forked from PulseFocusPlatform/PulseFocusPlatform
270 lines
9.9 KiB
Python
270 lines
9.9 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
from paddle.nn.initializer import Normal, Constant
|
|
|
|
from ppdet.core.workspace import register
|
|
from ppdet.modeling.layers import ConvNormLayer
|
|
|
|
|
|
class ScaleReg(nn.Layer):
|
|
"""
|
|
Parameter for scaling the regression outputs.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(ScaleReg, self).__init__()
|
|
self.scale_reg = self.create_parameter(
|
|
shape=[1],
|
|
attr=ParamAttr(initializer=Constant(value=1.)),
|
|
dtype="float32")
|
|
|
|
def forward(self, inputs):
|
|
out = inputs * self.scale_reg
|
|
return out
|
|
|
|
|
|
@register
|
|
class FCOSFeat(nn.Layer):
|
|
"""
|
|
FCOSFeat of FCOS
|
|
|
|
Args:
|
|
feat_in (int): The channel number of input Tensor.
|
|
feat_out (int): The channel number of output Tensor.
|
|
num_convs (int): The convolution number of the FCOSFeat.
|
|
norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
|
|
use_dcn (bool): Whether to use dcn in tower or not.
|
|
"""
|
|
|
|
def __init__(self,
|
|
feat_in=256,
|
|
feat_out=256,
|
|
num_convs=4,
|
|
norm_type='bn',
|
|
use_dcn=False):
|
|
super(FCOSFeat, self).__init__()
|
|
self.num_convs = num_convs
|
|
self.norm_type = norm_type
|
|
self.cls_subnet_convs = []
|
|
self.reg_subnet_convs = []
|
|
for i in range(self.num_convs):
|
|
in_c = feat_in if i == 0 else feat_out
|
|
|
|
cls_conv_name = 'fcos_head_cls_tower_conv_{}'.format(i)
|
|
cls_conv = self.add_sublayer(
|
|
cls_conv_name,
|
|
ConvNormLayer(
|
|
ch_in=in_c,
|
|
ch_out=feat_out,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type=norm_type,
|
|
use_dcn=use_dcn,
|
|
bias_on=True,
|
|
lr_scale=2.))
|
|
self.cls_subnet_convs.append(cls_conv)
|
|
|
|
reg_conv_name = 'fcos_head_reg_tower_conv_{}'.format(i)
|
|
reg_conv = self.add_sublayer(
|
|
reg_conv_name,
|
|
ConvNormLayer(
|
|
ch_in=in_c,
|
|
ch_out=feat_out,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type=norm_type,
|
|
use_dcn=use_dcn,
|
|
bias_on=True,
|
|
lr_scale=2.))
|
|
self.reg_subnet_convs.append(reg_conv)
|
|
|
|
def forward(self, fpn_feat):
|
|
cls_feat = fpn_feat
|
|
reg_feat = fpn_feat
|
|
for i in range(self.num_convs):
|
|
cls_feat = F.relu(self.cls_subnet_convs[i](cls_feat))
|
|
reg_feat = F.relu(self.reg_subnet_convs[i](reg_feat))
|
|
return cls_feat, reg_feat
|
|
|
|
|
|
@register
|
|
class FCOSHead(nn.Layer):
|
|
"""
|
|
FCOSHead
|
|
Args:
|
|
fcos_feat (object): Instance of 'FCOSFeat'
|
|
num_classes (int): Number of classes
|
|
fpn_stride (list): The stride of each FPN Layer
|
|
prior_prob (float): Used to set the bias init for the class prediction layer
|
|
fcos_loss (object): Instance of 'FCOSLoss'
|
|
norm_reg_targets (bool): Normalization the regression target if true
|
|
centerness_on_reg (bool): The prediction of centerness on regression or clssification branch
|
|
"""
|
|
__inject__ = ['fcos_feat', 'fcos_loss']
|
|
__shared__ = ['num_classes']
|
|
|
|
def __init__(self,
|
|
fcos_feat,
|
|
num_classes=80,
|
|
fpn_stride=[8, 16, 32, 64, 128],
|
|
prior_prob=0.01,
|
|
fcos_loss='FCOSLoss',
|
|
norm_reg_targets=True,
|
|
centerness_on_reg=True):
|
|
super(FCOSHead, self).__init__()
|
|
self.fcos_feat = fcos_feat
|
|
self.num_classes = num_classes
|
|
self.fpn_stride = fpn_stride
|
|
self.prior_prob = prior_prob
|
|
self.fcos_loss = fcos_loss
|
|
self.norm_reg_targets = norm_reg_targets
|
|
self.centerness_on_reg = centerness_on_reg
|
|
|
|
conv_cls_name = "fcos_head_cls"
|
|
bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
|
|
self.fcos_head_cls = self.add_sublayer(
|
|
conv_cls_name,
|
|
nn.Conv2D(
|
|
in_channels=256,
|
|
out_channels=self.num_classes,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
weight_attr=ParamAttr(
|
|
name=conv_cls_name + "_weights",
|
|
initializer=Normal(
|
|
mean=0., std=0.01)),
