Compare commits

..

5 Commits

Author SHA1 Message Date
p73692015 21a36f151a 增加注释 2024-01-01 15:47:23 +08:00
p73692015 e6485ffebb Update README.md 2024-01-01 15:45:42 +08:00
p73692015 726c07fb9c Update README.md 2022-10-18 09:11:22 +08:00
p68729051 b3ce719d97 myreadme 2022-10-18 09:08:38 +08:00
p73692015 ea96f9ae05 Update README.md 2022-06-23 08:51:52 +08:00
17 changed files with 143 additions and 61 deletions

3
.idea/.gitignore vendored
View File

@ -1,3 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml

View File

@ -1,12 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.7 (Focus)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="GOOGLE" />
<option name="myDocStringFormat" value="Google" />
</component>
</module>

View File

@ -1,6 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

View File

@ -1,4 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (Focus)" project-jdk-type="Python SDK" />
</project>

View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/PulseFocusPlatform.iml" filepath="$PROJECT_DIR$/.idea/PulseFocusPlatform.iml" />
</modules>
</component>
</project>

View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

117
README.md
View File

@ -5,7 +5,8 @@ Pulse Focus Platform脉冲聚焦是面向水底物体图像识别的实时检测
脉冲聚焦软件设计了图片和视频两种数据输入下的多物体识别功能。针对图片数据,调用模型进行单张图片预测,随后在前端可视化输出多物体识别结果;针对视频流动态图像数据,首先对视频流数据进行分帧采样,获取采样图片,再针对采样图片进行多物体识别,将采样识别结果进行视频合成,然后在前端可视化输出视频流数据识别结果。为了视频流数据处理的高效性,设计了采样-识别-展示的多线程处理方式,可加快视频流数据处理。
软件界面简单,易学易用,包含参数的输入选择,程序的运行,算法结果的展示等,源代码公开,算法可修改。
开发人员K. Wang、H.P. Yu、J. Li、H.T. Li、Z.Q. Wang、Z.Y. Zhao、L.F. Zhang、G. Chen
开发人员K. Wang、H.P. Yu、J. Li、Z.Y. Zhao、L.F. Zhang、G. Chen、H.T. Li、Z.Q. Wang、Y.G. Han
## 1. 开发环境配置
运行以下命令:
@ -21,11 +22,119 @@ conda env create -f create_env.yaml
python main.py
```
## 3. 一些说明
1. 使用GPU版本
## 3. 软硬件运行平台
1配置要求
<table>
<tr>
<th>组件</th>
<th>配置</th>
<th>备注</th>
</tr>
<tr>
<td>系统 </td>
<td>Windows 10 家庭中文版 20H2 64位</td>
<td>扩展支持Linux和Mac系统</td>
</tr>
<tr>
<td>处理器</td>
<td>处理器类型:
酷睿i3兼容处理器或速度更快的处理器
处理器速度:
最低1.0GHz
建议2.0GHz或更快
</td>
<td>不支持ARM、IA64等芯片处理器</td>
</tr>
<tr>
<td>内存</td>
<td>RAM 16.0 GB (15.7 GB 可用)</td>
<td></td>
</tr>
<tr>
<td>显卡</td>
<td>最小:核心显卡
推荐GTX1060或同类型显卡
</td>
<td></td>
</tr>
<tr>
<td>硬盘</td>
<td>500G</td>
<td></td>
</tr>
<td>显示器</td>
<td>3840×2160像素高分屏</td>
<td></td>
</tr>
<tr>
</tr>
<td>软件</td>
<td>Anaconda3 2020及以上</td>
<td>Python3.7及以上,需手动安装包</td>
</tr>
</table>
2手动部署及运行
推荐的安装步骤如下:
安装Anaconda3-2020.02-Windows-x86_64或以上版本
手动安装pygame、pymunk、pyyaml、numpy、easydict和pyqt安装方式推荐参考如下
```
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pygame==2.0.1
```
将软件模块文件夹拷贝到电脑中以D盘为例路径为D:\island-multi_ships
## 4. 软件详细介绍
软件总体开发系统架构图如下所示。
![开发系统架构图](https://osredm.com/repo/PulseFocusPlatform/PulseFocusPlatform/raw/branch/master/pic1/1.png)
1界面设计
平台界面设计如上图所示,界面各组件功能设计如下:
![界面设计](https://osredm.com/repo/PulseFocusPlatform/PulseFocusPlatform/raw/branch/master/pic1/2.png)
* 静态图像导入用于选择需要进行预测的单张图像可支持jpgpngjpeg等格式图像选择图像后会在下方界面进行展示。
* 动态图像导入:用于选择需要进行预测的单个视频,可支持pm4等格式视频选择视频后会在下方界面进行展示。
* 信息导出:用于在预测完成后,将预测后的照片,视频导出到具体文件夹下。
* 特征选择:由于挑选相关特征。
* 预处理方法:由于选择相关预处理方法。
* 识别算法用于选择预测时的所需算法目前支持YOLO与RCNN两种模型算法。
* GPU加速选择是否使用GPU进行预测加速对视频预测加速效果明显。
* 识别:当相关配置完成后,点击识别选项,会进行预测处理,并将预测后的视频或图像在下方显示。
* 训练目前考虑到GPU等资源限制未完整开放。
* 信息显示在界面右下角显示类别flvgxmbwobject的识别目标个数。
2主要功能设计
