_loss
from . import keypoint_loss
from . import jde_loss
from . import fairmot_loss
from .yolo_loss import *
from .iou_aware_loss import *
from .iou_loss import *
from .ssd_loss import *
from .fcos_loss import *
from .solov2_loss import *
from .ctfocal_loss import *
from .keypoint_loss import *
from .jde_loss import *
from .fairmot_loss import *

Some files were not shown because too many files have changed in this diff Show More