|
|
bias_attr=ParamAttr(
|
|
name=conv_cls_name + "_bias",
|
|
initializer=Constant(value=bias_init_value))))
|
|
|
|
conv_reg_name = "fcos_head_reg"
|
|
self.fcos_head_reg = self.add_sublayer(
|
|
conv_reg_name,
|
|
nn.Conv2D(
|
|
in_channels=256,
|
|
out_channels=4,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
weight_attr=ParamAttr(
|
|
name=conv_reg_name + "_weights",
|
|
initializer=Normal(
|
|
mean=0., std=0.01)),
|
|
bias_attr=ParamAttr(
|
|
name=conv_reg_name + "_bias",
|
|
initializer=Constant(value=0))))
|
|
|
|
conv_centerness_name = "fcos_head_centerness"
|
|
self.fcos_head_centerness = self.add_sublayer(
|
|
conv_centerness_name,
|
|
nn.Conv2D(
|
|
in_channels=256,
|
|
out_channels=1,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
weight_attr=ParamAttr(
|
|
name=conv_centerness_name + "_weights",
|
|
initializer=Normal(
|
|
mean=0., std=0.01)),
|
|
bias_attr=ParamAttr(
|
|
name=conv_centerness_name + "_bias",
|
|
initializer=Constant(value=0))))
|
|
|
|
self.scales_regs = []
|
|
for i in range(len(self.fpn_stride)):
|
|
lvl = int(math.log(int(self.fpn_stride[i]), 2))
|
|
feat_name = 'p{}_feat'.format(lvl)
|
|
scale_reg = self.add_sublayer(feat_name, ScaleReg())
|
|
self.scales_regs.append(scale_reg)
|
|
|
|
def _compute_locations_by_level(self, fpn_stride, feature):
|
|
"""
|
|
Compute locations of anchor points of each FPN layer
|
|
Args:
|
|
fpn_stride (int): The stride of current FPN feature map
|
|
feature (Tensor): Tensor of current FPN feature map
|
|
Return:
|
|
Anchor points locations of current FPN feature map
|
|
"""
|
|
shape_fm = paddle.shape(feature)
|
|
shape_fm.stop_gradient = True
|
|
h, w = shape_fm[2], shape_fm[3]
|
|
shift_x = paddle.arange(0, w * fpn_stride, fpn_stride)
|
|
shift_y = paddle.arange(0, h * fpn_stride, fpn_stride)
|
|
shift_x = paddle.unsqueeze(shift_x, axis=0)
|
|
shift_y = paddle.unsqueeze(shift_y, axis=1)
|
|
shift_x = paddle.expand(shift_x, shape=[h, w])
|
|
shift_y = paddle.expand(shift_y, shape=[h, w])
|
|
shift_x.stop_gradient = True
|
|
shift_y.stop_gradient = True
|
|
shift_x = paddle.reshape(shift_x, shape=[-1])
|
|
shift_y = paddle.reshape(shift_y, shape=[-1])
|
|
location = paddle.stack(
|
|
[shift_x, shift_y], axis=-1) + float(fpn_stride) / 2
|
|
location.stop_gradient = True
|
|
return location
|
|
|
|
def forward(self, fpn_feats, is_training):
|
|
assert len(fpn_feats) == len(
|
|
self.fpn_stride
|
|
), "The size of fpn_feats is not equal to size of fpn_stride"
|
|
cls_logits_list = []
|
|
bboxes_reg_list = []
|
|
centerness_list = []
|
|
for scale_reg, fpn_stride, fpn_feat in zip(self.scales_regs,
|
|
self.fpn_stride, fpn_feats):
|
|
fcos_cls_feat, fcos_reg_feat = self.fcos_feat(fpn_feat)
|
|
cls_logits = self.fcos_head_cls(fcos_cls_feat)
|
|
bbox_reg = scale_reg(self.fcos_head_reg(fcos_reg_feat))
|
|
if self.centerness_on_reg:
|
|
centerness = self.fcos_head_centerness(fcos_reg_feat)
|
|
else:
|
|
centerness = self.fcos_head_centerness(fcos_cls_feat)
|
|
if self.norm_reg_targets:
|
|
bbox_reg = F.relu(bbox_reg)
|
|
if not is_training:
|
|
bbox_reg = bbox_reg * fpn_stride
|
|
else:
|
|
bbox_reg = paddle.exp(bbox_reg)
|
|
cls_logits_list.append(cls_logits)
|
|
bboxes_reg_list.append(bbox_reg)
|
|
centerness_list.append(centerness)
|
|
|
|
if not is_training:
|
|
locations_list = []
|
|
for fpn_stride, feature in zip(self.fpn_stride, fpn_feats):
|
|
location = self._compute_locations_by_level(fpn_stride, feature)
|
|
locations_list.append(location)
|
|
|
|
return locations_list, cls_logits_list, bboxes_reg_list, centerness_list
|
|
else:
|
|
return cls_logits_list, bboxes_reg_list, centerness_list
|
|
|
|
def get_loss(self, fcos_head_outs, tag_labels, tag_bboxes, tag_centerness):
|
|
cls_logits, bboxes_reg, centerness = fcos_head_outs
|
|
return self.fcos_loss(cls_logits, bboxes_reg, centerness, tag_labels,
|
|
tag_bboxes, tag_centerness)
|