forked from PulseFocusPlatform/PulseFocusPlatform
188 lines
7.1 KiB
Python
188 lines
7.1 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
from paddle.regularizer import L2Decay
|
|
from ppdet.core.workspace import register
|
|
from paddle.nn.initializer import Normal, Constant
|
|
|
|
__all__ = ['JDEEmbeddingHead']
|
|
|
|
|
|
class LossParam(nn.Layer):
|
|
def __init__(self, init_value=0., use_uncertainy=True):
|
|
super(LossParam, self).__init__()
|
|
self.loss_param = self.create_parameter(
|
|
shape=[1],
|
|
attr=ParamAttr(initializer=Constant(value=init_value)),
|
|
dtype="float32")
|
|
|
|
def forward(self, inputs):
|
|
out = paddle.exp(-self.loss_param) * inputs + self.loss_param
|
|
return out * 0.5
|
|
|
|
|
|
@register
|
|
class JDEEmbeddingHead(nn.Layer):
|
|
__shared__ = ['num_classes']
|
|
__inject__ = ['emb_loss', 'jde_loss']
|
|
"""
|
|
JDEEmbeddingHead
|
|
Args:
|
|
num_classes(int): Number of classes. Only support one class tracking.
|
|
num_identifiers(int): Number of identifiers.
|
|
anchor_levels(int): Number of anchor levels, same as FPN levels.
|
|
anchor_scales(int): Number of anchor scales on each FPN level.
|
|
embedding_dim(int): Embedding dimension. Default: 512.
|
|
emb_loss(object): Instance of 'JDEEmbeddingLoss'
|
|
jde_loss(object): Instance of 'JDELoss'
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes=1,
|
|
num_identifiers=1, # defined by dataset.total_identities
|
|
anchor_levels=3,
|
|
anchor_scales=4,
|
|
embedding_dim=512,
|
|
emb_loss='JDEEmbeddingLoss',
|
|
jde_loss='JDELoss'):
|
|
super(JDEEmbeddingHead, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.num_identifiers = num_identifiers
|
|
self.anchor_levels = anchor_levels
|
|
self.anchor_scales = anchor_scales
|
|
self.embedding_dim = embedding_dim
|
|
self.emb_loss = emb_loss
|
|
self.jde_loss = jde_loss
|
|
|
|
self.emb_scale = math.sqrt(2) * math.log(
|
|
self.num_identifiers - 1) if self.num_identifiers > 1 else 1
|
|
|
|
self.identify_outputs = []
|
|
self.loss_params_cls = []
|
|
self.loss_params_reg = []
|
|
self.loss_params_ide = []
|
|
for i in range(self.anchor_levels):
|
|
name = 'identify_output.{}'.format(i)
|
|
identify_output = self.add_sublayer(
|
|
name,
|
|
nn.Conv2D(
|
|
in_channels=64 * (2**self.anchor_levels) // (2**i),
|
|
out_channels=self.embedding_dim,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
weight_attr=ParamAttr(name=name + '.conv.weights'),
|
|
bias_attr=ParamAttr(
|
|
name=name + '.conv.bias', regularizer=L2Decay(0.))))
|
|
self.identify_outputs.append(identify_output)
|
|
|
|
loss_p_cls = self.add_sublayer('cls.{}'.format(i), LossParam(-4.15))
|
|
self.loss_params_cls.append(loss_p_cls)
|
|
loss_p_reg = self.add_sublayer('reg.{}'.format(i), LossParam(-4.85))
|
|
self.loss_params_reg.append(loss_p_reg)
|
|
loss_p_ide = self.add_sublayer('ide.{}'.format(i), LossParam(-2.3))
|
|
self.loss_params_ide.append(loss_p_ide)
|
|
|
|
self.classifier = self.add_sublayer(
|
|
'classifier',
|
|
nn.Linear(
|
|
self.embedding_dim,
|
|
self.num_identifiers,
|
|
weight_attr=ParamAttr(
|
|
learning_rate=1., initializer=Normal(
|
|
mean=0.0, std=0.01)),
|
|
bias_attr=ParamAttr(
|
|
learning_rate=2., regularizer=L2Decay(0.))))
|
|
|
|
def forward(self,
|
|
identify_feats,
|
|
targets=None,
|
|
loss_confs=None,
|
|
loss_boxes=None,
|
|
test_emb=False):
|
|
assert len(identify_feats) == self.anchor_levels
|
|
ide_outs = []
|
|
for feat, ide_head in zip(identify_feats, self.identify_outputs):
|
|
ide_outs.append(ide_head(feat))
|
|
|
|
if self.training:
|
|
assert targets != None
|
|
assert len(loss_confs) == len(loss_boxes) == self.anchor_levels
|
|
loss_ides = self.emb_loss(ide_outs, targets, self.emb_scale,
|
|
self.classifier)
|
|
return self.jde_loss(loss_confs, loss_boxes, loss_ides,
|
|
self.loss_params_cls, self.loss_params_reg,
|
|
self.loss_params_ide, targets)
|
|
else:
|
|
if test_emb:
|
|
assert targets != None
|
|
embs_and_gts = self.get_emb_and_gt_outs(ide_outs, targets)
|
|
return embs_and_gts
|
|
else:
|
|
emb_outs = self.get_emb_outs(ide_outs)
|
|
return emb_outs
|
|
|
|
def get_emb_and_gt_outs(self, ide_outs, targets):
|
|
emb_and_gts = []
|
|
for i, p_ide in enumerate(ide_outs):
|
|
t_conf = targets['tconf{}'.format(i)]
|
|
t_ide = targets['tide{}'.format(i)]
|
|
|
|
p_ide = p_ide.transpose((0, 2, 3, 1))
|
|
p_ide_flatten = paddle.reshape(p_ide, [-1, self.embedding_dim])
|
|
|
|
mask = t_conf > 0
|
|
mask = paddle.cast(mask, dtype="int64")
|
|
emb_mask = mask.max(1).flatten()
|
|
emb_mask_inds = paddle.nonzero(emb_mask > 0).flatten()
|
|
if len(emb_mask_inds) > 0:
|
|
t_ide_flatten = paddle.reshape(t_ide.max(1), [-1, 1])
|
|
tids = paddle.gather(t_ide_flatten, emb_mask_inds)
|
|
|
|
embedding = paddle.gather(p_ide_flatten, emb_mask_inds)
|
|
embedding = self.emb_scale * F.normalize(embedding)
|
|
emb_and_gt = paddle.concat([embedding, tids], axis=1)
|
|
emb_and_gts.append(emb_and_gt)
|
|
|
|
if len(emb_and_gts) > 0:
|
|
return paddle.concat(emb_and_gts, axis=0)
|
|
else:
|
|
return paddle.zeros((1, self.embedding_dim + 1))
|
|
|
|
def get_emb_outs(self, ide_outs):
|
|
emb_outs = []
|
|
for i, p_ide in enumerate(ide_outs):
|
|
p_ide = p_ide.transpose((0, 2, 3, 1))
|
|
|
|
p_ide_repeat = paddle.tile(
|
|
p_ide.unsqueeze(axis=0), [1, self.anchor_scales, 1, 1, 1])
|
|
embedding = F.normalize(p_ide_repeat, axis=-1)
|
|
emb = paddle.reshape(embedding, [-1, self.embedding_dim])
|
|
emb_outs.append(emb)
|
|
|
|
if len(emb_outs) > 0:
|
|
return paddle.concat(emb_outs, axis=0)
|
|
else:
|
|
return paddle.zeros((1, self.embedding_dim))
|