English | [简体中文](PrepareMOTDataSet_cn.md) # Contents ## Multi-Object Tracking Dataset Preparation - [MOT Dataset](#MOT_Dataset) - [Data Format](#Data_Format) - [Dataset Directory](#Dataset_Directory) - [Download Links](#Download_Links) - [Custom Dataset Preparation](#Custom_Dataset_Preparation) - [Citations](#Citations) ### MOT Dataset PaddleDetection uses the same training data as [JDE](https://github.com/Zhongdao/Towards-Realtime-MOT) and [FairMOT](https://github.com/ifzhang/FairMOT). Please download and prepare all the training data including **Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17 and MOT16**. **MOT15 and MOT20** can also be downloaded from the official webpage of MOT challenge. If you want to use these datasets, please **follow their licenses**. ### Data Format These several relevant datasets have the following structure: ``` Caltech |——————images | └——————00001.jpg | |—————— ... | └——————0000N.jpg └——————labels_with_ids └——————00001.txt |—————— ... └——————0000N.txt MOT17 |——————images | └——————train | └——————test └——————labels_with_ids └——————train ``` Annotations of these datasets are provided in a unified format. Every image has a corresponding annotation text. Given an image path, the annotation text path can be generated by replacing the string `images` with `labels_with_ids` and replacing `.jpg` with `.txt`. In the annotation text, each line is describing a bounding box and has the following format: ``` [class] [identity] [x_center] [y_center] [width] [height] ``` **Notes:** - `class` should be `0`. Only single-class multi-object tracking is supported now. - `identity` is an integer from `0` to `num_identities - 1`(`num_identities` is the total number of instances of objects in the dataset), or `-1` if this box has no identity annotation. - `[x_center] [y_center] [width] [height]` are the center coordinates, width and height, note that they are normalized by the width/height of the image, so they are floating point numbers ranging from 0 to 1. ### Dataset Directory First, follow the command below to download the `image_list.zip` and unzip it in the `dataset/mot` directory: ``` wget https://dataset.bj.bcebos.com/mot/image_lists.zip ``` Then download and unzip each dataset, and the final directory is as follows: ``` dataset/mot |——————image_lists |——————caltech.10k.val |——————caltech.all |——————caltech.train |——————caltech.val |——————citypersons.train |——————citypersons.val |——————cuhksysu.train |——————cuhksysu.val |——————eth.train |——————mot15.train |——————mot16.train |——————mot17.train |——————mot20.train |——————prw.train |——————prw.val |——————Caltech |——————Cityscapes |——————CUHKSYSU |——————ETHZ |——————MOT15 |——————MOT16 |——————MOT17 |——————MOT20 |——————PRW ``` ### Custom Dataset Preparation In order to standardize training and evaluation, custom data needs to be converted into the same directory and format as MOT-16 dataset: ``` custom_data |——————images | └——————test | └——————train | └——————seq1 | | └——————gt | | | └——————gt.txt | | └——————img1 | | | └——————000001.jpg | | | |——————000002.jpg | | | └—————— ... | | └——————seqinfo.ini | └——————seq2 | └——————... └——————labels_with_ids └——————train └——————seq1 | └——————000001.txt | |——————000002.txt | └—————— ... └——————seq2 └—————— ... ``` #### images - `gt.txt` is the original annotation file of all images extracted from the video. - `img1` is the folder of images extracted from the video by a certain frame rate. - `seqinfo.ini` is