# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from PIL import Image, ImageDraw import cv2 import math from .colormap import colormap from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = ['visualize_results'] def visualize_results(image, bbox_res, mask_res, segm_res, keypoint_res, im_id, catid2name, threshold=0.5): """ Visualize bbox and mask results """ if bbox_res is not None: image = draw_bbox(image, im_id, catid2name, bbox_res, threshold) if mask_res is not None: image = draw_mask(image, im_id, mask_res, threshold) if segm_res is not None: image = draw_segm(image, im_id, catid2name, segm_res, threshold) if keypoint_res is not None: image = draw_pose(image, keypoint_res, threshold) return image def draw_mask(image, im_id, segms, threshold, alpha=0.7): """ Draw mask on image """ mask_color_id = 0 w_ratio = .4 color_list = colormap(rgb=True) img_array = np.array(image).astype('float32') for dt in np.array(segms): if im_id != dt['image_id']: continue segm, score = dt['segmentation'], dt['score'] if score < threshold: continue import pycocotools.mask as mask_util mask = mask_util.decode(segm) * 255 color_mask = color_list[mask_color_id % len(color_list), 0:3] mask_color_id += 1 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) img_array[idx[0], idx[1], :] *= 1.0 - alpha img_array[idx[0], idx[1], :] += alpha * color_mask return Image.fromarray(img_array.astype('uint8')) def draw_bbox(image, im_id, catid2name, bboxes, threshold): """ Draw bbox on image """ draw = ImageDraw.Draw(image) catid2color = {} color_list = colormap(rgb=True)[:40] for dt in np.array(bboxes): if im_id != dt['image_id']: continue catid, bbox, score = dt['category_id'], dt['bbox'], dt['score'] if score < threshold: continue if catid not in catid2color: idx = np.random.randint(len(color_list)) catid2color[catid] = color_list[idx] color = tuple(catid2color[catid]) # draw bbox if len(bbox) == 4: # draw bbox xmin, ymin, w, h = bbox xmax = xmin + w ymax = ymin + h draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=2, fill=color) elif len(bbox) == 8: x1, y1, x2, y2, x3, y3, x4, y4 = bbox draw.line( [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], width=2, fill=color) xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) else: logger.error('the shape of bbox must be [M, 4] or [M, 8]!') # draw label text = "{} {:.2f}".format(catid2name[catid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return image def save_result(save_path, results, catid2name, threshold): """ save result as txt """ img_id = int(results["im_id"]) with open(save_path, 'w') as f: if "bbox_res" in results: for dt in results["bbox_res"]: catid, bbox, score = dt['category_id'], dt['bbox'], dt['score'] if score < threshold: continue # each bbox result as a line # for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4 # for bbox: classname score x1 y1 w h bbox_pred = '{} {} '.format(catid2name[catid], score) + ' '.join( [str(e) for e in bbox]) f.write(bbox_pred + '\n') elif "keypoint_res" in results: for dt in results["keypoint_res"]: kpts = dt['keypoints'] scores = dt['score'] keypoint_pred = [img_id, scores, kpts] print(keypoint_pred, file=f) else: print("No valid results found, skip txt save") def draw_segm(image, im_id, catid2name, segms, threshold, alpha=0.7, draw_box=True): """ Draw segmentation on image """ mask_color_id = 0 w_ratio = .4 color_list = colormap(rgb=True) img_array = np.array(image).astype('float32') for dt in np.array(segms): if im_id != dt['image_id']: continue segm, score, catid = dt['segmentation'], dt['score'], dt['category_id'] if score < threshold: continue import pycocotools.mask as mask_util mask = mask_util.decode(segm) * 255 color_mask = color_list[mask_color_id % len(color_list), 0:3] mask_color_id += 1 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) img_array[idx[0], idx[1], :] *= 1.0 - alpha img_array[idx[0], idx[1], :] += alpha * color_mask if not draw_box: center_y, center_x = ndimage.measurements.center_of_mass(mask) label_text = "{}".format(catid2name[catid]) vis_pos = (max(int(center_x) - 10, 0), int(center_y)) cv2.putText(img_array, label_text, vis_pos, cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255)) else: mask = mask_util.decode(segm) * 255 sum_x = np.sum(mask, axis=0) x = np.where(sum_x > 0.5)[0] sum_y = np.sum(mask, axis=1) y = np.where(sum_y > 0.5)[0] x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1] cv2.rectangle(img_array, (x0, y0), (x1, y1), tuple(color_mask.astype('int32').tolist()), 1) bbox_text = '%s %.2f' % (catid2name[catid], score) t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0] cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3), tuple(color_mask.astype('int32').tolist()), -1) cv2.putText( img_array, bbox_text, (x0, y0 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), 1, lineType=cv2.LINE_AA) return Image.fromarray(img_array.astype('uint8')) def map_coco_to_personlab(keypoints): permute = [0, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3] return keypoints[:, permute, :] def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'): try: import matplotlib.pyplot as plt import matplotlib plt.switch_backend('agg') except Exception as e: logger.error('Matplotlib not found, plaese install matplotlib.' 'for example: `pip install matplotlib`.') raise e EDGES = [(0, 14), (0, 13), (0, 4), (0, 1), (14, 16), (13, 15), (4, 10), (1, 7), (10, 11), (7, 8), (11, 12), (8, 9), (4, 5), (1, 2), (5, 6), (2, 3)] NUM_EDGES = len(EDGES) colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] cmap = matplotlib.cm.get_cmap('hsv') plt.figure() skeletons = np.array([item['keypoints'] for item in results]).reshape(-1, 17, 3) img = np.array(image).astype('float32') canvas = img.copy() for i in range(17): rgba = np.array(cmap(1 - i / 17. - 1. / 34)) rgba[0:3] *= 255 for j in range(len(skeletons)): if skeletons[j][i, 2] < visual_thread: continue cv2.circle( canvas, tuple(skeletons[j][i, 0:2].astype('int32')), 2, colors[i], thickness=-1) to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0) fig = matplotlib.pyplot.gcf() stickwidth = 2 skeletons = map_coco_to_personlab(skeletons) for i in range(NUM_EDGES): for j in range(len(skeletons)): edge = EDGES[i] if skeletons[j][edge[0], 2] < visual_thread or skeletons[j][edge[ 1], 2] < visual_thread: continue cur_canvas = canvas.copy() X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]] Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) image = Image.fromarray(canvas.astype('uint8')) plt.close() return image