forked from PulseFocusPlatform/PulseFocusPlatform
341 lines
11 KiB
Python
341 lines
11 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
from ppdet.core.workspace import register, serializable
|
|
from ppdet.modeling.ops import batch_norm, mish
|
|
from ..shape_spec import ShapeSpec
|
|
|
|
__all__ = ['DarkNet', 'ConvBNLayer']
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
ch_in,
|
|
ch_out,
|
|
filter_size=3,
|
|
stride=1,
|
|
groups=1,
|
|
padding=0,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
act="leaky",
|
|
freeze_norm=False,
|
|
data_format='NCHW',
|
|
name=''):
|
|
"""
|
|
conv + bn + activation layer
|
|
|
|
Args:
|
|
ch_in (int): input channel
|
|
ch_out (int): output channel
|
|
filter_size (int): filter size, default 3
|
|
stride (int): stride, default 1
|
|
groups (int): number of groups of conv layer, default 1
|
|
padding (int): padding size, default 0
|
|
norm_type (str): batch norm type, default bn
|
|
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
|
act (str): activation function type, default 'leaky', which means leaky_relu
|
|
freeze_norm (bool): whether to freeze norm, default False
|
|
data_format (str): data format, NCHW or NHWC
|
|
"""
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
self.conv = nn.Conv2D(
|
|
in_channels=ch_in,
|
|
out_channels=ch_out,
|
|
kernel_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=groups,
|
|
data_format=data_format,
|
|
bias_attr=False)
|
|
self.batch_norm = batch_norm(
|
|
ch_out,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format)
|
|
self.act = act
|
|
|
|
def forward(self, inputs):
|
|
out = self.conv(inputs)
|
|
out = self.batch_norm(out)
|
|
if self.act == 'leaky':
|
|
out = F.leaky_relu(out, 0.1)
|
|
elif self.act == 'mish':
|
|
out = mish(out)
|
|
return out
|
|
|
|
|
|
class DownSample(nn.Layer):
|
|
def __init__(self,
|
|
ch_in,
|
|
ch_out,
|
|
filter_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
data_format='NCHW'):
|
|
"""
|
|
downsample layer
|
|
|
|
Args:
|
|
ch_in (int): input channel
|
|
ch_out (int): output channel
|
|
filter_size (int): filter size, default 3
|
|
stride (int): stride, default 2
|
|
padding (int): padding size, default 1
|
|
norm_type (str): batch norm type, default bn
|
|
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
|
freeze_norm (bool): whether to freeze norm, default False
|
|
data_format (str): data format, NCHW or NHWC
|
|
"""
|
|
|
|
super(DownSample, self).__init__()
|
|
|
|
self.conv_bn_layer = ConvBNLayer(
|
|
ch_in=ch_in,
|
|
ch_out=ch_out,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format)
|
|
self.ch_out = ch_out
|
|
|
|
def forward(self, inputs):
|
|
out = self.conv_bn_layer(inputs)
|
|
return out
|
|
|
|
|
|
class BasicBlock(nn.Layer):
|
|
def __init__(self,
|
|
ch_in,
|
|
ch_out,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
data_format='NCHW'):
|
|
"""
|
|
BasicBlock layer of DarkNet
|
|
|
|
Args:
|
|
ch_in (int): input channel
|
|
ch_out (int): output channel
|
|
norm_type (str): batch norm type, default bn
|
|
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
|
freeze_norm (bool): whether to freeze norm, default False
|
|
data_format (str): data format, NCHW or NHWC
|
|
"""
|
|
|
|
super(BasicBlock, self).__init__()
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
ch_in=ch_in,
|
|
ch_out=ch_out,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format)
|
|
self.conv2 = ConvBNLayer(
|
|
ch_in=ch_out,
|
|
ch_out=ch_out * 2,
|
|
filter_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format)
|
|
|
|
def forward(self, inputs):
|
|
conv1 = self.conv1(inputs)
|
|
conv2 = self.conv2(conv1)
|
|
out = paddle.add(x=inputs, y=conv2)
|
|
return out
|
|
|
|
|
|
class Blocks(nn.Layer):
|
|
def __init__(self,
|
|
ch_in,
|
|
ch_out,
|
