forked from PulseFocusPlatform/PulseFocusPlatform
108 lines
3.5 KiB
Python
108 lines
3.5 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from ppdet.core.workspace import register, create
|
|
from .meta_arch import BaseArch
|
|
|
|
__all__ = ['FairMOT']
|
|
|
|
|
|
@register
|
|
class FairMOT(BaseArch):
|
|
"""
|
|
FairMOT network, see http://arxiv.org/abs/2004.01888
|
|
|
|
Args:
|
|
detector (object): 'CenterNet' instance
|
|
reid (object): 'FairMOTEmbeddingHead' instance
|
|
tracker (object): 'JDETracker' instance
|
|
loss (object): 'FairMOTLoss' instance
|
|
|
|
"""
|
|
|
|
__category__ = 'architecture'
|
|
__inject__ = ['loss']
|
|
|
|
def __init__(self,
|
|
detector='CenterNet',
|
|
reid='FairMOTEmbeddingHead',
|
|
tracker='JDETracker',
|
|
loss='FairMOTLoss'):
|
|
super(FairMOT, self).__init__()
|
|
self.detector = detector
|
|
self.reid = reid
|
|
self.tracker = tracker
|
|
self.loss = loss
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, *args, **kwargs):
|
|
detector = create(cfg['detector'])
|
|
|
|
kwargs = {'input_shape': detector.neck.out_shape}
|
|
reid = create(cfg['reid'], **kwargs)
|
|
loss = create(cfg['loss'])
|
|
tracker = create(cfg['tracker'])
|
|
|
|
return {
|
|
'detector': detector,
|
|
'reid': reid,
|
|
'loss': loss,
|
|
'tracker': tracker
|
|
}
|
|
|
|
def _forward(self):
|
|
loss = dict()
|
|
# det_outs keys:
|
|
# train: det_loss, heatmap_loss, size_loss, offset_loss, neck_feat
|
|
# eval/infer: bbox, bbox_inds, neck_feat
|
|
det_outs = self.detector(self.inputs)
|
|
neck_feat = det_outs['neck_feat']
|
|
if self.training:
|
|
reid_loss = self.reid(neck_feat, self.inputs)
|
|
|
|
det_loss = det_outs['det_loss']
|
|
loss = self.loss(det_loss, reid_loss)
|
|
loss.update({
|
|
'heatmap_loss': det_outs['heatmap_loss'],
|
|
'size_loss': det_outs['size_loss'],
|
|
'offset_loss': det_outs['offset_loss'],
|
|
'reid_loss': reid_loss
|
|
})
|
|
return loss
|
|
else:
|
|
embedding = self.reid(neck_feat, self.inputs)
|
|
bbox_inds = det_outs['bbox_inds']
|
|
embedding = paddle.transpose(embedding, [0, 2, 3, 1])
|
|
embedding = paddle.reshape(embedding,
|
|
[-1, paddle.shape(embedding)[-1]])
|
|
id_feature = paddle.gather(embedding, bbox_inds)
|
|
dets = det_outs['bbox']
|
|
id_feature = id_feature
|
|
# Note: the tracker only considers batch_size=1 and num_classses=1
|
|
online_targets = self.tracker.update(dets, id_feature)
|
|
return online_targets
|
|
|
|
def get_pred(self):
|
|
output = self._forward()
|
|
return output
|
|
|
|
def get_loss(self):
|
|
loss = self._forward()
|
|
return loss
|