a video information description file, and the following format is required: ``` [Sequence] name=MOT16-02 imDir=img1 frameRate=30 seqLength=600 imWidth=1920 imHeight=1080 imExt=.jpg ``` Each line in `gt.txt` describes a bounding box, with the format as follows: ``` [frame_id],[identity],[bb_left],[bb_top],[width],[height],[x],[y],[z] ``` **Notes:**: - `frame_id` is the current frame id. - `identity` is an integer from `0` to `num_identities - 1`(`num_identities` is the total number of instances of objects in the dataset), or `-1` if this box has no identity annotation. - `bb_left` is the x coordinate of the left boundary of the target box - `bb_top` is the Y coordinate of the upper boundary of the target box - `width, height` are the pixel width and height - `x,y,z` are only used in 3D, default to `-1` in 2D. #### labels_with_ids Annotations of these datasets are provided in a unified format. Every image has a corresponding annotation text. Given an image path, the annotation text path can be generated by replacing the string `images` with `labels_with_ids` and replacing `.jpg` with `.txt`. In the annotation text, each line is describing a bounding box and has the following format: ``` [class] [identity] [x_center] [y_center] [width] [height] ``` **Notes:** - `class` should be `0`. Only single-class multi-object tracking is supported now. - `identity` is an integer from `0` to `num_identities - 1`(`num_identities` is the total number of instances of objects in the dataset), or `-1` if this box has no identity annotation. - `[x_center] [y_center] [width] [height]` are the center coordinates, width and height, note that they are normalized by the width/height of the image, so they are floating point numbers ranging from 0 to 1. Generate the corresponding `labels_with_ids` with following command: ``` cd dataset/mot python gen_labels_MOT.py ``` ### Download Links #### Caltech Pedestrian Baidu NetDisk: [[0]](https://pan.baidu.com/s/1sYBXXvQaXZ8TuNwQxMcAgg) [[1]](https://pan.baidu.com/s/1lVO7YBzagex1xlzqPksaPw) [[2]](https://pan.baidu.com/s/1PZXxxy_lrswaqTVg0GuHWg) [[3]](https://pan.baidu.com/s/1M93NCo_E6naeYPpykmaNgA) [[4]](https://pan.baidu.com/s/1ZXCdPNXfwbxQ4xCbVu5Dtw) [[5]](https://pan.baidu.com/s/1kcZkh1tcEiBEJqnDtYuejg) [[6]](https://pan.baidu.com/s/1sDjhtgdFrzR60KKxSjNb2A) [[7]](https://pan.baidu.com/s/18Zvp_d33qj1pmutFDUbJyw) Google Drive: [[annotations]](https://drive.google.com/file/d/1h8vxl_6tgi9QVYoer9XcY9YwNB32TE5k/view?usp=sharing) , please download all the images `.tar` files from [this page](http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/datasets/USA/) and unzip the images under `Caltech/images` You may need [this tool](https://github.com/mitmul/caltech-pedestrian-dataset-converter) to convert the original data format to jpeg images. Original dataset webpage: [CaltechPedestrians](http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/) #### CityPersons Baidu NetDisk: [[0]](https://pan.baidu.com/s/1g24doGOdkKqmbgbJf03vsw) [[1]](https://pan.baidu.com/s/1mqDF9M5MdD3MGxSfe0ENsA) [[2]](https://pan.baidu.com/s/1Qrbh9lQUaEORCIlfI25wdA) [[3]](https://pan.baidu.com/s/1lw7shaffBgARDuk8mkkHhw) Google Drive: [[0]](https://drive.google.com/file/d/1DgLHqEkQUOj63mCrS_0UGFEM9BG8sIZs/view?usp=sharing) [[1]](https://drive.google.com/file/d/1BH9Xz59UImIGUdYwUR-cnP1g7Ton_LcZ/view?usp=sharing) [[2]](https://drive.google.com/file/d/1q_OltirP68YFvRWgYkBHLEFSUayjkKYE/view?usp=sharing) [[3]](https://drive.google.com/file/d/1VSL0SFoQxPXnIdBamOZJzHrHJ1N2gsTW/view?usp=sharing) Original