设计了图片和视频两种数据输入的多目标识别功能。针对图片数据,调用模型进行单张图片预测,随后在前端可视化输出多目标识别结果;针对视频流动态图像数据,首先对视频流数据进行分帧采样,获取采样图片,再针对采样图片进行多目标识别,将采样识别结果进行视频合成,然后在前段可视化输出视频流数据识别结果。为求视频流数据处理的高效性,设计了采样-识别-展示的多线性处理方式,可加快视频流数据处理。
* 侧扫声呐图像多目标识别功能
* 侧扫声呐视频多目标识别功能
## 5. 软件使用结果
Faster-RCNN模型在四种目标物图片上的识别验证结果如下所示
![D:\pic\脉冲](https://osredm.com/repo/PulseFocusPlatform/PulseFocusPlatform/raw/branch/master/pic1/3.png)
YOLOV3模型在四种目标物图片上的识别验证结果如下所示
![D:\pic\脉冲](https://osredm.com/repo/PulseFocusPlatform/PulseFocusPlatform/raw/branch/master/pic1/4.png)
PP-YOLO-BOT模型在四种目标物图片上的识别验证结果如下所示
![D:\pic\脉冲](https://osredm.com/repo/PulseFocusPlatform/PulseFocusPlatform/raw/branch/master/pic1/5.png)
调用PP-YOLO-BOT模型对视频数据进行识别验证结果如下截图所示
![D:\pic\脉冲](https://osredm.com/repo/PulseFocusPlatform/PulseFocusPlatform/raw/branch/master/pic1/6.png)
## 6. 其他说明
* 使用GPU版本
参考百度飞桨paddle官方网站安装
[安装链接](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/windows-pip.html)
2. 模型文件全部更新在inference_model中pic为测试图片
* 模型文件全部更新在inference_model中pic为测试图片

View File

@ -1,9 +1,11 @@
# -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'SSS_win.ui'
#
# Created by: PyQt5 UI code generator 5.15.4
# WARNING:
#
# WARNING: Any manual changes made to this file will be lost when pyuic5 is
# run again. Do not edit this file unless you know what you are doing.
from PyQt5 import QtCore, QtGui, QtWidgets
@ -16,18 +18,18 @@ class Ui_MainWindow(object):
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.centralwidget)
self.verticalLayout_5.setObjectName("verticalLayout_5")#垂直布局
self.verticalLayout_5.setObjectName("verticalLayout_5")
self.verticalLayout = QtWidgets.QVBoxLayout()
self.verticalLayout.setObjectName("verticalLayout")#垂直布局
self.verticalLayout.setObjectName("verticalLayout")
self.horizontalLayout = QtWidgets.QHBoxLayout()
self.horizontalLayout.setObjectName("horizontalLayout")#水平布局
self.horizontalLayout.setObjectName("horizontalLayout")
self.verticalLayout_2 = QtWidgets.QVBoxLayout()
self.verticalLayout_2.setObjectName("verticalLayout_2")#垂直布局
self.verticalLayout_2.setObjectName("verticalLayout_2")
self.tupiandiaoru = QtWidgets.QPushButton(self.centralwidget)
self.tupiandiaoru.setObjectName("tupiandiaoru")#图片导入
self.tupiandiaoru.setObjectName("tupiandiaoru")
self.verticalLayout_2.addWidget(self.tupiandiaoru)
self.shipindaoru = QtWidgets.QPushButton(self.centralwidget)
self.shipindaoru.setObjectName("shipindaoru")#视频导入
self.shipindaoru.setObjectName("shipindaoru")
self.verticalLayout_2.addWidget(self.shipindaoru)
self.pushButton_xxdaochu = QtWidgets.QPushButton(self.centralwidget)
self.pushButton_xxdaochu.setObjectName("pushButton_xxdaochu")
@ -145,13 +147,13 @@ class Ui_MainWindow(object):
self.xunlian.clicked.connect(MainWindow.press_xunlian)
self.pushButton_tuichu.clicked.connect(MainWindow.exit)
self.shipindaoru.clicked.connect(MainWindow.press_movie)
self.comboBox_sbsuanfa.activated['QString'].connect(MainWindow.moxingxuanze)
self.comboBox_GPU.activated['QString'].connect(MainWindow.gpu_use)
self.comboBox_sbsuanfa.activated.connect(MainWindow.moxingxuanze)
self.comboBox_GPU.activated.connect(MainWindow.gpu_use)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
MainWindow.setWindowTitle(_translate("MainWindow", "脉冲聚焦"))
self.tupiandiaoru.setText(_translate("MainWindow", "静态图像导入"))
self.shipindaoru.setText(_translate("MainWindow", "动态图像导入"))
