PulseFocusPlatform/ppdet/modeling/architectures/s2anet.py

103 lines
3.6 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['S2ANet']
@register
class S2ANet(BaseArch):
__category__ = 'architecture'
__inject__ = [
's2anet_head',
's2anet_bbox_post_process',
]
def __init__(self, backbone, neck, s2anet_head, s2anet_bbox_post_process):
"""
S2ANet, see https://arxiv.org/pdf/2008.09397.pdf
Args:
backbone (object): backbone instance
neck (object): `FPN` instance
s2anet_head (object): `S2ANetHead` instance
s2anet_bbox_post_process (object): `S2ANetBBoxPostProcess` instance
"""
super(S2ANet, self).__init__()
self.backbone = backbone
self.neck = neck
self.s2anet_head = s2anet_head
self.s2anet_bbox_post_process = s2anet_bbox_post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
out_shape = neck and neck.out_shape or backbone.out_shape
kwargs = {'input_shape': out_shape}
s2anet_head = create(cfg['s2anet_head'], **kwargs)
s2anet_bbox_post_process = create(cfg['s2anet_bbox_post_process'],
**kwargs)
return {
'backbone': backbone,
'neck': neck,
"s2anet_head": s2anet_head,
"s2anet_bbox_post_process": s2anet_bbox_post_process,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
if self.neck is not None:
body_feats = self.neck(body_feats)
self.s2anet_head(body_feats)
if self.training:
loss = self.s2anet_head.get_loss(self.inputs)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
else:
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
nms_pre = self.s2anet_bbox_post_process.nms_pre
pred_scores, pred_bboxes = self.s2anet_head.get_prediction(nms_pre)
# post_process
pred_bboxes, bbox_num = self.s2anet_bbox_post_process(pred_scores,
pred_bboxes)
# rescale the prediction back to origin image
pred_bboxes = self.s2anet_bbox_post_process.get_pred(
pred_bboxes, bbox_num, im_shape, scale_factor)
# output
output = {'bbox': pred_bboxes, 'bbox_num': bbox_num}
return output
def get_loss(self, ):
loss = self._forward()
return loss
def get_pred(self):
output = self._forward()
return output