PulseFocusPlatform/deploy/benchmark/log_parser_excel.py

301 lines
12 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import argparse
import pandas as pd
def parse_args():
"""
parse input args
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--log_path",
type=str,
default="./output_pipeline",
help="benchmark log path")
parser.add_argument(
"--output_name",
type=str,
default="benchmark_excel.xlsx",
help="output excel file name")
parser.add_argument(
"--analysis_trt", dest="analysis_trt", action='store_true')
parser.add_argument(
"--analysis_mkl", dest="analysis_mkl", action='store_true')
return parser.parse_args()
def find_all_logs(path_walk):
"""
find all .log files from target dir
"""
for root, ds, files in os.walk(path_walk):
for file_name in files:
if re.match(r'.*.log', file_name):
full_path = os.path.join(root, file_name)
yield file_name, full_path
def process_log(file_name):
"""
process log to dict
"""
output_dict = {}
with open(file_name, 'r') as f:
for i, data in enumerate(f.readlines()):
if i == 0:
continue
line_lists = data.split(" ")
# conf info
if "runtime_device:" in line_lists:
pos_buf = line_lists.index("runtime_device:")
output_dict["runtime_device"] = line_lists[pos_buf + 1].strip()
if "ir_optim:" in line_lists:
pos_buf = line_lists.index("ir_optim:")
output_dict["ir_optim"] = line_lists[pos_buf + 1].strip()
if "enable_memory_optim:" in line_lists:
pos_buf = line_lists.index("enable_memory_optim:")
output_dict["enable_memory_optim"] = line_lists[pos_buf +
1].strip()
if "enable_tensorrt:" in line_lists:
pos_buf = line_lists.index("enable_tensorrt:")
output_dict["enable_tensorrt"] = line_lists[pos_buf + 1].strip()
if "precision:" in line_lists:
pos_buf = line_lists.index("precision:")
output_dict["precision"] = line_lists[pos_buf + 1].strip()
if "enable_mkldnn:" in line_lists:
pos_buf = line_lists.index("enable_mkldnn:")
output_dict["enable_mkldnn"] = line_lists[pos_buf + 1].strip()
if "cpu_math_library_num_threads:" in line_lists:
pos_buf = line_lists.index("cpu_math_library_num_threads:")
output_dict["cpu_math_library_num_threads"] = line_lists[
pos_buf + 1].strip()
# model info
if "model_name:" in line_lists:
pos_buf = line_lists.index("model_name:")
output_dict["model_name"] = list(
filter(None, line_lists[pos_buf + 1].strip().split('/')))[
-1]
# data info
if "batch_size:" in line_lists:
pos_buf = line_lists.index("batch_size:")
output_dict["batch_size"] = line_lists[pos_buf + 1].strip()
if "input_shape:" in line_lists:
pos_buf = line_lists.index("input_shape:")
output_dict["input_shape"] = line_lists[pos_buf + 1].strip()
# perf info
if "cpu_rss(MB):" in line_lists:
pos_buf = line_lists.index("cpu_rss(MB):")
output_dict["cpu_rss(MB)"] = line_lists[pos_buf + 1].strip(
).split(',')[0]
if "gpu_rss(MB):" in line_lists:
pos_buf = line_lists.index("gpu_rss(MB):")
output_dict["gpu_rss(MB)"] = line_lists[pos_buf + 1].strip(
).split(',')[0]
if "gpu_util:" in line_lists:
pos_buf = line_lists.index("gpu_util:")
output_dict["gpu_util"] = line_lists[pos_buf + 1].strip().split(
',')[0]
if "preproce_time(ms):" in line_lists:
pos_buf = line_lists.index("preproce_time(ms):")
output_dict["preproce_time(ms)"] = line_lists[
pos_buf + 1].strip().split(',')[0]
if "inference_time(ms):" in line_lists:
pos_buf = line_lists.index("inference_time(ms):")
output_dict["inference_time(ms)"] = line_lists[
pos_buf + 1].strip().split(',')[0]
if "postprocess_time(ms):" in line_lists:
pos_buf = line_lists.index("postprocess_time(ms):")
output_dict["postprocess_time(ms)"] = line_lists[
pos_buf + 1].strip().split(',')[0]
return output_dict
def filter_df_merge(cpu_df, filter_column=None):
"""
process cpu data frame, merge by 'model_name', 'batch_size'
Args:
cpu_df ([type]): [description]
"""
if not filter_column:
raise Exception(
"please assign filter_column for filter_df_merge function")
df_lists = []
filter_column_lists = []
for k, v in cpu_df.groupby(filter_column, dropna=True):
filter_column_lists.append(k)
df_lists.append(v)
final_output_df = df_lists[-1]
# merge same model
for i in range(len(df_lists) - 1):
left_suffix = cpu_df[filter_column].unique()[0]
right_suffix = df_lists[i][filter_column].unique()[0]
print(left_suffix, right_suffix)
if not pd.isnull(right_suffix):
final_output_df = pd.merge(
final_output_df,
df_lists[i],
how='left',
left_on=['model_name', 'batch_size'],
right_on=['model_name', 'batch_size'],
suffixes=('', '_{0}_{1}'.format(filter_column, right_suffix)))
# rename default df columns
origin_column_names = list(cpu_df.columns.values)
origin_column_names.remove(filter_column)