dataset webpage: [Citypersons pedestrian detection dataset](https://github.com/cvgroup-njust/CityPersons) #### CUHK-SYSU Baidu NetDisk: [[0]](https://pan.baidu.com/s/1YFrlyB1WjcQmFW3Vt_sEaQ) Google Drive: [[0]](https://drive.google.com/file/d/1D7VL43kIV9uJrdSCYl53j89RE2K-IoQA/view?usp=sharing) Original dataset webpage: [CUHK-SYSU Person Search Dataset](http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html) #### PRW Baidu NetDisk: [[0]](https://pan.baidu.com/s/1iqOVKO57dL53OI1KOmWeGQ) Google Drive: [[0]](https://drive.google.com/file/d/116_mIdjgB-WJXGe8RYJDWxlFnc_4sqS8/view?usp=sharing) #### ETHZ (overlapping videos with MOT-16 removed): Baidu NetDisk: [[0]](https://pan.baidu.com/s/14EauGb2nLrcB3GRSlQ4K9Q) Google Drive: [[0]](https://drive.google.com/file/d/19QyGOCqn8K_rc9TXJ8UwLSxCx17e0GoY/view?usp=sharing) Original dataset webpage: [ETHZ pedestrian datset](https://data.vision.ee.ethz.ch/cvl/aess/dataset/) #### MOT-17 Baidu NetDisk: [[0]](https://pan.baidu.com/s/1lHa6UagcosRBz-_Y308GvQ) Google Drive: [[0]](https://drive.google.com/file/d/1ET-6w12yHNo8DKevOVgK1dBlYs739e_3/view?usp=sharing) Original dataset webpage: [MOT-17](https://motchallenge.net/data/MOT17/) #### MOT-16 Baidu NetDisk: [[0]](https://pan.baidu.com/s/10pUuB32Hro-h-KUZv8duiw) Google Drive: [[0]](https://drive.google.com/file/d/1254q3ruzBzgn4LUejDVsCtT05SIEieQg/view?usp=sharing) Original dataset webpage: [MOT-16](https://motchallenge.net/data/MOT16/) #### MOT-15 Original dataset webpage: [MOT-15](https://motchallenge.net/data/MOT15/) #### MOT-20 Original dataset webpage: [MOT-20](https://motchallenge.net/data/MOT20/) ### Citation Caltech: ``` @inproceedings{ dollarCVPR09peds, author = "P. Doll\'ar and C. Wojek and B. Schiele and P. Perona", title = "Pedestrian Detection: A Benchmark", booktitle = "CVPR", month = "June", year = "2009", city = "Miami", } ``` Citypersons: ``` @INPROCEEDINGS{Shanshan2017CVPR, Author = {Shanshan Zhang and Rodrigo Benenson and Bernt Schiele}, Title = {CityPersons: A Diverse Dataset for Pedestrian Detection}, Booktitle = {CVPR}, Year = {2017} } @INPROCEEDINGS{Cordts2016Cityscapes, title={The Cityscapes Dataset for Semantic Urban Scene Understanding}, author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt}, booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2016} } ``` CUHK-SYSU: ``` @inproceedings{xiaoli2017joint, title={Joint Detection and Identification Feature Learning for Person Search}, author={Xiao, Tong and Li, Shuang and Wang, Bochao and Lin, Liang and Wang, Xiaogang}, booktitle={CVPR}, year={2017} } ``` PRW: ``` @inproceedings{zheng2017person, title={Person re-identification in the wild}, author={Zheng, Liang and Zhang, Hengheng and Sun, Shaoyan and Chandraker, Manmohan and Yang, Yi and Tian, Qi}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={1367--1376}, year={2017} } ``` ETHZ: ``` @InProceedings{eth_biwi_00534, author = {A. Ess and B. Leibe and K. Schindler and and L. van Gool}, title = {A Mobile Vision System for Robust Multi-Person Tracking}, booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08)}, year = {2008}, month = {June}, publisher = {IEEE Press}, keywords = {} } ``` MOT-16&17: ``` @article{milan2016mot16, title={MOT16: A benchmark for multi-object tracking}, author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad}, journal={arXiv preprint arXiv:1603.00831}, year={2016} } ```