self.pushButton_xxdaochu.setText(_translate("MainWindow", "信息导出"))
@ -160,7 +162,7 @@ class Ui_MainWindow(object):
self.comboBox_yclfangfa.setItemText(0, _translate("MainWindow", "多尺度融合"))
self.comboBox_yclfangfa.setItemText(1, _translate("MainWindow", "图像增广"))
self.comboBox_yclfangfa.setItemText(2, _translate("MainWindow", "图像重塑"))
self.label_3.setText(_translate("MainWindow", "识别算法"))
self.label_3.setText(_translate("MainWindow", "聚焦算法"))
self.comboBox_sbsuanfa.setCurrentText(_translate("MainWindow", "PPYOLO-BOT"))
self.comboBox_sbsuanfa.setItemText(0, _translate("MainWindow", "PPYOLO-BOT"))
self.comboBox_sbsuanfa.setItemText(1, _translate("MainWindow", "YOLOV3"))
@ -170,7 +172,7 @@ class Ui_MainWindow(object):
self.comboBox_GPU.setItemText(0, _translate("MainWindow", "YES"))
self.comboBox_GPU.setItemText(1, _translate("MainWindow", "NO"))
self.label.setText(_translate("MainWindow", "特征选择"))
self.shibie.setText(_translate("MainWindow", "识别"))
self.shibie.setText(_translate("MainWindow", "聚焦"))
self.xunlian.setText(_translate("MainWindow", "训练"))
self.pushButton_jswendang.setText(_translate("MainWindow", "技术文档"))
self.pushButton_rjwendang.setText(_translate("MainWindow", "软件说明文档"))

Binary file not shown.

View File

@ -68,6 +68,7 @@ class mywindow(QtWidgets.QMainWindow, Ui_MainWindow):
print('cd {}'.format(self.path1))
print(
'python deploy/python/infer.py --model_dir={} --video_file={} --use_gpu=True'.format(self.model_path, self.Video_fname))
# 调用GPU
os.system('cd {}'.format(self.path1))
os.system(
'python deploy/python/infer.py --model_dir={} --image_dir={} --output_dir=./video_output/{} --threshold=0.3 --use_gpu=True'.format(
@ -75,8 +76,10 @@ class mywindow(QtWidgets.QMainWindow, Ui_MainWindow):
# print(self.path1+'video_output/'+self.Video_fname.split('/')[-1])
# self.cap = cv2.VideoCapture(
# self.path1+'video_output/'+self.Video_fname.split('/')[-1])
# self.framRate = self.cap.get(cv2.CAP_PROP_FPS
# self.framRate = self.cap.get(cv2.CAP_PROP_FPS)
# th = threading.Thread(target=self.Display)
# th.start()
def Images_Display(self):
img_list=[]
@ -135,6 +138,7 @@ class mywindow(QtWidgets.QMainWindow, Ui_MainWindow):
# print(xmlFile)
# self.label_movie.setPixmap(QtGui.QPixmap(
# self.video_image_path+'/'+xmlFile))
# time.sleep(0.5)
def Sorted(self,files):
files=[int(i.split('.')[0]) for i in files]
@ -232,6 +236,7 @@ class mywindow(QtWidgets.QMainWindow, Ui_MainWindow):
th2 = threading.Thread(target=self.Split)
th2.start()
# self.th = threading.Thread(target=self.Display)
# self.th.start()

BIN
pic1/1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

BIN
pic1/2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
pic1/3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 360 KiB

BIN
pic1/4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 350 KiB

BIN
pic1/5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 372 KiB

BIN
pic1/6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 942 KiB

View File

@ -1,12 +1,16 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import glob
@ -33,6 +37,7 @@ def package_model_zoo():
valid_cfgs = []
for cfg in cfgs:
# exclude dataset base config
if osp.split(osp.split(cfg)[0])[1] not in ['datasets']:
valid_cfgs.append(cfg)
model_names = [