|
count,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
name=None,
|
|
data_format='NCHW'):
|
|
"""
|
|
Blocks layer, which consist of some BaickBlock layers
|
|
|
|
Args:
|
|
ch_in (int): input channel
|
|
ch_out (int): output channel
|
|
count (int): number of BasicBlock layer
|
|
norm_type (str): batch norm type, default bn
|
|
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
|
freeze_norm (bool): whether to freeze norm, default False
|
|
name (str): layer name
|
|
data_format (str): data format, NCHW or NHWC
|
|
"""
|
|
super(Blocks, self).__init__()
|
|
|
|
self.basicblock0 = BasicBlock(
|
|
ch_in,
|
|
ch_out,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format)
|
|
self.res_out_list = []
|
|
for i in range(1, count):
|
|
block_name = '{}.{}'.format(name, i)
|
|
res_out = self.add_sublayer(
|
|
block_name,
|
|
BasicBlock(
|
|
ch_out * 2,
|
|
ch_out,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format))
|
|
self.res_out_list.append(res_out)
|
|
self.ch_out = ch_out
|
|
|
|
def forward(self, inputs):
|
|
y = self.basicblock0(inputs)
|
|
for basic_block_i in self.res_out_list:
|
|
y = basic_block_i(y)
|
|
return y
|
|
|
|
|
|
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class DarkNet(nn.Layer):
|
|
__shared__ = ['norm_type', 'data_format']
|
|
|
|
def __init__(self,
|
|
depth=53,
|
|
freeze_at=-1,
|
|
return_idx=[2, 3, 4],
|
|
num_stages=5,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
data_format='NCHW'):
|
|
"""
|
|
Darknet, see https://pjreddie.com/darknet/yolo/
|
|
|
|
Args:
|
|
depth (int): depth of network
|
|
freeze_at (int): freeze the backbone at which stage
|
|
filter_size (int): filter size, default 3
|
|
return_idx (list): index of stages whose feature maps are returned
|
|
norm_type (str): batch norm type, default bn
|
|
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
|
|
data_format (str): data format, NCHW or NHWC
|
|
"""
|
|
super(DarkNet, self).__init__()
|
|
self.depth = depth
|
|
self.freeze_at = freeze_at
|
|
self.return_idx = return_idx
|
|
self.num_stages = num_stages
|
|
self.stages = DarkNet_cfg[self.depth][0:num_stages]
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
ch_in=3,
|
|
ch_out=32,
|
|
filter_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format)
|
|
|
|
self.downsample0 = DownSample(
|
|
ch_in=32,
|
|
ch_out=32 * 2,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format)
|
|
|
|
self._out_channels = []
|
|
self.darknet_conv_block_list = []
|
|
self.downsample_list = []
|
|
ch_in = [64, 128, 256, 512, 1024]
|
|
for i, stage in enumerate(self.stages):
|
|
name = 'stage.{}'.format(i)
|
|
conv_block = self.add_sublayer(
|
|
name,
|
|
Blocks(
|
|
int(ch_in[i]),
|
|
32 * (2**i),
|
|
stage,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format,
|
|
name=name))
|
|
self.darknet_conv_block_list.append(conv_block)
|
|
if i in return_idx:
|
|
self._out_channels.append(64 * (2**i))
|
|
for i in range(num_stages - 1):
|
|
down_name = 'stage.{}.downsample'.format(i)
|
|
downsample = self.add_sublayer(
|
|
down_name,
|
|
DownSample(
|
|
ch_in=32 * (2**(i + 1)),
|
|
ch_out=32 * (2**(i + 2)),
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
data_format=data_format))
|
|
self.downsample_list.append(downsample)
|
|
|
|
def forward(self, inputs):
|
|
x = inputs['image']
|
|
|
|
out = self.conv0(x)
|
|
out = self.downsample0(out)
|
|
blocks = []
|
|
for i, conv_block_i in enumerate(self.darknet_conv_block_list):
|
|
out = conv_block_i(out)
|
|
if i == self.freeze_at:
|
|
out.stop_gradient = True
|
|
if i in self.return_idx:
|
|
blocks.append(out)
|
|
if i < self.num_stages - 1:
|
|
out = self.downsample_list[i](out)
|
|
return blocks
|
|
|
|
@property
|
|
def out_shape(self):
|
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|