suffix = final_output_df[filter_column].unique()[0]
for name in origin_column_names:
final_output_df.rename(
columns={name: "{0}_{1}_{2}".format(name, filter_column, suffix)},
inplace=True)
final_output_df.rename(
columns={
filter_column: "{0}_{1}_{2}".format(filter_column, filter_column,
suffix)
},
inplace=True)
final_output_df.sort_values(
by=[
"model_name_{0}_{1}".format(filter_column, suffix),
"batch_size_{0}_{1}".format(filter_column, suffix)
],
inplace=True)
return final_output_df
def trt_perf_analysis(raw_df):
"""
sperate raw dataframe to a list of dataframe
compare tensorrt percision performance
"""
# filter df by gpu, compare tensorrt and gpu
# define default dataframe for gpu performance analysis
gpu_df = raw_df.loc[raw_df['runtime_device'] == 'gpu']
new_df = filter_df_merge(gpu_df, "precision")
# calculate qps diff percentail
infer_fp32 = "inference_time(ms)_precision_fp32"
infer_fp16 = "inference_time(ms)_precision_fp16"
infer_int8 = "inference_time(ms)_precision_int8"
new_df["fp32_fp16_diff"] = new_df[[infer_fp32, infer_fp16]].apply(
lambda x: (float(x[infer_fp16]) - float(x[infer_fp32])) / float(x[infer_fp32]),
axis=1)
new_df["fp32_gpu_diff"] = new_df[["inference_time(ms)", infer_fp32]].apply(
lambda x: (float(x[infer_fp32]) - float(x[infer_fp32])) / float(x["inference_time(ms)"]),
axis=1)
new_df["fp16_int8_diff"] = new_df[[infer_fp16, infer_int8]].apply(
lambda x: (float(x[infer_int8]) - float(x[infer_fp16])) / float(x[infer_fp16]),
axis=1)
return new_df
def mkl_perf_analysis(raw_df):
"""
sperate raw dataframe to a list of dataframe
compare mkldnn performance with not enable mkldnn
"""
# filter df by cpu, compare mkl and cpu
# define default dataframe for cpu mkldnn analysis
cpu_df = raw_df.loc[raw_df['runtime_device'] == 'cpu']
mkl_compare_df = cpu_df.loc[cpu_df['cpu_math_library_num_threads'] == '1']
thread_compare_df = cpu_df.loc[cpu_df['enable_mkldnn'] == 'True']
# define dataframe need to be analyzed
output_mkl_df = filter_df_merge(mkl_compare_df, 'enable_mkldnn')
output_thread_df = filter_df_merge(thread_compare_df,
'cpu_math_library_num_threads')
# calculate performance diff percentail
# compare mkl performance with cpu
enable_mkldnn = "inference_time(ms)_enable_mkldnn_True"
disable_mkldnn = "inference_time(ms)_enable_mkldnn_False"
output_mkl_df["mkl_infer_diff"] = output_mkl_df[[
enable_mkldnn, disable_mkldnn
]].apply(
lambda x: (float(x[enable_mkldnn]) - float(x[disable_mkldnn])) / float(x[disable_mkldnn]),
axis=1)
cpu_enable_mkldnn = "cpu_rss(MB)_enable_mkldnn_True"
cpu_disable_mkldnn = "cpu_rss(MB)_enable_mkldnn_False"
output_mkl_df["mkl_cpu_rss_diff"] = output_mkl_df[[
cpu_enable_mkldnn, cpu_disable_mkldnn
]].apply(
lambda x: (float(x[cpu_enable_mkldnn]) - float(x[cpu_disable_mkldnn])) / float(x[cpu_disable_mkldnn]),
axis=1)
# compare cpu_multi_thread performance with cpu
num_threads_1 = "inference_time(ms)_cpu_math_library_num_threads_1"
num_threads_6 = "inference_time(ms)_cpu_math_library_num_threads_6"
output_thread_df["mkl_infer_diff"] = output_thread_df[[
num_threads_6, num_threads_1
]].apply(
lambda x: (float(x[num_threads_6]) - float(x[num_threads_1])) / float(x[num_threads_1]),
axis=1)
cpu_num_threads_1 = "cpu_rss(MB)_cpu_math_library_num_threads_1"
cpu_num_threads_6 = "cpu_rss(MB)_cpu_math_library_num_threads_6"
output_thread_df["mkl_cpu_rss_diff"] = output_thread_df[[
cpu_num_threads_6, cpu_num_threads_1
]].apply(
lambda x: (float(x[cpu_num_threads_6]) - float(x[cpu_num_threads_1])) / float(x[cpu_num_threads_1]),
axis=1)
return output_mkl_df, output_thread_df
def main():
"""
main
"""
args = parse_args()
# create empty DataFrame
origin_df = pd.DataFrame(columns=[
"model_name", "batch_size", "input_shape", "runtime_device", "ir_optim",
"enable_memory_optim", "enable_tensorrt", "precision", "enable_mkldnn",
"cpu_math_library_num_threads", "preproce_time(ms)",
"inference_time(ms)", "postprocess_time(ms)", "cpu_rss(MB)",
"gpu_rss(MB)", "gpu_util"
])
for file_name, full_path in find_all_logs(args.log_path):
dict_log = process_log(full_path)
origin_df = origin_df.append(dict_log, ignore_index=True)
raw_df = origin_df.sort_values(by='model_name')
raw_df.sort_values(by=["model_name", "batch_size"], inplace=True)
raw_df.to_excel(args.output_name)
if args.analysis_trt:
trt_df = trt_perf_analysis(raw_df)
trt_df.to_excel("trt_analysis_{}".format(args.output_name))
if args.analysis_mkl:
mkl_df, thread_df = mkl_perf_analysis(raw_df)
mkl_df.to_excel("mkl_enable_analysis_{}".format(args.output_name))
thread_df.to_excel("mkl_threads_analysis_{}".format(args.output_name))
if __name__ == "__main__":
main()